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Impact Theory of the Noble-Gas-Broadened HC1 Vibration-Rotation Lines*
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The widths and shifts of the noble-gas-broadened HCI (0—1) and (0—2) band vibration-rotation lines
are calculated using an impact theory similar to Anderson s. To obtain agreement with the experimentally
observed shifts, Anderson's approach is modiGed in that the imaginary parts of the optical cross sections are
calculated in greater detail. The cross sections are evaluated in a representation which allows further under-
standing of the physical processes active in impact broadening. It is shown that many broadening and
shifting characteristics can be explained upon taking into account the eccentricity of the HCl molecule, in
which the centers of charge and mass do not coincide. Substantial agreement with experiment is reached,
although several features of the observed shapes and shifts —particularly the variation in width with per-
turber species —remain unexplained.

I. INTRODUCTION

'
N recent years, many advances in near infrared spec-

~ I troscopy (1—5tt) have been made. ' Presently, the
rotational fine structure of many molecular vibrational
bands can be resolved with ease. In some cases, investi-

gators have examined the finer details of these spectra
in an effort to gain fundamental information not only
about the molecules themselves, but also about the way
in which these molecules interact with each other and
with foreign gases. Considerable experimental effort has
been spent, for example, on observations of pressure
broadening and shifting in the vibration-rotation spectra
of polar diatomic molecules, particularly the hydrogen
halides. ' "

The molecule whose spectrum appears to have been
most fully examined is HCl. It is to the problem of
interpreting the observed shapes and shifts of the HCl
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(0-1) and (0—2) band absorption-lines broadened by
noble gases that the present paper is addressed. In
comparing theory with experiment, we draw freely on
experimental results reported in Refs. 4, 7, and 10. The
restriction to noble gases is made because the structure
of these gases is less complicated than that of other
foreign gases used in experimental studies, inasmuch as
the rare gases are chemically inert and possess no un-

paired angular momenta nor permanent moments.
Correspondingly, molecular interactions involving these
gases should be relatively simple.

Observations reveal that the rare-gas-broadened lines
have the following reasonably regular features:

(1) The lines are Lorentz-shaped, at least near their
centers.

(2) The line-shape parameters are strongly dependent
upon the rotational quantum numbers of the states be-
tween which the radiative transitions occur. Some fea-
tures of the shifts' and widths' m dependence appear to
be the same for all rare-gas broadeners. These are:
(a) The widths are greatest for the low ~m~ lines,
diminishing as

~

rtt
~

becomes successively larger. (b) The
changes in width from one line to another become
smaller as ~m~ increases. (c) The rrt dependence of the
shifts appears to be correlated with that of the widths.
In some cases, the shifts tend to level off at higher
values of

~

m ~, as do the widths. (d) The widths appear
to be independent of the sign of m.

(3) The widths and shifts also vary with the vibra-
tional quantum number of the upper state. Specifically,
(a) The shifts of the (0-2) band lines are roughly twice
those of the (0—1) band lines, especially for high ~no~

values. (b) The widths of the (0—2) band are also some-
what greater than those of the (0-1) band lines, especi-
ally for high

~
gatv

~

.
The present calculations lead to modest agreement

with experiment. The greatest single discrepancy lies in
the fact that the variation in the experimentally ob-
served widths and shifts in going from one foreign gas
to another is not explained satisfactorily. Specifically,
the predicted widths for neon- and helium-broadened
lines are two to three times those which have been
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observed, while in krypton and xenon broadening, the
predicted widths are somewhat smaller. There are
corresponding discrepancies in the predicted and ob-
served shifts for these gases, although these do not
appear to be so severe.

The impact approximation, employed in this paper,
amounts to considering that impacts occur instantane-
ously in time. Actually, therefore, the absorbed wave
train is replaced by an approximate one which is exact
between collisions, while differing markedly from the
exact during impacts. Accordingly, all but a fraction
rgv (where rz is the duration of typical impacts and
v, the mean collision frequency) of the radiation ampli-
tude will eventually be Fourier analyzed without ap-
proximation. The impact approximation, therefore,
leads to calculated line shapes accurate to within a
factor Tgp which, in the experiments of interest here
(=STP conditions), is =1'Po.

Impact theories have already been employed in calcu-
lating the widths and shifts of the rare-gas-broadened
HCl lines. A calculation by Babrov et al. 4 revealed that
with their understanding of the long-range forces be-
tween argon and HCl, the widths calculated through
Anderson's theory did not show good agreement with
experiment. Ben-Reuven, Kimel, Hirshfeld, and Jaffe, '
have made the phase shift approximation in employing
an impact theory to obtain m-independent estimates of
the shifts which show partial agreement with the argon,
krypton, and xenon induced shifts at high

~
nt~ values,

while Schuller and Oksengorn" and Ben-Reuven, Fried-
mann, and Jaffe" have used the same basic approach,
with refinements, to obtain m-dependent shifts of the
argon- and krypton-broadened lines. Here, again, par-
tial agreement with the observed shifts has been
reached.

In this paper, an impact theory in which we have
incorporated two innovations is adopted, allowing us to
reach closer agreement with experiment than has pre-
viously been attained. The first of these arises from our
re-examinaton of the forces between polar and spherical
molecules to find that the long-range interaction energy
has, in fact, a form quite different from that previously
considered. Using our modified interaction, the Ander-
son theory" '4 can be employed to yield reasonably good
agreement between the theoretical and observed widths,
at least for the heavier broadeners.

