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APPENDIX

Test for Rate Dependence

The data of the present measurement are plotted
versus x+ stopping rate in Fig. 3. For convenience in
display, all runs falling in a given range of abscissa
have been statistically weighted and assigned to the
center of the interval. A straight-line 6t (to the actual
data rather than the lumped data mentioned) has been
made using~

T=aR+Tp,

where R is the instantaneous stopping rate in 10'/sec;
Tp is the intercept at zero rate. The results of this cal-
culation are,

u= —0.00068+0.00057

Tp= 2.2003+0.0031.

It is interesting to note that if one applies this test to
the Chicago data, ,"one obtains

a=+0.00125+0.00038,

Tp= 2.1991%0.0015.
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The cross section for proton-proton bremsstrahlung at 260-MeV incident energy is calculated using the
Yale and the Brueckner-Gammel —Thaler phenomenological nucleon-nucleon potentials. The cross section
depends strongly on the o6'-energy-shell behavior of the T matrix for these potentials. Results"for these
two potentials dier by a factor of two to three, indicating that bremsstrahlung experiments should be able
to distinguish between them.

I. INTRODVCTION

' N recent years extensive experimental eGort has
~ ~ gone into obtaining precise measurements of the
high-energy proton-proton differential cross section,
polarization, and triple scattering parameters, and a,

number of phenomenological potentials have been
found to fit these data. ' However, scattering experi-
ments of this kind can only determine the asymptotic
behavior of the p-p wave function and hence only the
behavior of the p-p interaction on the energy shell.
Thus different phenomenological potentials which are
equally successful in fitting the p-p scattering data can
be expected, to give quite different results for processes
which depend on their off-energy-shell behavior.

The nuclear matter problem is an important example
of a problem which requires knowledge of the nucleon-
nucleon interaction ofI' the energy shell. Using various
phenomenological potentials, Brueckner and Masterson'
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'B. P. Nigam, Rev. Mod. Phys. 35, 117 (1963). This is the
most recent review article on the status of the nucleon-nucleon
interaction and references to the literature can be found here.

2 K. A. Brueckner and K. S. Masterson, Jr., Phys. Rev. 128,
2267 (1962).

obtained quite different values for the binding energy
and equilibrium density of nuclear matter, depending
on the potential used. This work shows that we are still
far from a complete determination of the nucleon-
nucleon interaction.

For such a determination it will probably be necessary
to investigate more closely those simple processes in
which o6-energy-shell eGects are expected to be im-
portant. Kveretts 4 has studied oB-energy-shell effects
in inelastic quasifree proton-deuteron scattering. How-
ever just at the quasifree peak the kinematics are such
as to minimize the amount of energy nonconservation
in the scattering matrix. ' Thus he found the effect was
small and essentially masked by uncertainties in the
calculation of multiple scattering effects.

The natural process to investigate for oG-energy-
shell effects is nucleon-nucleon bremsstrahlung, since
multiple scattering corrections are expected to be small
compared to off-energy-shell eGects. In this paper cal-
culations are made of the p-p bremsstrahlung cross
section using two of the potentials studied by Brueckner

I A. Everett, Ph.D. thesis, Harvard University, 2960
(unpublished).

4 A. Everett, Phys. Rev. 126, 831 (1962).' A. Cromer, Phys. Rev. 129, 1680 (1963).
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and Masterson: the Yale potential' and the Brueckner-
Gammel-Thaler (BGT) potential. r Ashkin and
Marshak' originally found that the p-p bremsstrahlung
cross section is identically zero if the following approxi-
mations are made: the nuclear potential is assumed to
depend only on total spin and parity and is treated in
Born approximation, the gamma-ray momentum is
neglected relative to the proton momentum transfer,
and the nuclear recoil is neglected in the energy de-
nominators. In the present calculation none of these
approximations are made. The p-p interaction is
treated using both tensor and spin-orbit terms andthe
nuclear recoil is not neglected. There is still a large
amount of cancellation between some of the terms
which enter into the cross section, so that the p-p
bremsstrahlung cross section is probably smaller than
the corresponding I-p cross section (see Section IIIC).

In spite of this smaller cross section the presence of
two charged particles should make it at least as feasible
to measure the p-p cross section as it would be to
measure the I-p cross section. Gottschalk' has proposed
an experiment using two proton telescopes, placed
symmetrically at an angle 0 on either side of the incident
beam direction, to detect the scattered and recoil
proton in coincidence. Each telescope has a detector
which measures the energy of each proton. For elastic
scattering of 160-MeV protons the angle between the
outgoing protons is always 87.5'. If the telescopes are
arranged so that 20(87.5', no elastic events will be re-
corded. In this arrangement the kinematics of a p-p
bremsstrahlung event are oeerdetermined (see Sec.IIIA)
so that a clean separation of true events from back-
ground should be possible.

