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to be 205 keV. '2 This unresolved level might be that
reported to be at 277 keV by Hashizume et Ol."

B. Gadolinium-150

A spectrum for Gd"' is shown in Fig. 4. In this and
other runs there is evidence that the 6+ level is weakly
excited by 17.5-MeV incident protons. Angular
distributions for the ground state and first two excited
states are shown in Fig. 6. The error bars reQect statis-
tical uncertainties as well as errors in peak separation.
In each run the elastic oxygen peak and the elastic
carbon peaks were displayed and used as a cross-section

"F. Ajzenberg-Selove, N. B. Gove, T. Lauritsen, C. L.
McGinnis, R. Nakasima, J. Scheer, and K. Way, in Energy Levels
of Nuclez: A =5 to A =Z57 (Springer-Verlag, Berlin, 1961).

"A. Hashizume, T. Takahashi, Y. Tend, and Y. Enomota, J.
Phys. Soc. Japan 15, 2175 (1960).

check. The angular distributions taken for oxygen
elastics agreed within S%%u~ with those taken previously
in this laboratory. "The amount of oxygen in the target
was accurately known from the composition of the oxide
Gd203. It is felt that the error in determination of the
gadolinium ground-state cross sections is less than 10%.
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The Coulomb disintegration of the deuteron is treated by means of perturbation theory. The breakup cross
section is determined in the electric-dipole approximation. Total cross sections have been calculated for
deuteron laboratory energies below 25 MeV and for target nuclei in the range 4&Z&92. The results of these
calculations are compared with earlier theoretical estimates and recent experimental measurements.

INTRODUCTION

N low-energy deuteron reactions there may exist
- ~ processes which compete favorably with direct
nuclear stripping. A complete analysis of such reactions
may then comprise contributions due to electric
breakup, nuclear disintegration, and evaporation from
compound nucleus formation. The electric breakup
aspects of this problem have been considered by
Danco6' for 200-MeV deuterons, by Mullin and Guth'
for 15-MeV deuterons, and for lower energy deuterons
by Landau and Lifshitz. ' A critical review of much of
this work has been given by Breit.4 Disintegration due
to nuclear potential as well as Coulomb disintegration
has been theoretically investigated by Akhieser and
Sitenko. '

More recently, Hamburger et al. ' have adopted a
semiclassical breakup model to 6t experimental results
obtained with 15-MeV deuterons. However, due to an
error, ~ the calculated values of the angle of maximum
intensity are incorrect. It now appears that the simple
semiclassical model of deuteron breakup does not
satisfactorily account for the observed angle of maxi-
mum intensity of the continuum protons. An integral
of this continuum for' E„&ED—2.2 MeV yields total
cross sections much larger than that calculated for
either electric' or nuclear' breakup. This implies a
serious disagreement with theoretical estimates as-
suming negligible contributions from compound nucleus
and direct stripping processes.

Recently, Anderson and Bauer' have attempted to

' S. DancotI, Phys. Rev. 72, 1017 (1947).' C. Mullin and E. Guth, Phys. Rev. 82, 141 (1951).
L. D. Landau and E. M. Lifshitz, Zh. Eksperim. i Teor. Fiz.

18, 750 (1948).
G. Breit, in Haedbuch der Physik, edited by S. Fliigge

(Springer-Verlag, Berlin, 1959), Vol. 41, Sec. 1, pp. 304—320.' A. Akhieser and A. Sitenko, Phys. Rev. 106, 1236 (1957).

E. Hamburger, B. Cohen, and R. Price, Phys. Rev. 121, 1143
(1961).

7 If 8=8„+8&,where 8 is the angle of deQection, then Eq. (3) of
Ref. 6 should read

q = (Ze /2E„)(1+ceca)= (Zes/2Ee) (1+csee').
s J. D. Anderson and R. Bauer (private communication).



D IS I NTEGRATI ON OF DEUTERON I N COULOMB F I EI D 2587

measure the deuteron breakup cross section by counting
neutron-proton coincidences. For 15-MeV deuterons on
cobalt and gold targets, they observe roughly the same
number of low-energy protons (Q& —2.2 MeV) as
Hamburger et al. ' However, the coincidence measure-
ments for gold and cobalt yielded a preliminary breakup
cross section which is at least an order of magnitude
smaller than the continuum proton measurement of
Hamburger et al. ' and the breakup estimate of Mullin
and Guth. ' It now appears that the bulk of the con-
tinuum protons observed by Hamburger et al. ' do not
arise from deuteron breakup. In addition, it appears
that Mullin and Guth' have overestimated the Coulomb
breakup cross section at 15 MeV.

These conjectures have been strengthened by the
recent measurements of Udo and Koerts. ' For gold,
they found the breakup cross section to be a rapidly
varying function of deuteron energy with breakup
cross sections of 80 and 180 mb at 23 and 26 MeV,
respectively. Extrapolating to 15 MeV, it seems
reasonable that the cross section should be quite small
and not nearly as large as the 170 mb predicted by
Mullin and Guth. ' In view of the recent interest in
low-energy deuteron breakup, as well as the discrepan-
cies between experimental measurements' ' and between
theory' and experiment, ' a critical examination of
previous theoretical work is necessary.