The second change comes in searching for a more
complete explanation of the m-dependent shifts than
Anderson's theory yields. An alternate approach is
taken in which we employ the adiabatic representation
(not to be confused with the adiabatic approximation)
to evaluate the optical cross sections for broadening

"F.Schuller and B. Oksengorn, Mol. Phys. 5, 573 (1962).
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and shifting. The terms appearing in the final expres-
sions for optical cross-section contributions arising from
collisions having large impact parameter can then be
related directly to the phase shift, inelastic, and rota-
tional phenomena associated with molecular scattering.
Accordingly, these expressions appear to be more sensi-
ble, physically, than analogous ones obtained through
the use of the Heisenberg representation. The optical
cross sections for shifting are found to differ numerically
from those obtained through Anderson's theory, for
reasons to be discussed in Sec. IIID. When the shifts
are calculated according to the present treatment, the
observed m dependencies receive an explanation.

II. THE INTERACTION BETWEEN POLAR AND
SPHERICAL MOLECULES

The long-range energy of interaction between polar
and spherical molecules is customarily written' "

II,.ii(1,2; t) =—(C(e)+~st ')

R(t)'

o.» and e& being the components of the polarizability
tensor in the direction of, and perpendicular, to the
HCl symmetry axis. The latter two terms in Eq. (1)
have second-order Legendre-polynomial symmetry.

Now Eq. (1) is true only in the following sense: The
R(t) and 8 which enter the expression for II„u must be
regarded as the distance separating the centers between
which the intermolecular attraction takes place, and the
angle formed by this line with the HCl figure axis. These
centers are nearly coincident with the charge center of
the polarizable electrons in each molecule. In the noble
gases, the latter coincides with the center of mass while,
on the other hand, in HCl such a coincidence is un-
expected. Here the bonding electrons, which are highly
polarizable, are shared roughly equally by both nuclei,
whereas the center of mass nearly coincides with the Cl
nucleus. Accordingly, 8, the distance separating the
center of (dispersion) force and center of mass in HC1

where we have neglected terms higher than inverse
sixth power in the intermolecular separation, R(t). The
first term represents the isotropic portion of the London
dispersion force between the molecules, and is para-
metrically dependent on the HCl vibrational quantum
number. The terms in e~p' represent the dipole-induced
dipole energy (the HC1 permanent dipole moment is p,
the perturber polarizability, ns), while the yC(e) term
is a contribution to the dispersion force resulting from
the anisotropy of the HCl polarizability. Here,

(2)
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which is identical to Eq. (1).Here, as is customary, we
have made the identifications

Taking account of spherical symmetry in noble gases
and cylindrical symmetry in HC1, and assuming that
all Eqp of importance can, to good approximation, be
replaced by Is and all Eio (except Eoo) by Ii, where Ii

'and I2 are the ionization energies of HCl and the noble
gas, one obtains for the R ' terms

Qn enrn=ts,

—;e g&l(0[+;r;IZ&l /E„= „
Z, l(0[Z, e,'lu&

I
s/E„=~„,

2e'P, l(0[+;x,'Iu&[ /E„=, .

(9)

(10)
DF(R ' terms) and

3 IrIs ce((+5ns nt) ns)
0,'2

2 Ii+Is 6 ) cos'0 R '+( icos9 e
2 ) The R ' terms in AE(R,O) are found by substituting

Eq. (5) into Eq. (6) and selecting the appropriate—er,is'{$ cosoO+ —,'}R—o, (7) terms, thus:

3n2Ig
AE(R r terms)=

R7

I (0[P, „e,„z, „II )(P I P; „e,„(r —3s ),, „IO)—(0[2;, e;, x;, I k)(k I 2;, e;,„(xs);, I 0)—(etc. in y)]x — —.(»)
Do+Is

Here, again, we have employed Eq. (9). Now, whereas

(x„,y,s ) and their powers have no finite off-diagonal
elements, the diagonal elements of (x;,y;,s;) vanish.
Therefore, the sum over k in Eq. (12) splits into two
parts, and, replacing all nonvanishing El,p by I&, we
obtain

pi.———
I (0[+.e.z. [0&(0[+', e', (r' —3s')',.Io&

I2

—«I Z- e-*-
I o&«I Z', .e;,-(»)'..I0&~

28
(o I 2'(s')'I o&.Ii+Is

Using the transformation relations

(x;, ,y, „r.; „)= (x, ,
„' cosO+ z;,

'
sinO,

y;, ', s;, ' cosO —x, ,

' sinO), (14)

3nsisQ cos'8
AE(R r terms) =-

R7

6o.ge2 Ig
I (0IZ'(z")'Io) cos'8

R' Ii+Is

+3(0 I
P;(x"s'),

I 0) sin'Oj cosO (15)

is easily found. Here Q, simply called the quadrupole
moment, "is

Q=(0[+', e', (3s' —r')', IO).

The approximate value of Q can be obtained from a
knowledge of the r 's, Ij, nfl and 0.~. A simple calculation
yields

Q=ej2 P„r„'—Ii(n» —n,)/e'j=4. 7X10 "esu. (17)

The R ' terms of AE(R, O) are similarly found. They
are

9n2 '
6E(R s terms) =— (1—2 cos'8+5 cos48) . (18)

32R'

We interpret the terms entering AE(R'8) in the follow-
ing way. The terms in E. ' represent the usual London
dispersion energy (written so as to account for the
anisotropy of the HCl polarizability), along with the
dipole-induced dipole energy. The terms in cesisQ and
nsQ' represent quadrupole-induced dipole energies,
where the inducing 6elds are those of the permanent
dipole and quadrupole moments of HC1. The latter
energy is not significant in broadening and will be
neglected. The remaining E. 7 terms are additional
contributions to the dispersion energy, proportional to
components of the electronic octupole moment tensor
for the polar molecule. Although they are dif6cult to
evaluate, for bound HCl these terms appear to be quite
small; they vanish identically in cases where the di-
atomic molecule is electrically symmetric. We shall
henceforth neglect them in our calculations. An ap-
proximate expression for the interaction between HCl
and the noble gas is, therefore,

' J. O. Hirschfelder, C. F. Curtiss, and R. B. Byrd, Molecular
Theory of Gases and Liquids (John Wiley ik Sons, Inc. , New York,
1954).