The calculations in this paper are done with this ex-
periment in mind. The Yale and BGT potentials are
found to give values for the cross section which differ
by a factor of 2 to 3.It is felt that the eventual measure-
ment of this cross section can provide important infor-
mation concerning the off-energy-shell behavior of the
p-p interaction and enable a distinction to be made
between various potentials on this basis.

II. THEORY

The Hamiltonian for two protons with momenta pr
and ps, respectively is

H~ IIp+ V~ (prp/2M)+ (p——s'/2M)+ ——V~. (1)

Here V~ represents one of the phenomenological
nucleon-nucleon potentials which will be used in this
calculation. A nonrelativistic Hamiltonian is used here
because these V& have all been determined by use of

' K. E.Lassila, M. H. Hull, Jr., H. M. Ruppel, F.A. McDonald,
and G. Breit, Phys. Rev. 126, 881 (1962).' K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
(1958).' J. Ashkin and R. E. Msrshak, Phys. Rev. 76, 989 (1949),
ibM 76, 58 (1949.).

P B. Gottschalk (private communication).

the nonrelativistic Schrodinger equation. The pertur-
bation which produces a gamma ray of momentum K.
energy co, and polarization e, is described by the vector
potential A=ceexp(iK r i—cut) ". The normalization
factor u is given by (8prc'/co)'" and comes from the re-
quirement that the total 6eld energy be or. The total
Harniltonian is now

H= {Lpr—(e/c)A(rr, t)J'/2M}
+{/ps—(e/c)A(rs, t))'/2M}
+VN —(e/2Mc)tI, „{rrr [v tXA(rr, t)j

+&s t VsXA(rs, t)j}=Hp+V, +Var, (2)
where

V, = —(e/Mc){pr A(rr, t)+sipro& LKXA(rr, t)g

+ps A(rs, t)+-', ip,,es I KXA(rs, t))}. (3)

Here o~ and e2 are the Pauli spin matrices for the two
protons, and p~ is the magnetic moment in nuclear
magnetons (2.793). The A' terms have been omitted
in accordance with the usual rules of quantum
electrodynamics. "

Although we shall treat the electromagnetic potential
only to first order, we wish to treat the nuclear potential
VN, exactly. If TN is defined to be the exact scattering
matrix which would correspond to the Hamiltonian
H~, then the complete T matrix for the Hamiltonian
H can be written, using the results of Lippmann, " in
terms of T~ and V, . The result to lowest order in
V~m is

T= T~+ V +TNGpV&~+Vp GpTrr

+T&pV. GpTN (4)

Gp is the free particle propagator, (E+ie Hp) '. The-
term Tz on the right side of Eq. (4) represents proton-
proton scattering without photon emission and is not
of interest to us. The term V, represents photon emis-
sion, by a free proton, which, of course, is kinematically
impossible. The term TNGOV, represents a photon
emission followed by p-p scattering and the term
V, GpT~ represents p-p scattering followed by photon
emission. These are the main terms which we will cal-
culate. The last term in Eq. (4) represents a process in
which the nucleons interact both before and after the
gamma ray is produced. This term is neglected in the
present calculation, though an estimate of it will be
given later. Thus, the T matrix of interest to us now, is

T = T~pV +V GpTN. (5)

Since V, as given by Eq. (3) has one term for each
proton, T' consists of four terms altogether. These are
calculated by inserting complete sets of intermediate
states of Hp between the operators in Eq. (5). The
result, for protons of initial momenta p~ and p2, and

'o We here use a system of units in which 4= 1."R.P. Feynman, Quentin Electrodynamics (W. A. Benjamin,
Inc. , New York, 1961).

's B.Lippmann, Ann. Phys. (N. Y.) 1, 115 (1957).
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Pro. 1. Diagrams
representing the four
processes of photon
emission considered.
The heavy bars rep-
resent the matrix
elements of T~ Lsee
Eq. (6) of the text).
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III. CALCULATIONS

A. Kinematics

In the 6nal state there are three particles with nine
degrees of freedom. These are reduced to 6ve by the con-
servation equations. In the planned experiment, the
direction and energy of both protons will be detected,

where E(y) =p'/2M. These four terms are represented
in Fig. 1. The matrix elements of Tz in Eq. (6) all
conserve momentum, but they do not conserve energy.
For example, in the first term, E(pi'+I)+E(ps')
WE(yi)+E(ps), the matrix elements of T' must be
antisyrnrnetrized with respect to the two protons. This
is identical to antisymmetrizing the matrix elements of
Tpfo