It is our purpose to evaluate the Coulomb breakup
cross section for low-energy deuterons. Our calculations
will be carried out in a framework that may be called
the "electric-dipole approximation. " In this manner,
we may anticipate more accurate results than an
application of the Born approximation' will permit in
the low-energy region (En& 25 MeV). A comparison of
our computations will be made with those of Dancoff, '
who utilized the Born approximation, as well as with
those of Mullin and Guth, ' who introduced the more
general method of perturbation theory, but who
effectively performed the 15-MeV cross-section calcu-
lation in the Born approximation. At lower energy, it
will be possible to make a comparison of our results
with the work of Landau and Lifshitz, ' who approximate
the wave equation by employing a boundary condition
in configuration space to represent the neutron-proton
interaction. ' In order to compare these different
approximations of the electric breakup of the deuteron,
it shall be necessary to formulate the problem from
erst principles.

FIG. 1. The kine-
matical diagram for
the deuteron break-
up problem.

coordinate system. Herein, the vectors r„,r„,and r&
define the position of the neutron, proton, and target
nucleus, respectively. The points, C; and C„which are
designated by the vectors Rz and Rc, are the center of
mass of the neutron-proton system and the center of
mass of the deuteron-target system, respectively.
Henceforth, we shall refer to the point C; as in the
internal center of mass and the point C, as the center
of mass of the total system.

Since the motion we shall consider is always non-
relativistic, we may utilize the Hamiltonian operator
which is given by the ordinary Schrodinger theory. One
has

~+~ (lr —e/2I)

AR~, (1)
2 (23I+Mg)

where 3f is the nucleon mass, 6 is the appropriate
Laplacian operator, and A =h/2m. The variables utilized
in Eq. (1) are dered as follows:

(2)

GENERAL DESCRIPTION

Consider the motion of the deuteron with respect to
a target nucleus of mass Mg as depicted in Fig. 1,
where 0 is the origin of an arbitrary (laboratory)

' F. Udo and L. Koerts, Phys. Letters 3, 181 {1963)."Use of the phrase, "the Born approximation, "de6nes a calcu-
lation wherein the initial and Anal states of the projectile are
described by plane-wave functions; hence, the potential function
itself is treated as a perturbation.

r= RD—r~,

Rc= (2iVRn+~wrz)/(2311+3' ~) .

In addition, p~ represents the reduced mass of the
deuteron and the target nucleus. One has

2MMg

(1+23I/3I, )
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The potential functions U'„~ and U, represent the
neutron-proton interaction and the proton interaction
with the Coulomb Geld of the target nucleus, respec-
tively. This choice of potential functions implies a
neglect of the nuclear forces that arise in the interaction
between the deuteron and the target nucleus. However,
as we wish to confine our attention solely to the electric
breakup process, it is then proper to omit from our
consideration this purely nuclear interaction.

The last term of Eq. (1), which describes the uniform
motion of the center of mass of the total system, is
separable. Since it does not contribute to our future
considerations, it will be omitted. In addition, we shall
utilize the following notation for the "internal" and
"external" potential functions of the deuteron:

With these deGnitions, the effective Hamiltonian
operator for nonrelativistic motion is

O' A' ( y )a= ——~„+U;(I&I)— ~,+U,
l

r—— I. (g)
iM 2» 4 2 )

It is apparent from the form of U, that a separable
solution, in terms of a product of internal (g-space)
wave functions and external (r-space) wave functions,
is not generally possible. Consequently, we consider
the appropriate Taylor series expansion of potential
V, about the point r. One has

Here U, (lrl) is the zero-order Coulomb interaction
which is independent of p and V is the perturbation
potential. Consequently, in this approximation, the
Hamiltonian of Eq. (8) can be written as the sum of
two independent Hamiltonian operators, H; and H„
in addition to the perturbation potential V.

B=H, (y)+H, (r)+ V,

& (e) =—(&'/~)~ +U'(I el)

e.(r) = (I 2/—2»)~,+U.(I rl)

(10a)

(10b)

(10c)

The solution of Schrodinger's equation, corresponding
to the unperturbed Hamiltonian operator of Eq. (10a),
can be written in the product form

4"'(,e) =D(e)x( ), (11)

wherein D(y) and x(r) are appropriate eigenfunction
solutions of the operators given in Eqs. (10b) and
(10c), respectively.

We will utilize wave-function solutions of the above
form in a first-order perturbation theory treatment of
the system. The transition probability, der„,.„&,from an
initial state i; to a final state between vr and vr+dvz
is given by

d~; g= (2~/&) I
l'; il'&(&;—& I)d'

The matrix element V„,.„zcan be expressed in the usual
form

(13a)

where the perturbing potential V is determined from
the expansion of Eq. (9) as

( e p„28U,
U, l

.—=U.(lrl)+—
2 2 Bp

p~ ~Us
V=—2

2 —

gpss

—p/2=0

(13b)

1 p pp 48'Ue
~ ~ ~

)
2 . 4 /pre ', ()pp p/g 0

p
(9a)

2r'

U (Ir—(e/2) I)= U.(lrl)+l' (9b)

wherein the summation convention is utilized on re-
peated subscripts. This is, of course, merely the multi-
pole expansion of the potential function. The first term
represents the monopole Coulomb effect; the second
term represents the dipole-interaction energy of the
deuteron in the Coulomb Geld; the third term is the
quadrupole interaction energy .etc.