Qp Q2
BE(R,O) = ——— cossO—

R' R'
cos'0,

R7
(19)
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with

3 IiIs (n»»+5ni nsp
Qo =—

CY2 +
2 I,+Is 4 6 2

3 I)I2 Q 1 } QJ 3Q2P
+

2 It+Is 2 2

(20)

(21)

Finally, we express Eq. (19) in mass-center coordi-
nates (R', 8'). Writing

1 1 « fd'»l"—=—P ~

—
~

P„(cosO'), (23)
R R' =o(R')

where d is the distance separating the electrical and
mass centers of HCl, and

cosO= cosO' —(d/R') sin'8'
—

s (d/E')' cosO' sin'8'+ . . (24)

asd =3nspg. (22) The most important contributions to II„ii(1,2, ; t) are

II«ii(1, 2» t) = —(as+ s as)8 (t) Ãao+ (14/5) as+ (3/5) as]dPi(cosO') R'(t)

—(16(d/&'(t))'ao+(26/7)(d/~'(t))'as+ sas)Ps(cosO')/&'(t)-s. (25)

1 4as+3a,
+p'ns =0.11,

c(o) 3o
(30)

neglecting the slight variation in b from one foreign gas
to another. (The value given here is correct for argon. )

Assuming that the Cl+-ionic core is rigid and spherically and
symmetric, the electrical center is displaced from mid-

way between H+ and Cl+ through distance
~
ti ( /2 ) e )

toward Cl+, thereby producing the observed dipole
moment. Accordingly, the distance between electrical
and mass centers is

=0.49 A.
e r, AH mg]

(26)

The interaction, Eq. (25), is still dominated by the
isotropic dispersion force acting at distance d from the
center of mass, inasmuch as Eq. (3) with d given by
Eq. (26), constitutes a good approximation to Eq. (25).

The "eccentricity effect" (existence of finite d) ex-
hibits itself not only in heteronuclear diatomic mole-

cules, but shows a strong isotopic dependence in
electrically homonuclear molecules. For example, in

H2, HD and HT, d=0, 6r„and —„'r„respectively. For
these molecules, Eq. (25) holds, with as and ti both
equal to zero.

The Ps(cosO') terms of II„ii(1,2; t) have negligible
influence on the line shapes, 'r so that Eq. (25) can be
written, for purposes of calculation,

III. THEORETICAL

A. General

Ke shall elucidate the present theory where it differs
from Anderson's, ""a knowledge of that theory being
assumed. We consider that the collisions which are
critical in line broadening are those in which the emitter
and perturber follow straight line paths with constant
velocity. Three-body collisions, and in foreign-gas
broadening, collisions between two HCl molecules
(emitters) are assumed to be so infrequent as to have
no practical importance, as is justified by the experi-
mental situation.

For an ensemble of molecules in thermal equilibrium,
the quantum mechanical Fourier integral formula"
gives the intensity of net absorption of radiation per
unit incident intensity at frequency co in the form

H„ii(1,2; t) =—c(.) 6dc(o)(1+8)
Pi(cosO), (27)

E(t)' E(t)'
I(n») ~ n» dr e '"'F(r), (31)

dropping the primes on R and 0 and neglecting the
dependence of the Pi(cosO) terms on the vibrational
quantum number. In Eq. (27)

where the correlation function, F(r), is

3 IF2
C(i») =— nsni(t»),

2 It+Is

ni(n) = sb (n)+2n. (n)]

F( )=(«f(pt(t) —S(t)p)

(28) && & '(t ~ t+r)p(t+r) K(t ~ t+r) }),. (32)

Here, X and p are the time development and electric
(29) dipole moment matrices in the adiabatic representation,

»» &. M. Herman, thesis, Yale University, 1962 (unpublished). "This formula has been derived in Ref. 14.
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g
the isolated emitter (1) and perturber (2), and
H.,ii(1,2; t) is the collision Hamiltonain, expressed as a
function of the internal coordinates of each and the
separation between the centers of mass, which depends
explicitly on time. We now expand the collision-smeared
functions in terms of another set of time varying ortho-
normal functions, Q),(t+r), thus:

p, g ~ e ~'~' B, ,I, (33)

E,, being the energy which characterizes a pair of non-
interacting molecules in a given bimolecular state, j.
The symbols j, k, . refer to particular choices of
quantum numbers which characterize the two molecules,
and, as we assume both molecules to be in their electronic
ground states, they actually denote specific choices of
(()JM), the vibration, rotation, and magnetic quantum
numbers which label the states of the vibrating rotator.

Equations (31) and (32) contain the information
necessary to compute the entire spectrum of the en-
semble. However, we are primarily concerned with
single lines associated with radiative transitions which
take molecules, say, in state (v;J;M;) to state (()tJtMt).
In general, several values of the magnetic quantum
numbers, M; and Mf, are involved in each line. Ke are
considering, here, well separated lines (();J;—+ vtMt)
whose unperturbed center frequencies are denoted by
(p&; . Allowing i and f simply to label the vibration and
rotation quantum numbers of the initial and final levels
associated with the transition, it is customary" to write
for the transition (i —+ f),

(39)e,(ter) =P, X„(t~ t+.)y,(t+r).