I'IG. 2. Kinematics of p-p bremsstrahlung for 160-MeV incident
protons. E~ and E2 are anal energies of protons scattered through
angle 8 to left and right, respectively. The point at 8=43.8' cor-
responds to elastic scattering.

so we take as the five independent parameters the
directions of both protons and the energy of one. The
kinematic equations then give two solutions for the
energy of the second proton. These solutions have been
calculated by Gottshalk' and the results are shown in
Fig. 2 for an incident energy 160 MeV, where the final
energy of proton 2 is plotted against that of proton 1

(all in the laboratory system).
The calculation was done for the special case where

the incident momentum and the final momenta of both
protons are all coplanar. (This restriction is not neces-
sary, but was chosen for experimental convenience. )
Proton 1 is scattered to the left through angle 0 and
proton 2 to the right through the same angle 8. Figure 2
shows the results for 8=30 and 40'. The angle corre-
sponding to elastic scattering, with no gamma rays, is
0=43.8'. Each point on a closed curve in Fig. 2 corre-
sponds to a dehnite gamma-ray energy and direction.
Gamma-ray energies range from 34 to 74 MeV for
8= 30' and from 12 to 32 MeV for 8=40'.

B. Calculation of TN Matrix Elements

The matrix elements of T~ are most simply calcu-
lated in the center-of-mass system. The T& matrix is
obtained from the scattering matrix M by multiplying
the latter by simple kinematic factors, including a mo-
mentum conserving delta function; and the M matrix
is given by

M=(k&l v&lp, ,).
Here (kfl is a plane-wave state with the c.m. mo-
mentum ky and lpga, .) is an exact scattering state, a
solution of the Schrodinger equation with incident mo-
mentum k;. For ordinary elastic scattering,

l k; l
=

l k~ l
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and M can be computed in terms of phase shifts"
without doing the integral over V~ implied in Eq. (7).
Invariance requirements restrict M to the form

M=A+8(ot. ft)(es. ft)+C(et f1+os.fl)
+~( .p)( .p)+F( 4)( 4) (8)

Here fl, p, g, are unit vectors in the directions k;Xk~,
k~+k~, and k,—k~, respectively. '4 The coefficients A,
8, C, E, and F are functions of the only two scalars
which can be formed from k; and k~, namely k,s and
k;. kg.

We are interested in the matrix elements of M
between states for which

~
k,

~
&

~
k~~. For such off-

energy-shell matrix elements the phase shift series no
longer applies. Instead 3f must be calculated by solving
the Schrodinger equation numerically for P&,. and doing
the integral over Uz numerically. The result will still
have the form of Eq. (8), provided p and jare redefined
as follows: p is a unit vector along the line which bisects
the vectors k; and kf, and j is a unit vector perpendicu-
lar to p, in the scattering plane. The coeKcients A, 8,
etc., are now functions of the three scalars k,', kf' and
k,"kf.

The basic equations for calculating 3f, with U& con-
taining central, spin-orbit, and tensor terms, and a hard
core, have been worked out by Everett. ' His work has
been followed with certain modifications. "A program
was written for the IBM 7090 computer at the MIT
Computation Center, to calculate the matrix element
M. All states of orbital angular momentum /~3 were
included in this calculation. Extensive checks were
carried out on this program. The numerical integration
of the Schrodinger equation, i.e., the calculation of
f&, , was checked by comparing the phase shifts ob-
tained using the Gammel-Thaler potential with the
published values. "The phase shifts all agreed within
1s% except for the singlet-S phase shift which differed
by 6%%uo

The integration over V~, to find 3f, was checked by
doing it for the special case

~
k;

~

=
) k~

~

. In this case the
M matrix is given both by Eq. (7) and by the ordinary
scattering formulas in terms of the phase shifts. "The
latter calculations were done by hand and there was
complete agreement between these and the results of
integrating over V~.

The extent to which a matrix element is off the
energy shell is measured by the parameter

~
k;

~ / ~
kr ( .

Typical values of this parameter ranged from 1.6 to
1.9 for 0=30', and from 1.2 to 1.4 for 0=40'.

"H. Stapp, T. Ypsilantis, and N. Metropolis, Phys. Rev. 105,
302 (1957)."L.Wolfenstein, Ann. Rev. Nncl. Sci. 6, 43 (1956).

''l For a hard core of radius r, there is a Rnite contribution to
the integral in Eq. (7) from the region 0&r&r, This can be c.al-
culated by a simple limiting process.

's J. L. Gammel and R. M. Thaler, Phys. Rev. 107, 291 (1957).