Utilizing Eq. (9a) in Eq. (8), it is evident that
Schrodinger s equation will admit of a separable y-space
and r-space solution only in the zero-order approxi-
mation wherein the dipole term is negligible, i.e.,
(p/2r)((1. Moreover, this condition simultaneously
implies that an earlier assumption will be satisGed,
namely that the deuteron never experiences the short-
range nuclear force. Let us write the Coulomb inter-
action in a form analogous to Eq. (9a),

( e
U, = U,

l
r—— =Ze' p

2'
where Z is the atomic number of the target nucleus.
The assumption of a point source Coulomb Geld is
acceptable provided the deuteron-target nucleus motion
satisfy the condition lrl )Ro, where Ro——pn+Rg, with

p~ and E~ the classical radii of the deuteron and the
target nucleus, respectively. Moreover, this latter con-

The delta function which enters into Eq. (12) implies
conservation of energy for the transition of the system
between states v, and vt. This transition probability
can be expressed as a cross section (in units of cm') by
the appropriate normalization of the initial- and final-
state wave functions.

The major features of our treatment have now been
clearly defined. There remains, as yet, the assignment
of a speciGc form to the Coulomb potential U, . We
shall choose the point nucleus approximation of the
Coulomb field:
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dition, l
r

l )R(), should be adequate when the kinetic
energy of relative motion is not more than the order of
the Coulomb barrier energy. Consequently, the appli-
cability of our treatment must be con6ned to low-

energy deuterons (Eo(25 MeV). In addition, it should
also be noted that the requirement l rl )R() automati-
cally satisfies the earlier assumption of the neglect of
the short-range nuclear forces.

Using Eq. (14), the perturbation potential V is

V= (Ze'/2) (9 r/rs) . (15)

In addition to discussing the above assumptions, it is
equally important to examine the range of validity of
the perturbation theory treatment. As will be seen
below, such an examination has the decided advantage
of producing more quantitative estimates for use in
comparing the validity of the various approximations
mentioned earlier.

To this end, it is instructive to examine the appli-
cability of the Born approximation. This may be
expressed by the condition

Fze. 2. ej, as a
function of Z for 15
and 200-MeV deu-
terons.

10

O.i

l U.(lrl)+~l«(»/~), (16) 0.01
0 40 60 80 $00

'B)=Z8 /»r (18b)

where v~ is the initial velocity of relative motion. Figure
2 compares the values of e~ for 15- and 200-MeV
deuterons as a function of Z. It is at once apparent that
the Born approximation is not generally valid for
15-MeV deuterons. Even at 200 MeV, the validity of
the Born approximation appears to be somewhat
questionable, although Danco6' has utilized this ap-
proximation for 200-MeV deuterons. This conclusion
is further strengthened by examination of the Anal-state
motion. If t)s denotes the final velocity of the deuteron
center of mass with respect to the target nucleus, then
~2&v~, hence, e2& e~. Since one must have m&&1 through-
out the entire motion, " the applicability of the Born
approximation is even more questionable. From this
viewpoint, the present treatment should provide more
accurate electric breakup cross sections in the non-
relativistic region.

In addition to their approximate treatment of the
wave equation, Landau and Lifshitz utilize the con-

"N. I'. Mott and H. S. W. Massey, The Theory of Atomic
Colfisions (Oxford University Press, New York, 1933).

where e is the velocity of the deuteron center of mass
with respect to the target nucleus. Independent of the
magnitude of the perturbation potential V, condition
(16) can be violated if U, (lrl) is large. That is, con-
dition (16) implies

I
~ (lrl) l«(»/r). (17)

I.et us examine condition (17) for initial-state motion.
It is customary to write this latter condition in the form

(18a)
with

dition n» i. Consequently, a comparison with these
calculations should be made at or below 10 MeV.
Akhieser and Sitenko' have determined this cross
section for the two limiting cases e(&i and n&)1. Since
e(&1 is not satisfied throughout the region of our
interest, we must consider their results for e&)1.In this
event, the cross section these authors obtain is only
valid if an additional condition, namely E&)j3, is satis-
Ged. Here 8 is the kinetic energy of relative motion and
8 is the height of the Coulomb barrier. However, one
has difhculty in applying these two conditions simul-
taneously. Indeed, it is simple to show that these two
conditions tend to be mutually exclusive. Consequently,
we shall not utilize this work as a basis for comparison
with our results.

According to perturbation theory, " the 6rst-order
wave function is given by

where

(())+it, (r)

V,
„

it „,(o)(EP'

jV„. jV„,

(19a)

(19b)

and E„,./E„.The condition expressing the applica-
bility of perturbation theory is usually written in the
form

(r) l((l p (())
l (2o)

We shall defer an explicit examination of this important
subject until after the evaluation of the transition
probability.

"L. D. Landau and E. M. Lifshitz, Qnanfnns Mechanics
(Pergamon Press, Ltd. , London, 1958).
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P (1,
2r E2 2M/

(22)

where e is the internal disintegration energy and E2 is
the kinetic energy of relative motion of the 6nal
deuteron-target nucleus system. As a result of our
calculations, we shall be able to evaluate directly
condition (22). It should be stressed that the validity
of condition (22) need not imply that condition (21)
holds throughout the entire motion. On the other hand,
it is evident that Eq. (21) will be satisfied under the
same conditions which imply the validity of the point-
nucleus approximation. That is, lrl)RO implies con-
dition. (21). Hence, provided Eq. (22) is verified, we
shall assume that condition (21) is reasonably well
satis6ed for low-energy deuterons.

