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Ferromagnetism and Spin Waves in the Band Theory
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Intra-atomic exchange (Hund's rule mechanism) and Heisenberg nearest-neighbor exchange are ex-
amined for their role in the ferromagnetism of metals with degenerate bands. We examine the ground state,
and hnd there is ferromagnetism once the largest eigenvalue jpp of the exchange matrix exceeds & &&No. of
atoms/density of states at the Fermi surface. We then find several spin-wave spectra, of which one "acoustic"
and at least one "optical" spectrum have infinite lifetime in the random phase approximation. The initial
parabolic behavior of the acoustic spectrum yields Bloch's T'" low at low temperature. There is a maximum
wave vector beyond which no spin-wave solutions exist, corresponding to a minimum wavelength of at least
several atomic distances. Formulas are given, and the copious numerical results calculated by W. Doherty
on the IBM-T094 computer are summarized in graphs and tables. The ferromagnetic ground state is stable
versus antiferromagnetic states only so long as umklapp is neglected. Because umklapp is most important
in half-filled bands, we find qualitative agreement with previous calculations that antiferromagnetism can
result in this case.

INTRODUCTION

~ ~

~

~

HEN electrons form bands, their magnetic
properties must be explained by band theory.

The object is to isolate the magnetic behavior from the
continuum of electronic states. How much easier is the
problem in insulating magnetic materials, in which the
energy gap against electronic excitations allows the
low-lying magnetic spectrum to be well-separated from
the excited electronic states.

And what of the mechanisms Everyone will agree
that the Coulomb interaction, and/or "exchange, " are
at the bottom of the phenomena of magnetism. But
what is "exchange"P There is almost no other force
which is so representation-dependent, so vague and
tenuous, and yet has such important consequences. We
shall use the Wannier representation to de6ne it,
unambiguously (if perhaps not uniquely). We shall
determine when it is strong enough to cause ferro-
magnetism as a function of the density of states at the
Fermi surface. At least 2-fold degenerate bands are
required. Once ferromagnetism exists, spin waves do
too, and we shall calculate their equation of motion.
The initial parabolic behavior, Aco~q', gives the T'~'

law of Bloch. We also find optical spin-wave spectra,
and give all the solutions graphically and in tabular
form.

We shall discuss the relative importance of Heisen-
berg nearest-neighbor exchange, and of intra-atomic
(Hund's rule) exchange. ' Both are included in the

i E. P. Wohlfarth, Rev. Mod. Phys. 25, 211 (1953), and also
J.H. Van Vleck, Rev. Mod. Phys. 25, 220 (1953)discussed Hund's
rule as a cause for ferromagnetism in the transition elements. They
attribute the original idea to Slater (J. C. Slater, Phys. Rev. 49,
537, 931 (1936)j.Today it is the well-known basis of the indirect
exchange theory of the magnetic rare earths; PT. Kasuya, Progr.
Theoret. Phys. (Kyoto) 16, 45 (1956);S. H. Liu, Phys. Rev. 121,
451 (1960); Ref. 12) it has been discussed in connection with
localized magnetic moments in metals LP. W. Anderson, Phys.
Rev. 124, 41 (1961)g and in such other systems as the Os molecule
PJ. C. Sister, Technical Report g6, Solid State and Molecular
Theory Group, M.I.T. (unpublished) j.

cd, , t,s= g expaik R;]c,,t„

theory, but the Hund's rule mechanism is favored.
Antiferromagnetism is brieRy discussed.

HAMILTONIAN

We shall examine the role of exchange in the ferro-
magnetism of metals, particularly the transition metals
Ni or Fe. It is convenient to consider the degenerate,
partly occupied d bands as a closed system, and to
imagine that the electrons in other (s or p) conduction
bands, and those in fully occupied valence bands merely
screen the ionic charges of the lattice. Corrections to
this can always be accounted for in higher order
perturbation theory, or by other means. But the
advantages of a closed system are enormous; we need
merely to diagonalize, as best we know how, the
Hamiltonian in the restricted Hilbert space of the
Wannier states of these several bands.

For this purpose it is necessary to know how to
express the usual "exchange potential, "which is a sum
of terms such as

—g. .. j,.s,, s;, , (',f)~(j,&'), (1)

connecting an electron on an atom at R; in band t, and
one on R; and in band 3', in terms of the operators that
create or destroy an electron with spin s(= $ or Q in
the corresponding Wannier states. The operators obey
the usual Fermi anticommutation relations:

I

cc i, t,s)c j,t', s'7+ acit, s)cj, t', s'7,+

a& its&&j, t', s'],+= f),i,j fjt, t'f)ss'),
2.C 2', , t,sCi, t,s= +j,t, s @ i, t,s ~

The roles of electrons and holes are reversed merely by
interchanging the c's and c*'s in these expressions and
in the Hamiltonian. Also, the set of Fermi operators
that create and destroy particles in Bloch states consists
of the Fourier transforms:
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a, t, s = exp[—ik R;]c',, t, ,
X

(3)

the various Coulomb integrals to which we now brieRy
turn our attention.