The basis functions in the adiabatic representation,
P),(t+r), are chosen so that at any instant of time they
satisfy the stationary Schrodinger equation for the
bimolecular system,

(40)(H(t+ r) —E),(t+ r))P&,(t+ r) =0.

For convenience, we choose the time varying phases of
yp(t+r) so that

t+r

E),(t')Ct', (41)gp(t+r) =u), (t+r) exp —i))i '

the phases of the u), (t+r), themselves, being constant
in time. (The Pi's are defined so that their axis of quan-
tization coincides with the intermolecular axis. Because
H(t) is cylindrically symmetric about this axis [the
s'(t) axis,

1(~ f)(P) P)f~ ) ~ (P~ Pf)P)

to be discussed shortly. The notation (tr{ ))& indicates In binary collisions, the total molecular Hamiltonian is
that the time (t) average of the trace is to be taken. The
elements of the statistical matrix, p, for the molecular H(t) =Hp(1)+Hp(2)+H. .)((1,2; t), (38)
system are those corresponding to a Maxwell-Boltz-

where Hp(1) a,nd Hp(2) are the Hamiltonians governin
7

dr e '(" "t"&'F~(;t)-(r),—(34) P"(~),H(t)7=o

where now

A(;3r, )(f,)t(I) (,f,ir, )(t,u, )
M; My3f y'3E ~'

Xc(t,Mt') (i3lg')D((ir ) (, i, llf;), (36)
ivid X(t~ t+r)/dr= [H(t+r) D7X(t ~ t+r), (—43)

for all time. Equation (42) tells us that, in binary colli-
sions, the component of angular momentum along the
intermolecular axis associated with the eigenfunctions

XP(t+r)n.'(t~ t+r)))(e '" ' ' ( 5) yp is always a good quantum number. Thus, although
the @), are deformed by the interaction, they still
rigorously obey many selection rules already obeyed by
their simpler, undeformed counterparts. )

Tr('t& {ABCD) —= By substituting Eq. (39) into Eq. (37), with the aid
of Eq. (40), the Schrodinger equation for K is seen to be

As we have already mentioned, the matrices BC and p
are to be calculated in the adiabatic representation. We
now discuss the basis functions for this representation,
together with some properties of the time development
matrix. Let us consider a set of "collision smeared"
total molecular-state functions" for a given pair of
interacting molecules, C,(t+r), which obey the Schro-
dinger time equation

i7iBC&(t+r)/Br =H(t+r)4&(t+r) . (37)

' S. Bloom and H. Margenau, Phys. Rev. 90, 791 (1953).

which is equivalent to the condition

x(t~ t)=l. (45)

At this point, through arguments similar to those
employed by Anderson, a differential equation govern-

where D stands for the operator iI'i8/Br We further.
impose the condition that at time 7 =0,
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ing the behavior of F('f)(T) can be derived, and the
resulting width and shift of the predicted I.orentz-type
contour are obtained. We merely state the results here.
Assuming that all collisions occur with velocity 8, the
mean relative velocity between emitters and perturbers,
the width at half intensity, and the shift in center
frequency are &(if) = 2& bdb S(;r)(b) )

where m is the numerical density of perturbers in the
sample. The optical cross section in the adiabatic repre-
sentation has a form analogous to that in the Heisenberg
representation. Specifically,

width=2I8 Re{0(,)&},

shift= —mv Im{0 (,r) },
(46)

(47) where now the diHerential optical cross section is

Tr&'~){p(0)X '(dr, b)p(dr; b) X(dr; b))e ' ~""'
S((f)(b)

Tr('"{t(0)e(0))
(49)

Here, X(dr; b) and p(dr; b) represent those matrices
after a time dr in which one and only one coBision,
characterized by impact parameter b, has taken place.

B. Calculation of S( f) (f))'
We express the eigenstates, g)„ in a coordinate system

whose axis of quantization coincides with the inter-
molecular axis Lthe s'(t) axis], and whose y axis coincides
with the axis about which s'(t) rotates during the colli-
sion. The Euler angles through which this coordinate
system rotates during a collision, therefore, are (n, P,y)
with n and y both zero and P running between 0 and &r.

This is illustrated in Fig. 2, where the primed system
turns during the collision, the unprimed remaining
stationary. In analyzing what happens during a colli-
sion, it is convenient to use the angle P as a parameter
to indicate the extent to which it has progressed. For
example, X(P;b) is the X matrix during a collision
characterized by impact parameter b in which the inter-
molecular axis has rota, ted through the angle P. We
therefore identify the matrices X(d~; b) and t»(d7; b) in
Eq. (49) with X(&r; b) and t»(7r; b)

Now, for collisions whose impact parameters are very
large, the identity

lim{ X '(P' b) P(P' b) X(P' b) }(~,»ry) ('.)&r;)

= p(0)(y, &&r)') (;,&&r;)e'" ' " (50)

holds, for no physical. effect can result from infinitely
distant collisions. Consequently, we identify X(p; b= ~ )

FiG. 2. Rotating
and fixed coordi-
nates.