In closing this section we shall remark on the effect
of deuteron polarization in the Coulomb 6eld of the
target nucleus. Within the scope of the dipole-inter-
action approximation, one obtains the separable y- and
r-space wave functions, as previously described. This
automatically implies a neglect of all polarization
effects. It also follows that the roles of the neutron and
proton can obviously be interchanged in this approxi-
mation. Consequently, the perturbation theory treat-
ment considered herein would predict similar angular-
energy distribution cross sections for both neutrons
and protons. That this result cannot be exactly true is
obvious. The very existence of the Coulomb field implies
that different angular-energy distributions must exist
for the neutrons and protons. Furthermore, it is evident
that polarization eQ'ects are less important for the case
of low-energy deuterons which are of interest in this
application. That is, the deuteron never gets close
enough to the target nucleus to experience the strong
Coulomb forces.

Conversely, let us discuss some of the implications
of any attempt to account for polarization effects.
Here, one must consider nonseparable solutions of
Schrodinger s equation (with respect to r- and 9-space
dependence) since the existence of polarization implies
that the internal and external motions of the deuteron
are no longer independent. In addition, if such solutions
could be determined, there would be very small likeli-
hood of expressing the matrix element V...r (hence,
the transition probability, Av„,.„~)in a tractable analytic
form, This conclusion will become apparent as we

It should be emphasized that beyond satisfying con-
dition (20), one must independently satisfy the addi-
tional condition

l~/2r I
&1

throughout the entire motion. This requirement follows
directly from our use of the multipole expansion for
U, (lr —g/2l) as given in Eq. (9a). This condition is
obviously satisfied by the initial-state motion. For the
final-state motion, one finds the asymptotic condition

develop the results of utilizing the separable y- and r-
space wave functions.

Xi(r) —Nf [ exp(iki r)L;„,(si) =Nr&C, (r), (23a)

/e'pDVy
ki —— —, si=i(jkilr —ki r), m, = —, (23b)

alv, ['

Xf(r)=NE exp(ik2 r)L;„,(—s2) —N@C f(r), (24a)

PDV2
k, = s2=i(lk2lr+k, r),

A
'

ge2
(24b)

Herein v~ and v2 are the initial and final velocities of
the internal center of mass of the deuteron with respect
to the fixed center of potential. Consequently, ki and
k2 are the initial- and final-state wave number vectors,
respectively. The function L„(s)is the Laguerre func-
tion which is a special case of the conQuent hyper-
geometric function. According to S-119, I.„(s)
=F(—ri, 1, s).

The normalization constants Ef& and Ez in Eqs.
(23a) and (24a) are chosen so that the initial-state
wave function X,(r) is normalized to unit Aux and the
final-state wave function, Xf (r) is delta function
normalized with respect to k2 space. With these re-
quirements, one finds

2'7t pDÃi
+fl

A&i�

(exp (2z.ri, )—1)

—I/2

—1/2

(25a)

(2~)'(exp(2ire~) —1)
(25b)

Turning our attention to the internal or y-space wave
functions, we must now consider the appropriate eigen-
functions of the Hamiltonian operator given in Eq.
(10b). We will employ the analysis given by Bethe and
Bacher'4 for the calculation of the photoelectric dis-

'3 A. Sommerfeld, Atombun Nnd Spektrallinien (F. Vieweg and
Sohn, Braunscheig, Germany, 1939) Vol. II. Hereafter, we shall
refer to this text with the letter S; appended to this symbol will
be the appropriate page number under consideration."H. A, Bethe aiid R. F. Bacher, Rev. Mod. Phys. 8, 82 (1936).

EVALUATION OF THE TRANSITION PROBABILITY

Following along lines similar to the analysis of
Mullin and Guth, we shall calculate the "electric-
dipole" transition probability of the breakup of the
deuteron. We consider 6rst the r-space wave functions;
the appropriate eigenfunctions, which correspond to
the Hamiltonian operator of Eq. (10c), have been
determined by Sommerfeld. " With the source point
of the Coulomb field fixed at the origin of the r-space
coordinate system, the initial- and 6nal-state wave
functions are (S-456, 457):



DISINTEGRATION OF DEUTERON IN COULOM B F I ELD 259i

N*=E /2 j"'

Nr = L1/2~ 1'".

(28a)

(28b)
(26a)D (9)=N'Le p( p)/pl

a= (Meo/5')"'

However, if one is to approximately account for the
neglect of the internal motion of the deuteron, then the
normalization constant Ã; should be modi6ed. That is,
it must be multiplied by the factor (1+-',na), where u

is the range of the neutron-proton interaction. '4 This
would introduce a multiplicative factor of approxi-
mately (1+au)=1.4 in the subsequent cross section
calculations. Since earlier theoretical investigations' '
have not carried this factor, it is convenient to omit it
from our equations also. This will permit direct com-

parisons with these other theoretical estimates. How-

ever, for proper comparison with the results of experi-
ment, this multiplicative factor' will be included in all
numerical computations.

Using these wave functions in Eq. (12), the breakup
transition probability, to a state in which the internal
center of mass possesses a wave number vector between
k2 and k2+dk2 and the relative internal-motion wave
number vector lies between. k„and k,+dk„is given by

where
(26b)

and 40 is the binding energy of the deuteron (40—2.2
MeV). The final-state wave function, Dr(y), is given
by the plane-wave description of a free particle, i.e.,
the eigenfunction solution for the Hamiltonian operator
of Eq. (10b), wherein U;(p) =0. This is

(27a)Dr(y) =Nr exp(ikp y),

k, =Mv, /2k
where

(27b)

with v, and k, the velocity and wave number vector
of relative motion.