The Coulomb interaction

The three components of the spin vectors are given by,

S„z=~ (Nqtt N„i—), S„+=S„+iStt"=c~i*c„t

S„=S„—iS~"= c~g*c~g (4)

where p—= (i,t) The. refore, the exchange interaction (1)
is quartic in the Fermion operators c„,just as any
ordinary two-body interaction. We may note several
interesting properties which are made particularly clear
in second quantization. If any Wannier state (i,t) is
either empty or doubly occupied (& and l), the exchange
operator (1) which refers to the state must vanish.
Therefore, the interaction has nonvanishing matrix
elements only in the subspace in which Wannier states
(i,t) and (J,t') are each singly occupied. It measures the
energy splitting between the singlet state

energy Wq (5)

and the triplet states of the electron pair which were

originally degenerate with it

»t. , t,te„;;, , d'r d'r'
i,j', t, t', s,s'

e2

X
I tPt*(» —~')P ('—& ) I', (g)

commutes with the exchange interactions (1). It niay
be considered together with other such forms, incl uding
one-body potentials, and combined into a single
diagonal interaction

V(,»t~q+»i~i, ) .

Exchange, V, and the kinetic energy comprise our
model Hamiltonian for the d bands. The kinetic energy
is of course a matrix which is diagonalized only in the
Bloch representation, whereas in the Wannier repre-
sentation it is characterized by the "overlap" E;,, t

connecting states in band t centered about E., and R,.
The Bloch energies e&, t are therefore just the eigen-
values of the EC matrix. Explicitly

$1', ll+ l1', ll, energy +'i.

The shif t is in the amount of

(6) K.E.= —Q K't', t(c*;,t, ,c;,t .+H c )=P .qp. t»tat, ,

where

X (4 t" (» &,)4 t
' (»' —&;)Pt' (» &—t')—

Xtpt (r' —~,)},(&)

where tPt (r—E,) is the Wannier function in band
centered about the atom at R;. Excluded from this
analysis is the case of "self-exchange, " when both
i =j and t = t The self-exchange term is diagonal in
the Wannier representation and there is no possible
triplet involved. Like the direct Coulomb interactions
to which we shall shortly turn our attention, self-
exchange measures the energy difference between states
of varying ionization. This is quite different from the
effect of lifting the degeneracy among states of the same
degree of ionization, as in the case of two different
Wannier states, discussed supra

Although the vector model Hamiltonian of Eq. (1)
may not always be exact, it provides a particularly
compact and qualitatively correct operator formalism
for Hund's erst rule: "the state of maximum multi-
plicity lies lowest. " This rule, together with Hund's
second rule concerning the atomic angular momentum,
is invariably obeyed in atomic systems and must there-
fore be considered of some importance in the solid state.
But we have not taken any account of Hund's second
rule, which should also have a simple operator repre-
sentation, beyond what results from the magnitudes of

In this work, we shall consider the effects of exchange
and of kinetic energy only, for the purposes of a zeroth-
order theory of ferromagnetism and spin waves. This
of course allows a tremendous simplification, but it is
not an essential one. Within the random-phase approxi-
mation, it is quite feasible to consider simultaneously:
the Coulomb interaction, the interaction of the d

electrons with the other conduction bands, the spin-
orbit coupling, all together with the exchange and
kinetic energies. But it is the latter two which are
responsible for the magnetic moment of isolated atoms,
and for the metallic state, respectively, and it is there-
fore these that we study first. We note that (1) and (10)
do not commute, so that the problem is by no means
trivial. Nevertheless, it is possible to obtain a quite
plausible physical picture and a ground state which,
in some limiting cases, is rigorously exact.

It is convenient to combine (1) and (10) into a single
expression in terms of Bloch operators. The Fourier
relations (3) are easily inverted, and one finds

qt„tc tt, t, gck, t, t P ~q, tt'
k, t, s Q k, A. ",q, K, t, t'Qt

X (4 (c tt+q, t, tctt, t, t c t;+qttcat, 4), , ,

X (c q~ q, t', tct."+K,t', t —c tt& q, t , 4ck.+Ic, t',t')—
+ q (c y ttt, tqtc4tttt' —cq, t', t,~ctt, «x, +q.H)}c, (11)
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where

1
J,, gg

———Q J,g , ;g e. xpLiq (R,—R;)j.
Ã', ~

(12)

EXCHANGE MATRIX

First, examine the diagonal part of the Hamiltonian,

The ground-state and elementary excitations of this
system provide enough information to predict the low-
temperature behavior. The neglected interactions, and
the more general statistical mechanics of this system
pose detailed problems for future investigation. Also
left for future study: the eGects of intraband exchange,
I,=I', which, for various reasons, are expected to be
small. '