X

x'(t)

with the matrix of the inverse three-dimensional rota-
tion operator, R '(0,P,O), formed with the simple
product (undeformed) eigenfunctions of the two mole-
cules. Rose" has shown that the elements of these
matrices, written as dM ~~(—p), are finite only between
states belonging to the same irreducible representation
of the three-dimensional rotation group. Under the
present circumstances, the d~( —P) matrices follow the
time-development equation

+(j'~ ~( p)—
p P&r" Jw(z»i &(zx &

"d M~~)&i'( —p), (51)

where the matrix elements on J„, the component of
angular momentum along the y axis, are formed with
the undeformed eigenfunctions in the rotating system.
In view of Eq. (43), we arrive at the operator equation

(H D) = —PJ„—(b ~ ~). (52)

Our program for the calculation of S('f)(b) is this. We
know, through standard intermolecular force calcula-
tions, how p behaves during collisions. The problem is to
compute X(~; b) which, as we have seen, is approxi-
mately the inverse three-dimensional rotation matrix,
and reduces to this in the limit of infinite impact
parameter. We therefore seek the first- and second-order
(in the collision Hamiltonian) corrections to this matrix
for b4 ~. Then, on substituting the Taylor expansion
of p(n. ; b) and X(&r; b) into Eq. (49), we obtain the
(first-three terms in the) Taylor series for S(;r)(b).

There being no unique method for determining the
corrections to the K matrix, a procedure which seems
optimal to the author is followed. We begin by defining
a generalized rotation matrix, X~ which satisfies the
equation

iVsdX (P; b)/dh=(e —D) X (P;b). (53)

Here, (H D)~ has elements defin—ed through the
relations

(II D) (,M)(i, v &=(&~—D)(j,m)(j, M')bj, & (54)

"M. E. Rose, E/ementary Theory of AngNlur Momentum (John
Wiley Bz Sons, Inc. , New York, 1957).
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Consequently, X~, like df( —P), has finite elements only
between initially degenerate states (hence the super-
script "J");and it reduces to the customary (inverse)
rotation matrix in the limit b —+ ~. The K matrix
carries information regarding rotational adiabaticity in
molecular collisions. Next, we introduce an inelastic

scattering matrix, V', through the relation,

x(P; b) = x'(P; b) v (P; b), (55)

V remaining unity during impacts in which the inelastic
scattering amplitudes remain zero. The function S(;f&(b)

can now be written

S(,f)(b) = 1—
T * {q(0)v'-'(~; )x'-'(~; )q(~; )x (~; )v'(~; )) -'. '" .

Tr""{t (0)p(0))
(56)

the lower order contributions to S(;f&(b) arising from
the deviations of V and n.' from unity and E. ', and
from the phase shifts associated with the time varying
exponentials of the p-matrix elements.

There are two adiabatic limits of interest in collision-
broadening problems. " In both of these, of course, in-
elastic collisions are absent. In adiabaticity of the first

type, the collision-smeared states remain quantized in
a space-fixed coordinate system. Here,

xf(P b)=R '(O,P,O),

S; (b)={1- '"'") (59)
results.

The differential equation governing V'(P; b) is ob-
tained by substituting Eq. (55) into Eq. (43). With the
aid of Eq. (53), we find

ih, (dr/dh)=x' 'p(a' D) (e D—)'jx—fr, —(6o)

The phase-shift approximation is valid if 9 (ir; b) = I, in
which case the familiar

as seen above. Adiabaticity of the second kind is
characterized by the fact that collision-smeared states
remain quantized in the rotating intermolecular system.
In this case,

x'(p; b) = l.

or simply

i',(d v"/dh) = xf '(Df D) xf &.—

We then expand,

(60a,)

r&f,(b) =—&&i
' dh{%(f,sff) (h; b))&)ff

This is more nearly the case for small b, where initially
degenerate levels are well-split by the interaction. The
transition between the two types of adiabaticity as a
function of b, and the role of rotational effects (along
with the associated phase shifts) in influencing line
shapes has been examined in detail in Ref. 17. The
conclusions reached are that, inasmuch as these effects,
governed by the Pi(coso) terms of H„»(1,2; h), are
inQuential in determining the line shapes, the Ben-
Reuven, Friedman, and Jaffe" treatment is essentially
correct. However, these effects play a minor role in
HC1-line broadening. Instead, they are masked by the
influence of the isotropic and Pi(cos8) terms of H„&i,
which —in first order —do not lift degeneracies, but,
rather, dominate the broadening through their inRuence
on the p and V' matrices. Accordingly, replacing X~ by
R '(O,P,O) and introducing rhf;(b), the mean collisional
phase-shift difference between states associated with
the fth and ith levels,

5' ' being governed by

i'(CK(")/Ch) = X '(D —D) X I(" '& (62)

S(;f)(b) = —ir&f, (b)

+ i&f '(b) (+(f&)ff) (f&&f) , (~ b, ))sff
—(&', ; ', ; "'(;b)),+", (63)

where the notation ( )»r indicates that the average over
M is to be taken. Expanding S(;f)(b) in ascending
powers of JI„ii,

It is apparent from Eq. (62) that 9") cannot connect
initially degenerate states. On the other hand, the
V' elements of importance in Eq. (58) are those which do

connect such states. Accordingly, to obtain terms in

S(;f&(b) to second order, we replace 7 by (1+1's)) in
that equation. Expanding the exponential e'&~'&" in
powers of p and applying selection rules obeyed by the
p-matrix elements, we obtain

S(,f&(b) becomes

—(R(',»f;)(h b)hf; —&a)f") (57) S((f)(b)= P S(,f)'" (b),
n=o

(64)

Tr('f){p(0)T' '(ir' b)p(0) 1 (ir b))e'«'( )

S(f)(b)' Tr""{p(0)p(0) )

"H. Margenan and M. Lewis, Rev. Mod. Phys. 31, 569 (1959).