The normalization constants E; and E~ may be
chosen so that the initial bound state is unit normalized
and the final state is delta function normalized with
respect to k, space. Under these conditions, one

integration cross section of the deuteron. Thus, the finds
initial-state wave function, D;(y), is approximated by
the zero-range wave function and

exp( —np)
odk2dk, = NrPN~'—N,2Nr2 Cr exp(ik„g) V 0, 8(E„, KI)dk2d.k—, .

A P

(29)

Introducing the final-state energy variables for internal and external motion,

one can write
4=PPP 2/M and g =PPP 2/2pD

0 ZE286d02dQ p
=xpDMk2k p exp( —np)

NfPNQ'N 2Nr' Cr exp(ik, g) V 4'; 8(E,; E,z)dE2ded—02&&p. (3o)
h' P

Integration of Eq. (30) over E2 yields the cross section for deuteron breakup with an internal disintegration energy
between e and 4+de, the internal center of mass ejected into the solid angle dQ2 and the neutron ejected into the
solid angle dQ, . Using Eq. (15) for the explicit form of the dipole perturbing potential, one finds the results

where

0'd ed02dQ p
=

Ze' g r exp( —np)
d6d02~0p y

p

E2=Ej—E—6p

~pDMk2kp
NrPN~'NPNr' Cg exp(ik, y)

A' 2 2
(31a)

(31b)

with E& the energy of relative motion of the initial deuteron-target nucleus system, i.e.,

Ei——5'ki'/2pD. (32)

The p-space integration in the matrix element of Eq. (31a) is straightforward and the cross section reduces to

64vr'k2k, pDM Ze'k, ~ r
~

08&dQ&d'Qp S'f$ XQ Tj Xf 4f 4 j tg6202dQp.
f4'(r4'+ k,')4 2y'

(33)

The matrix element, which occurs in. Eq. (33) above, can be evaluated with the aid of the r-space classical equation
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of motion of the deuteron in a Coulomb Geld. ' One 6nds

where

(Oy
' I)=-yD(&2 —&i)'

k, M,
2A2

M=(e, !r!e,). (35)

The matrix elements, M= (3E„M„,3f,), have been calculated by Sonirnerfeld (S-509) with ki chosen along the

direction of the positive x axis. Utilizing these results, Eq. (33) becomes

with

16~'kpk2pD'M &2—&i)'
cTAJQ2IQ~ =

! cVqPcV~'E, 'JV '!kp M! 'dedQ2dQp,
h'(n'+k p')4 i',

M, =CLi(e2 —
t'ai cos82)F+(1—cos82)(1—x)F'](1—x) '"' '"' ', (37a)

cos$2
sin8, LiN,F+ (1—*)F'](1—x)-'- -'" '

Sin@2
(37b)

The constant C is given by

C= —16ze "&
k k (k+k

(ki+ k2)'(ki —kg)'ski —k2
(37c)

and the function Ii is the hypergeometric function defined by

F=F( ini, ie—2, 1—; x), with x=— (8g
sin )

(ki—kg)' 4 2
(37d)

and F' is just the derivative, F'=dF/dx, of the hypergeornetric function. The angle 8& is the scattering angle of

the internal center of mass of the deuteron, i.e., it is the angle between the initial and 6nal wave number vectors

hi and k2. It is convenient to introduce a spherical coordinate system in r-space whose polar axis coincides with

the positive x axis (and, hence, the direction of li&). The angles (82,P2) then define the direction dQ2 of ejection of
the internal center of mass of the deuteron. We shall utilize (8„&,) to designate the direction'of"the solid-angle

element dQ, with respect to the positive x axis as the polar axis.
This rather complex result veri6es our earlier conclusion. Namely, that any attempt to utilize higher order

perturbation theory (e.g. , to account for deuteron polarization) would probably lead to nontractable results, even

if solutions for the nonseparable Hamiltonian operator were determined.

THE TOTAL CROSS SECTION

We now calculate the total cross section for Coulomb breakup. Using the above orientation, Eq. (36) can be

written as (omitting cross terms which vanish when integration in the p, plane is performed)

16m'k, 'k2p, D'M E2—Ej ' sin'8,
o cfelQ2dQ~ = 1VgP1V~'1V Xr' cos'8, !M, ! '+ ( [M„!'+!M, ! ') dedQ2dQ, . . (38)

gas (~2+k 2)4

Using Eqs. (37) as well as the explicit values for the normalization constants, the cross section takes the form

8A26 1/263/2~ 2p 2$ 2

o.d~dQ2dQ, =
3f(a+60)'(k& k2)' (1—exp—(—2~+&)) (exp(2me2) —1)

cos Op sin'0, sin282

!i(ei—e2 cos82)F+ (1—cos82) (1—x)F'!'+ !im,F+ (1—x)F'!' dedQ2dQ, . (39)
(1—x)' 2 (1—x)2
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To obtain the total cross section one must integrate Eq. (39) over the solid-angle differentials dQo and. dDo as
well as the internal energy variable e. Integration over dQ, yields

327ppL2 6 1/263/2 ~ 2p 2p 2 1
0 dCdQ2= (Imp)de (40a)

3M (e+cp)' (ki —ko)' (1—exp( —27rni)) (exp(2nn&) —1)

I= (1—x) '[i i(rto —si cos8$)F+ (1—cos0o) (1—$)F'
i
'+ sin'8o

i irtiF+ (1—$)F'
i
'] . (40b)

The integral of I given by Eq. (40b) over the solid-angle differential dQ&, has been performed by Sommerfeld
(S-526). This result can be expressed as

wherein

IdQg ——— iF(xp) i',
XQklk2

2'(ki —ko)' d
(41a)

F(&o) =F( trti, —trto—, 1; xo) and to= [4kiko/(ki k2) ]~

Consequently, an integration of Eq. (40a) over dQo yields the result

128m'A' rI, 'k ' 1

F'(a, b,c; x) =- (ab/c)F (a+1, b+1, c+1;x) .