C. Calculation of the Cross Section

The cross section is given in terms of the matrix

&=(pt', ps'~ T'~ pt, ps) by

dPt dPs dsE
do =2~-,' Tr(gtg)

(2s)s (2s)' (2s.)s

X3Ã(Pt)+&(Ps) —&(Pt') —&(Ps') —~1 (9)

Each of the four terms in Z can be expressed in terms of
the sixteen matrices, 1, o~, e2, and e~e2. These matrices
form an orthonormal basis in the sense that Tr(0;t0, )
=48;;, where 0; is any one of these sixteen matrices.
Thus Tr(gtg) can be expressed. as the sum of the abso-
lute squares of sixteen terms, each term being a combi-
nation of the amplitudes A, 8, C, E, and. F (divided by
the appropriate energy denominators) for the four
kinematically distinct terms in Eq. (6). In choosing the
basis matrices, one must take account of the fact that
the unit vectors p and g are different for each of the four
terms in Eq. (6).

In the terms arising only from the electric inter-
action (p A) there is a large amount of cancellation:
90'%%uo or more for 0= 30', and 95% or more for 8=40'.
This is to be expected on the basis of the argument of
Ashkin and Marshak described in the Introduction.
The magnetic moment interaction (o (KXA)) does not
have such a cancellation. It will give rise to a zero p-p
bremsstrahlung cross section only in the case of a
nuclear potential which depends upon only total spin
and parity. ' Since the actual potentials used have large
tensor and spin-orbit parts, there is no tendency for the
magnetic moment term to be small.

The magnetic moment interaction is weaker than the
electric interaction by a factor stp~E/P where p is a
typical proton momentum. But the cancellation de-
scribed above and kinematic factors arising from the
average over photon polarization tend to make the mag-
netic moment contribution larger than the electric
contribution to p-p bremsstrahlung. Typically, for
8=30', the electric interaction contributes 30%, the
magnetic interaction 60%, and the cross term between
them 10% to the cross section. For &=. 40' these
numbers are roughly 66, 29, and 10%, respectively.

In the corresponding case of e-p bremsstrahlung there
will be no cancellation of the electric terms, while the
magnetic moment contribution will be of the same order
of magnitude as in the p-p case. For 8 =30', correspond-
ing to photon energies of order 50 MeV, we would
expect the n-p bremsstrahlung cross section to be about
four times the p-p cross section. Thus p-p bremsstrah-
lung may not be negligible compared with n-p as is
often assumed. For 8=40' and smaller photon energies,
the e-p cross section is expected to be more than
twenty times the p-p.
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FIG. 3. The p-p bremsstrahlung cross section for 160 MeV
incident protons. The curves give results obtained using the Breit
potential (Ref. 6) and the BGT potential (Ref. 7).

IV. RESULTS AND DISCUSSION

The cross section daj(dQqdQmdE~) was calculated,
where dQ~ and d02 are the solid angles into which
proton 1 and 2, respectively, are scattered; E& is the
laboratory energy of proton 1. We have used the Vale
potential, ' and the BGT potential described by
Brueckner and Gammel. ' The results are shown in
Fig. 3 where the cross section is plotted against E~.

The shape of these curves including the characteristic
divergence at both ends of the energy spectrum, is due
primarily to kinematic factors. For a given potential
and angle 8, the matrix elements of T& vary very little.

The result for the Yale potential is consistently
smaller than for BGT potential, by a factor 2.5 in
the case of 8=30', and 1.7 at 8=40'. This is consistent
with the nuclear matter calculations of Brueckner and
Masterson' where the Yale potential is found to give
signi6cantly weaker binding than the BGT potential.

The last term in Eq. (4), which represents a double-
scattering process, has been neglected in this work.
Rough preliminary estimates indicate that its square
contributes an additional 1.2%%uq to the cross section.
Thus, cross terms between it and the main term may
introduce corrections of up to 11%.Further work on
this point is in progress.

Finally we note that in introducing the vector po-
tential A in Eq. (2), we neglected possible momentum
dependence of the nuclear potential. There is in fact a
spin-orbit term $ (r Xp) in the potentials used, and by
the usual gauge invariance arguments this should be
replaced by S rX (y—(e/c)A). Since this nonlocality of
the potential represents the meson origin of the nucleon-
nucleon interaction, the perturbation —(%)S (rXA)
represents photons emitted by the intermediate
mesons. ' Preliminary estimates of this term in the T
matrix indicate that its square contributes about 0.2/o
to the cross section.

In conclusion, it appears that in spite of the correction
terms that may have to be taken into account in the
cross section, a p-p bremsstrahlung experiment should
be able to distinguish between the two potentials
considered.
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