S( f) "'(b)=0,

S(;f) "(b)= irhf ' (b)—(65b)

and making identification with the terms in Eq. (63),
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and

g('f)(')(b) =—'rig (')'(b)

gf~"( ) —( (f, ))r&)(f))I&,) (m, b))q')r&

(&(,~v;)( v;) ' (~i b)))I, (6&c)

Thus,

V',, (o)(vr b) = — Q I'(, ' '
k, E feg0&0

dr(7r)

Ch'H(t'; b), ((e=o

are obtained, r)f, (")(b) representing the phase-shift con-
tributions arising from eth-order perturbations in
energy.

C. Calculation of the Diagonal E(') (o(, ; b)
Elements

Before going further, we must evaluate the (D~ D)—
matrix. This can be accomplished by differentiating
Eq. (40) with respect to time, multiplying on the left
by p, ()'+r) and integrating over configuration space
to obtain

0

dt" H(t";b)&,«-o), (69)

accurate to terms in second order. Since 9" is unitary,

Now H(P; b) can be found from Eq. (27) through
straightforward calculation, employing standard rules
for transformations between spherical harmonics in
coordinate systems rotated with respect to one another.
Denoting by go and (to the polar and azimuthal angles
in the fixed system,

(D~ D),(,=i AH—(p; b), k/E, (,(p; b),
states j. and k nondegenerate (66)

=0, states j and k degenerate.

In seeking terms second order in H„)((1,2; t), it is
permissible to neglect all but the lowest order terms in
(D~ D) and K—~. Applying the theory of finite rotations
and substituting from Eq. (66), Eq. (60a) now becomes

R(t)(o

rjt 2—

1—7 — Vio(8oi))o)
b

Ht

+4~2 —
I Fi-'(t)o~o) —I'i'(~o~o) 3

b

d V;i, (P; b)

/, E& ~o+0

H(p; b), i(e=o)

W&):(P; b). (67)E. O

holds for straight trajectories, with

y= 6(—', ir)"'dC(0)(1+ 6) . (71)

where the H(p; b) matrix elements, formed on eigen-
functions in the fixed system, are

H(P; b), (e="=(~,(0)*IH(P; b) l~ (0)) '. "" "' (6&)

In Eq. (70), we have omitted isotropic terms, in view
of the fact that their matrix elements in Eq. (69)
vanish. Substituting Eq. (70) into Eq. (69), and neglect-
ing terms for which v@v',

7
V'(.~)r) (.~))) ("(vr; b) = 3e2'b'(( JM~V —I', '~ J'M')(e-o))'

J'&J,M' Eg g0

tdt e '"~'~ ' ' t dt e'"~'~"

R(t) io „R(t')io

+8'b'((JM
i
Vi'i J'M')(e=")'

1—7 — dt e '"~'~"

R(t)'o

Ht')'
dt' e'"~'~"'

bJ

R(t')'o
(72)

xdxe " * x'dx'e"*'

is obtained. The averages over M in Eq. (65c) can be is obtained, with
taken with the summation on M' in Eq. (72). For rigid
rotator eigenfunctions,

(+(v J)ir) (v JM) (7r j b))1lr

A(k)=64
(1+xo)ii (1+x")'

' g(J,J')A(kg J)
(73)

0 $14 (1+x')' (1+x")'

"
(1—7x')e +*dx ' (1—7x")e'~*'Cx'
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arid

g(J,J') = (&4,f +i+(&+1)bf,f -i) . (75)
4)r (2J+1)

1.0

Here, we have introduced the variables

x=vt/b and kf f=(pf f'b/v.

FiG. 3. The function
A (k).

-0.5

48m-d'C(0) '(1+b) '
pfS—(gf) (b)] +

b14

g(J;J')4(br r; ,(b)) g(Jb J')4 (b,z (b)))xp- +
Jl(76)limA (k) = —i2.705/k, EJ' Js EJ/ J

The function A(k), equal to A*(—k), has been evalu-
ated" by replacing (1+x') ' by e ""*"in Eq. (74).
The replacement function, very similar in appearance
to the original, has been normalized with respect to its
value at x=0 and its integral over x from —gb() to pg) . S(,.f)(p)(b)
The accuracy to which A(k) is obtained in this ap-
proximation is indicated in part by the fact that
J' "A(k)dk, when calculated approximately, differs
from the exact value by 2.4%%uo. The function A (k), to-
gether with its asymptotic value,

is shown in Fig. 3.
kip(b)

+0.0562i (bJ'f, p 8J, ,p) . (80)
Elp

D. Further Reduction of S(;f)(b)

It remains now for us to calculate the first and second
order phase shifts appearing in S( f) "'(b') and S( f) ("(b).'

For the former, only the first term in Eq. (27) is im-

portant. For R '-dependent perturbations, "
g g:(&) g~ (~~) — (~

))nf'")(b) =-
8kvbb E ni(v;)

(77)

independent of rotational quantum number.
The second-order phase shifts vanish for all but the

Rp and P1 lines, consequent to the fact that second-order
perturbations, when averaged over 3f, vanish for all
but the J=O levels. This phase shift, for these levels, is

Inspection of Eq. (80) reveals that S( f) ('&(b') is complex.
This diBers from the results of Anderson's theory, in
which this quantity is real. The two treatments yield
numerically equivalent forms for S(p) if one does not (as
is usually done) neglect the noncommuting contribu-
tions to Anderson's time development matrices. The
fact that. S ') is complex leads to diBering shifts for the
R and I' branch lines of equal ~m~, as are observed
experimentally.

The terms to second order in the expansion of S('f)(b)
constitute a good approximation to it for large impact
parameters. On the other hand, for small values of b,
this approximation is inadequate. Instead, we rely on
physical arguments to tell us that very close collisions
cause a complete interruption of the radiation, so that,
electively,

231 p $]p"=. (b)=-
4096 E1p' b"

as can be easily verified. The fact that

231'r

„R(t)'4 1024Vb"

(78)

limb p S(;f(b)=1.