~ 1/2~3/2

Odf= —R(F,F,*)
i „de,

3M (ki —ko)' (1—exp( —2srni)) (exp(2srrto) 1) (e+ Ep)''

where we have utilized the relation"

(41b)

(43)

The notation R(FiFo ) i
„signifies the real part of a product of two hypergeometric functions evaluated at xp.

Here one has the hypergeometric functions,

F,=F(1 ini, —1—irto, 1; xo),

Fo F(1 irt——i, 1—i—rto, 2; xp),
and

Also in recapitulation,

—2jV its(P —e)'to

SQ

(k —k )' [F. —E "(E —e)'"—-';(e+ p)j

I,= tti)Ze'/pt'ko,

(2tti)) U2

ko
—— [F e]'t', —

A

E =El—eQ.

(44a)

(44b)

The total cross section can now be obtained from Eq. (42) by numerical integration over the internal energy
variable e.

We have utilized the analytic continuation of the hypergeometric function. " to evaluate R(FiF& ) in terms of
inverse powers of xQ. One finds to third order

1 1
R(FiFo*)=—((rti —sto)F)+ {(Q,'+Q„')[(rtirto'—ttortP) sin81 —2nirto cos81]

ÃQ SQ2rl
1

+M[1Vi cos81—1Vo sln0]]+F[iVi sln81+Xo cos01])+ [sisto(Qe +Qo )]
SQ

(Xi—2) cos (01+0o)—2 (st 1
—no) sin (81+8o)

r lr2 rl—2

Xo cos281+ 2npno' sin201 1V4 sin (81+8o)+tVo cos (81+8o)

r12 2r ]r2

2nPrto' cos281—1Vo sin281 iV4 cos(01+0o)—1Vo sin(01+0o)
M

2f lr2

C. Snow, Hypergeometric and Iegendre Fnnctions With Applications to the Integral Eqnations of potential Theory (National
Bureau of Standards, Applied Mathematics Series 19, 1952).

"A. Erd61yi, Higher Transcendental Fnnctions (McGraw-Hill Book Company, Inc., New York, 1953l, Vol. I.
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In Eq. (45) we have used the following notation:

ri ——[1+(n2 —ni) 2]'t2

rs ——[4+ (rt2 —ni)'g'ts

tanei = (ns —ni),

tane, =, (n2 —ni),

Xt——(nP+ n2'),

1V2——(ni —ns) (n12+n22),

+3 ('ni 'n2)'n1 'n2

1V4
——2 (2ni' —ni'n2 —ni' —nin2' —n2'+2n2'),

1V 3 (nt 'n2) (ni 5'n1 4nln2 5'n2 +'n2 )

reduces to

Qg2 6 1/263/2

o'(o)tie= n12 ln( —xo)de
& ~

ni —n2 j(&1 (48a)
3M (e+ ep)'

or
16ttt' e t est2

p 2ni
o (e)de= n12 ln~ ~de;

3M (e+ ep)' Ens —ni)

I
—.1«1. (48b)

The total cross section given in Eq. (48b) coincides
with the results of Dancoff' except for the argument of
the logarithm. Instead of [2nr/(n2 —ni)$, Dancoff finds
the argument (hvt/Rp(e+ep)). For deuterons of a few
hundred MeV, one has

I'(i(ni —n2))

Ei'(1+sn, )r (1 in,—))
(46)

Avt f 2ni

R, (3+co) &ns n, i—
(49)

I'(i(n, —n,))
Q„=Im]

&I'(I+ini) I'(1—in 2)I
p=ln( —xp),

F= (Q.'—Q„')sinp(ni —n2)

+2Q,Q„cosp (ni —n 2),

M= (Q '—Q„')cosp(ni —ns)

—2Q.Q„sinp (ni —n2) .

The gamma function of a complex argument, which
arises in Eqs. (45) and (46), can be evaluated from the
asymptotic expansion of the logi'(2). '1

HIGH-ENERGY DEUTERONS

Let us examine the limiting case of high-energy
deuterons. Although we are fully aware that our calcu-
lation cannot be applicable in this domain, nevertheless
it is interesting to note that our result assumes a
limiting form which is analogous to the cross section
given by Dancoff. ' While one cannot assume that either
ni or ns is small (viz. , Fig. 2), one does have

~
ni —ns

~
((1

for laboratory energies in the neighborhood of a few
hundred MeV. Since (nt —n2~(&1 implies ~2:o~))1, we
need only consider the first-order term in the analytic
continuation of R(F1Fse).13 Applying these conditions,
one finds

p sinhsorni
R(F,F,*)=;

( n, —n, ((&1. (47)
(—xp) or'ni'

Using Eq. (47) in Eq. (42), the total cross section

'7H. K. Salzer, Table of the Gamma Function for Complex
Arglmertts (National Bureau of Standards, Applied Mathematics
Series 34, 1954).

'3 For E1-200 MeV, the second-order term in Ect. (45) is
approximately 10% of the first-order term.

Hence, as we have anticipated, the cross section given
in Eq. (48) is not adequate for high-energy deuterons.
In fact, for deuterons of a few hundred MeV, this cross
section yields values which are roughly an order of
magnitude higher than Dancoff's results.

Although this disagreement is striking, it can be
readily understood. Dancoff obtains (tttvt/Rp(3+co)) for
the argument of the logarithm by limiting the maximum
recoil of the internal center of mass (of the deuteron),
thereby effecting a separation between "nuclear" and
"electric" collisions. It is easy to show that the intro-
duction of such a momentum space cutoff in our
analysis permits one to obtain explicit agreement with
Dancoff. In this event, one can take A(kr+ks) = (5/Ro)
as the maximum recoil momentum of the internal
center of mass. Thus, instead of the inequality given in
Eq. (49), one has an equality. Hence, Eq. (48b) reduces
precisely to the cross-section formula of Dancoff.

These remarks also clarify the behavior of the
Coulomb breakup cross section obtained from per-
turbation theory at high energy [viz. , Eq. (48b) j. In
the present formulation, the separation between
"nuclear" and "electric" collisions is attempted by
introducing the point-nucleus approximation. For high-
energy deuterons, it is evident that the point-nucleus
approximation will be poor and thereby can lead to an
overestimate of the Coulomb interaction since the
region r&EO will contribute. This can only result in a
subsequent overestimate of the Coulomb breakup cross
section, as has been clearly demonstrated above. On
the other hand, we have already emphasized the in-
applicability of the Born approximation in the low-

energy region. It is just in this energy region that the
perturbation theory treatment should prove superior.

APPLICABILITY OF PERTURBATION THEORY

I.et us return to a consideration of the validity of the
perturbation theory treatment. We begin by writing
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Eq. (19b) in the form

p .(i)—
V, „,.

dkp dkp .
jV,

Using Eq. (50), it is easy to verify that both wave
functions which occur in Eq. (19a), f,, (P) and P,, "',
possess the same units (sec'~' cm '). Consequently,
these wave functions may be compared directly without
any change in normalization. Changing to energy
variables as before, one finds

p,~M
(i) =

A4
P„.(P)kp'k, 'dE, 'd p'dQp'dQp'. (51)

2 Eys Eyr

Equation (51) may be utilized to obtain an upper
bound for IP„,.")

I
and thereby determine an estimate

of the validity of condition (20). To this end, one must
realize that the integration over the energy variables,
in Eq. (51), is not arbitrary, but must satisfy the con-
straint implied by conservation of energy. This con-
dition can be written as

and thereby
I& g(P) I'-1/(2~)P

Thus, for I2, one has the approximate form

1 pDM
I2=

(2m.)P 2A'
kpk, d pdQpdQ, dEp.

Since the integrand of Eq. (55c) vanishes exponentially
for k2 —+ 0, one needs only consider the contribution to
this integral from large k2, In the event r —+ , the
integrand of (55c) will no longer vanish exponentially
as k2 —+ 0. However, this special case need not be con-
sidered since P„,.(i) becomes negligible for r -+ pp. This
behavior is due to the factor exp(ikp r), which arises
in the final-state wave function p„~(p).To evaluate the
contribution to I2 from large k2, one can use the
asymptotic form of L;„,(—sp). According to (S-795),
one 6nds for

I
spl&)1

I L;„(—sp) I' (exp(2prr)p) —1)/2prr)p, (57a)

and
K =E, +pp (52a) This result can be written as

E, =Ep+ p=E„~. (52b)

pg)M$„.(i) =
2A4eo

V„~„,P„~"'kpkpd. pdQpdQpdEp (53).

To satisfy these conditions, one can introduce a delta
function into the integrand of Eq. (51). However, we
shall employ an alternate procedure. Namely, we shall
use Eqs. (52a) and (52b) in Eq. (51), but withhold
integration over the resulting energy variable E2 until
a later point in the analysis. This procedure has the
advantage of producing a more realistic upper bound.

Applying Eqs. (52a) and (52b) in this manner, one
has

AD 2pD) '~'

!I2 ——

(2pr)4A' M ~

with

kp

k '(k '—k ')'~'dk, dE„(59a)

k„'=(Mk)P/2PD) n', — (59b)

AD (2)iD)1/2 (k )P
I&

I ! 'k. dE, .
(2pr)4A'E M ) 3

(60)

With these results, Eq. (55a) becomes

and where the upper limit of integration, k„must be
consistent with the condition Ispl))1. Since k '&k, ',
one has

Equation (53) implies

p,D3A2kp
ly,.(') I

&—
I v„„lI4„()

I
'd, dQ, dQ,dE, . (54)

1 4pDor (2pD '~'

(k,) k.
pp 3(2n-)'f) k M

dEp . (61)

In evaluating the remaining integral which arises in

Applicati()n ()f the S~h~a~z i~equality, in Eq (54) yields Eq. (61), one must again satisfy the condition
I sp I &&1.

Since Eqs. (52) imply dEp= —dp, one finds

where
pDMk2k,

Ii=
I Vpypg I

dpdQpdQpdEp
2h4

pDMk2k,
Ip=

I f,g I dpdQpdQpdEp.
2A4

Utilizing Eq. (31a), the integral Ii reduces to

(Ao r)I)=!