We shall employ a method of approximating S(,f&(b) for
intermediate values of b, similar to that adopted by
Tsao and Curnutte" (Anderson's approximation num-
ber two). In that treatment, S('f)(b) is identified with
the first three terms of its series expansion for values of
b&bp, and is taken to be unity for b(bp. The critical
impact parameter, b p, is determined through the
condition

b g:(o)( (~i) — (~'))
S(;f) (b) = —i

8)rbVbb k ni(V;)
(79)

is useful in this connection.
Substituting Eqs. (73), (77), and (78) into (65b) and

(65c), we obtain the following expressions for S('f) "&(b)
and S(,f&( )(b):

S(,f)" (b()) =1. (81)

The logic here is that S( f) (b) S('f)("(b), cann'ot
be neglected when S('f)(')(b)&1; hence, S('f)(b), for
b&bp, is thought to more nearly equal the "complete
interruption" value of unity. Now, in our treatment,
the situation is complicated by the fact that S(;f&'"(b)
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TABLE I. The parameters n, I, and C(0).

p)

0

Fxo. 4. Real and
imaginary parts of
S( f) (b') (schematic).

Gas

HCl
He
Ne
Ar
Kr
Xe

2.64
0.205
0.39
1.63
2.46
4.01

I
(eV)

13.8
24.5
21.5
15.7
13.9
12.1

C(0) +10PP
(erg cm')

~ ~ ~

11.5
20.8
75.9

108.0
164.5

(b)

is complex. Moreover, the imaginary contributions to
Eq. (65c) sometimes cancel, so that the 9'(') elements
themselves might be quite small, even though T' is not
well approximated by its erst three terms. Correspond-
ingly, S(;f)'"(b), S('f)'"(b), .can be large, even
though S(;f)("(b) is itself quite small. Consequently, a
better criterion for determining bo is one on the magni-
tudes of the individual contributions to the V &'& matrix
elements. Our generalization of Eq. (81) as a condition
on bo is, therefore, that the sum of the magnitudes of
the individual contributions to S(,f)(')(b) be unity, or,
in our case,

48prd'C(0) '(1+b) '—ki:S(*f)"'(bo)j'+

g(Ji, &') l&(k, z 8 ))
l)

EJy J'

~lp(bp)
+0.0562 (8ff,p+ bf, p) =1. (82)

E10'

and

(r) (b) —S (t) (b)

(s)(b) —S (s) (b)

(83)

This condition reduces to Eq. (81) whenever all con-
tributions to S(;f)(') (b) are real. The real and imaginary
parts of the S(;f)(b)'s resulting from our method of
approximation are illustrated schematically below
(Fig 4)

Con6ning our attention to a single vibrational band,
for the moment, we observe from Eqs. (79), (80), and
(82) that

(1) The widths of the m and —m lines are equal
within a given band.

(2) The shifts receive contributions from two terms,
S( f) "'(b') and Im(S( 'f )

(') (b) ) . The contribution from
S( f) '"(b)'is the same, whereas that from Im(S( 'f) "'(b) )
has equal magnitude but opposite sign for the m and
—m lines.

(3) The mean (red) shift of the equal imi lines arises
solelv from S(,f)(')(b), and varies, from one value of

I

m
I

to another, as bp '. The width of these lines, on the
other hand, is proportional, roughly, to bo'. Therefore,
an approximate relationship,

Lshift(m)+shift( —m) j
)&

I
width(m)+width( —m) j'~'= const (84)

should hold.
Qualitatively, the gross features of noble-gas broaden-

ing can be understood in the following way. As J in-
creases, spacings between adjacent energy levels also
increase, with inelastic collisions becoming less frequent.
Consequently, the higher Imi lines are less severely
broadened, as has been observed in experiment. Along
with the decrease in width (and in bp), the domain over
which first-order phase shifts are to be integrated in-
creases, increasing the mean red shift of the equal

I
m

I

lines (unless, of course, short-range forces reverse this
tendency for smaller b values). The tendency for the
R and P branch lines of equal

I
m

I
to shift unequally is

most pronounced for the case
I
m

I

= 1, inasmuch as
second-order perturbations contribute to the phase
shifts for these lines alone.

IV. RESULTS AND DISCUSSION

The numerical calculation of the widths and shifts is
carried out using Eqs. (79) and (80) for S('f)(')(b) and
S(;f)")(b), with A(k) and g(JJ') given by Eqs. (74)
and (75), the condition Eq. (82) being used to determine
bp The widt.hs and shifts are then related to S('f)(b)

TAaLE II. The factors Lop (v) n~ (0)g/a~ (—0)

(bo)-= (b.)--,

in view of the similarity in rotational structure of each
vibrational level. These properties of S(;f)(b) and bp

imply, for the predicted widths and shifts, the following
regularities:

(Ref. 7)

0
0.011
0.025

(Ref. 11)

0
0.019

=0.038

(This
paper)

0
0.025
0.050

ng (v) (L')
(this paper)

2.64
2.71
2.77
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FIG. 5. (a)—(e) Half-intensity
widths. — — Theoretical;
observed; Q—Ref. 4 (P branch);
x—Ref. 10 (P branch); Q—Ref. 10
(R branch).
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they are considerably less than the gas kinetic radii, as
well. Because the experimental widths for He and Ne
(also, higher

~

m
~

line widths for heavier perturbers) are
small, we expect short range forces" to be operative in
determining the shifts of these lines. Consequently, it
does not surprise us to find that some lines are blue
shifted (with He), and as the widths become smaller we

look for the lines to be shifted even more toward the
blue, a fact that is observed experimentally. "

A less serious discrepancy lies in the fact that in Ar,
Kr, and Xe broadening, the theoretical widths and
shifts show a stronger tendency to level off then do their
experimental counterparts. In our calculation, the level-

ing takes place when the phase shift terms in S('f) "&(b)

become dominant over the inelastic collision terms. The
leveling seems to be present in some of the observed
widths Lcf., xenon (0—2) band(; however, it has much
less importance in practice than it does in theory. Here

~ Because the HCl molecule effectively is more extended at higher
e (consequent to the fact that the nuclei oscillate more widely
about their equilibrium position), colliding molecules experience
repulsive (exchange) forces at larger separations, the higher the
HCl vibrational quantum number. Hence, short-range forces tend
to widen the spacing of vibrational bands, causing blue shifting.

"Our remarks on the influence of short-range forces generally
concur with those of the authors of Ref. 12.

through Eqs. (46), (4'f), and (48). Numerical values of
the parameters n, I, and C(0) needed for the calculation
are given in Table I, while numerical values of the
factor Lnr(e) —nt(0) 1/nr(0) for v=1, 2 used in the calcu-
lation are given in Table II, together with the values
of that parameter calculated by Ben-Reuven et al.~ and
by Schuller and Oksengorn. "Our values were chosen
so as to fit the observed argon, krypton, and xenon in-
duced low ~m~ line shifts. The calculated widths and
shifts are not very sensitive to small variations in this
parameter, however.

The calculated values are indicated by solid lines in
Figs. 5 and 6, along with experimental points through
which broken lines have been drawn. In general, the
agreement between our predictions and experiment is
good. The volume and complexity of data to be ex-
plained, together with the over-all agreement, support
the belief that we are basically correct in our description
of noble-gas broadening. The most serious discrepancy
lies in the variation in the magnitude of the widths in

going from one broadener to another. The smallness
of the He- and Ne-induced widths is indeed mystifying.
Not only are the bo as inferred from these widths less
than that impact parameter at which the adiabatic
approximation is supposed to have broken down, but
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again, exchange forces could act to prevent the observed
widths and shifts from leveling off.

The observed

Lshift(m)+shift( —m) jt width(m)+width( —m))st'

values, instead of being constant as theory predicts,
increase then decrease as

~

m
~

increases. ""There is no
obvious reason for the increase at low

~

m
~

. The decrease
often occurs when the optical radii —as determined from
the observed widths —approach or became smaller than
the gas-kinetic radii. In He and Ne broadening, how-
ever, such a correlation cannot be found, all emperical
optical radii being smaller than gas-kinetic from the
start.

2 R. M. Herman (to be published).

An experimental determination of the rare-gas-
broadened pure rotation L(0-0) bandj linewidths and
shifts would be worthwhile at the present time. Since
first-order phase shifting is not operative in broadening
and shifting these lines, the effects of inelastic processes
alone could be studied. To extend our calculations to
these lines would be routine. However, this step has
not yet been taken, inasmuch as comparison with
experiment is impossible at the present time.
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The hyperfine structure of the 'P1 state of Hg' 7 and Hg' 9 has been measured by a microwave-optical
experiment. This involves optical excitation to the desired state, paramagnetic resonance in this state, and an
optical method of detecting the paramagnetic resonance. The paramagnetic resonances were obtained be-
tween different F levels as a function of magnetic field. Quadratic Zeeman corrections were estimated by
secorid-order perturbation theory and the corrected transition frequencies were then extrapolated to zero
field. The zero-field hyperfine-structure splittings in the 'Pi state are Hg"'(F= —', to F=-,') =23 08637(2)
Mc/sec, Hg'"(F =-', to F=-,') =22 128.56(2) Mc/sec. Hyperfine-structure constants A are obtained which
are correct to second order. These are combined with the known nuclear magnetic moments to give the
hyperfine-structure anomaly in the 'Pi state: n('Pi, Hg»', Hg"')= —0.00147(1), and the anomaly of the
hyperfine-structure interaction for the 6s electron in the 'Pi state: A(si/s Hg"', Hg"') = —0.00175(9).

I. INTRODUCTION

'ERCURY has two stable isotopes with nonzero
spin, Hg' with I=~ and Hg"' with I=2.

Hg"~ is radioactive with a half-life of 65 h. It also has
I= ~~. The hyperfine structure of the 'P1 state of Hg"'
has been measured by Kohler. ' This work is basically
an extension of Kohler's method, applied to Hg" and
Hg' '. The hyperfine-structure splittings in the 'P'&

state of Hg"~ and Hg"9 have been measured to an ac-
curacy of approximately one part in a million. For both
isotopes this represents an increase in the accuracy,
over existing measurements, of a factor of approxi-
mately 100.

t' This work, which is based on a thesis submitted to the Depart-
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This increase in accuracy permits one to obtain the
hyperfine-structure anomaly in the 'Pi state. The hyper-
fine-structure anomaly for Hg" and Hg'01 has pre-
viously been measured in the 'P2 state' and by means of
the Knight shift. ' The agreement between these results
is excellent.

II. APPARATUS AND METHOD

A. Excitation and Detection

The relevant energy levels of the mercury atom are
shown in Fig. 1. The 'P1 state is connected to the '50
ground state by the 2537 A resonance line. On the right-
hand side of Fig. 1, the relative positions of the hyper-
fine components of the 2537 A line are shown, including
only those isotopes that are relevant for this discussion.
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