(55a)

(55b)

(55c)

4f) (rT (2PD)) (pD
I+.;"'I &—,I I I, (k,)'k. (62)

pp 3(2n-)'( M 1 kM'

Since k~&k2, and we have assumed k2r))i, then
kir»1 and the asymptotic expansion of IL;„,(si) I

can
be used. This yields

lp (') 4))) rr 2)iD) p k]k ' (pe ~)

, (k.)' I I (63)
3(2pr)4e( M ) M' E ep )

(56) It is appropriate to utilize the value (p}=pD=1/2().
for the internal space variable which appears in Eq.
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(63) above. In this event, one has

exp(s) pD i krk 0'z' 1c i
ill. ,"' l(llf. ,"'I,)-'&

2m' 2M) 6 n /

or
exp(-', ) pD '~'-k, k ~, e)» »-

Ilt' "'I(l+~ "'I ) '&
2~s 2M — 6 es)

(64a)

(64b)

where
e= l'r'(k )'/M

o.z as a function of E~ for the diferent target nuclei,
(64c) 4&Z&92, used in these computations"

These results also determine the upper bound
We shall utilize the results obtained from Eq. (42)

in Eq. (64). Inspection of the diRerential cross section,
o(e)de, will permit a choice of e consistent with the
condition Issl))1. In this manner, we shall obtain an
estimate of the applicability of the perturbation theory
treatment.

RESULTS

We have calculated the differential cross section,
o (e)de, in the domain 4&Z& 92 for deuteron laboratory
energies /En= (2M/pD)Et] of ED 10, 15, 20, a——nd 25
MeV. 's Figures 3—6 display the behavior of o(e) for
Z=4, 26, 56, and /9, respectively. The total cross
section for Coulomb breakup can be obtained by
numerical integration over the internal disintegration
energy e. Figure 7 displays the total cross section 0-z as
a function of Z for the'four laboratory energies utilized.
As an alternate presentation, Figs. 8, 9, and 10 present

exp(-', ) pn ' '-ktk„o.r f' e

2rr' 2M 6 E eo
(65)

v=5(/E)( /2M))'" (66a)

90

given in Eq. (64b). We have arbitrarily chosen e as
that point at which o (e) falls to one percent of its peak
value. Our calculatioms show that 8 is a monotone in-
creasing function of E~. Hence, we need evaluate 5 only
for the two cases, X~=10 and 25 MeV, respectively.
Figure 11 displays 6 as a function of Z for these two
laboratory energies.
-' ..To examine the asymptotic condition given in Eq.
(22), we have computed an eRective upper bound

I
)

J
I

J j J ) I
1

J
I

J

E 20

o!-L.~ i 1

0 I P,

l J

6, MeV

t J t

5 6
1 J t J 1 l t 1 l J 1

Q 1 2 3 4 . 5 6
MGV

Fro. 3. The di6'erentfal cross section $0 (e)g for Z=4 with
10-, 15-, 20-, and 25-MeV deuterons.

'9These computations were carried out on the IBM-7'090
computer, Lawrence Radiation Laboratory, Livermore, California.

Fro. 4. The differential cross section Lo(e)) for Z=26 with
10-, 15-, 20-, and 25-MeV deuterons.

2' As stated earlier, all numerical results presented here include
the rnnltiplicative factor (1+au) =1.4.



DISINTEGRATION OF DEUTERON IN CO ULOM8 FIELD 2597

I
'

l
'

I
'

l
'

I
'

l
500 I

I
I

' I' I "I I
I

I

100

100

A

b 10
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cross section (ar) as
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I I I I I I I

20 40 60 80 lOC

where e is determined as above and

E2=Ey—60—E-. (66b)

The upper bound y, so obtained, is presented in Fig.
12 as a function of Z, again for the two cases, ED=10
and 25 MeV, respectively.

Finally, we must again point out that the results
presented above have been obtained by utilizing only

the first three terms of the analytic continuation of
R(FtPs*). Our numerical computations show that the
third-order term is at most a few percent of the 6rst-
order term throughout the domain of interest. Con-

sequently, we may estimate that the error so introduced
into o (c)de and or can be no larger than a few percent.
In view of the other approximations entailed in this

formulation, the accuracy furnished with only the first
three terms of this analytic continuation should

certainly be adequate.
300
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FIG. 8. The total
cross section (or) as
a function of deu-
teron energy for
Z=4, 6, 10, and 16.
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Fro. 6. The differential cross section La (e)g for Z= 79 with
10-, 15-, 20-, and 25-MeV deuterons.
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Fzo. 13. A com-
parison of the total
cross section (os) as
a function of Z with
the work of Landau
and Lifshitz for 10-
MeV deuterons.
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b

I t I i I ~ I
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z

ZOO

of Mullin and Guth, ' the present results are considerably
smaller. If one includes the multiplicative factor (1+os)
in the calculations of Mullin and Guth, then the present
cross sections for copper and gold are lower by a factor
of 3 and 6, respectively.

A comparison with the results of Landau and Lifshitz'
is given in Fig. 13 for 10-MeV deuterons. Here the dis-
agreement is even more striking. The present results
range from one to two orders of magnitude lower than
those predicted by Landau and Lifshitz. Consequently,
the results of the perturbation theory treatment con-
tradict the conclusion of Landau and Lifshitz that the
electric breakup cross section can be dominant.

It is evident that additional measurements, on more
elements in the 10—25-MeV range, are needed in order
to assess the quantitative validity of the perturbation
theory calculation.

the point-Ducleus approximation with a subsequent
overestimate of the cross section.

At 15 MeV, however, the situation should be con-
siderably improved. Compared to the earlier estimates
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