Nevertheless, it is of some interest to anticipate
quantitative results concerning the direct Coulomb
interaction by noting that the correlations must be
such as to prevent excess electrons or holes from
occupying the same sites, and therefore from lining up
their spins. The Coulomb correlations must, therefore,
be such as to screen the exchange. But there is also an
opposite eGect. In the direct Coulomb interaction

Z: n(q) p.p-.

there are intraband-exchange terms which enhance the
interaction (1) and the magnetic alignment. Indeed, in
early theories of magnetism this "exchange scattering"
was considered to be the cause of magnetism, in the
band theory. ' Thus, the Coulomb interaction, Eqs. (8)
or (Sa), gives rise to two competing effects, the one
tending to decrease the magnitude of J and the other
to enhance it. Moreover, we cannot presume that
atomic spectra or atomic calculations can yield the
magnitudes of the exchange integrals, because the
Wannier functions are more spread out than atomic
orbitals, so that both Coulomb and exchange integrals
are correspondingly reduced. For all these reasons, it
is best to consider the magnitude of the exchange as a
parameter to be adjusted to experimental data. Further-
more, in the next section, we shall find that a certain
function (of the largest eigenvalue of the exchange
matrix and of the density of states at the Fermi surface)
turns out to be the most compact "coupling constant, "
one which is probably best obtained from independent
experiments rather than from microscopic calculations.

' This commits us to degenerate bands. In the case of a single
band, all that remains of our Hamiltonian is the kinetic energy
and, therefore, in our model ferromagnetism cannot occur in a
nondegenerate band, or for free electrons, in agreement with
arguments of Slater D. C. Slater, Technical Report g6, Solid
State and Molecular Theory Group, M.I.T. (unpublished)g and
of Wigner PE. P. Wigner, Trans. Faraday Soc. 205, 678 (1938)g.

Similar criteria are found in standard texts, such as A. H.
Wilson, The Theory of Metals (Cambridge University Press, New
York, 1953), 2nd ed. , pp. 182 G. However, the theory given in
this book is based on the direct Coulomb interaction, (see Ref. 6)
and there are no spin waves. Thus, correlation is not taken into
account (E.P. Wigner, Trans. Faraday Soc. 205, 678 (1938);also,
Refs. 2 and 6g, and the low-temperature specific heat and magnet-
ization obey the incorrect T law,

X '(rte, t, t-rtp, t, t—)(«,t, t rte, t
—.i) (13)

in the Bloch representation. The degenerate Fermi sea,
equally populated by spins "up" and spins "down" is
an eigenstate of IID,„., but it is not necessarily the
ground state. Among the other eigenstates of varying
total-spin angular momentum we single out those, for
instance, in which be states near the Fermi surface are
emptied of their spin-up electrons, and an equal num-
ber of spin-down electrons are placed in previously
unoccupied states closest to the Fermi surface. The
resultant magnetization

M= —2gpgbe

costs a kinetic energy in the minimum amount of

1 (5«)'
for be&&e,

2 A'(0)

(14)

with a corresponding maximum gain in exchange energy
of

1——jpp (tgrt) ', (16)

where joo is the largest eigenvalue of the exchange
matrix Jp, the components of which are the matrix
elements Jp, «defined in Eq. (12), and E(0) is the
density of states at the Fermi surface. Once

jpp exceeds X/2X (0) (17)

ferromagnetism becomes possible. This is a precise,
quantitative statement of the usual band-theoretic
criterion, which is that ferromagnetism is favored in
narrow bands, but it is the same idea. '

It is convenient to choose a sort of "renormalized
coupling constant" which increases with increasing
ferromagnetism, and which vanishes when the criterion
(17) is not satisfied. For this purpose we use the energy
2 which it costs to promote one of the excess spin-down
electrons to spin up, without changing its wave vector k
or band index t. It is fortunate that such a simple
definition exists for the strength parameter which
occurs in all the results to follow, one which is directly
amenable to experimental measurement.

In general, we denote the eigenvalues of the matrix
Jp, the elements of which are J,, «, by j,„(r=0,1,2, )
with j«chosen as the largest.

In order to gauge the dependence on q of these eigen-
values, let us compare the dependence of the exchange
integral (7) on the distance (R;—R,), with that of the
Coulomb integral (8). At large distances the Coulomb
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integral becomes inversely proportional to the distance.
This leads at once to the well-known Fourier transform
1/q', and the consequent necessity of taking long-
wavelength correlations of the electrons into account.
On the other hand, if we examine the exchange-matrix
elements, and recall that Wannier functions aremutually
orthogonal, we see immediately that J must decrease
at least as rapidly as the inverse square of the distance.
But if, then, one uses the additional fact that the
Wannier function is dehned so as to be the best localized
function about its size R; which it is possible to con-
struct within a single band, he finds that, practically
speaking, there is no exchange among electrons which
are more than a few atomic distances apart. As a
consequence, the Fourier transforms in this case, far
from diverging as q ~ 0, must approach constant
values in this long-wavelength limit.

Exactly how constant, depends on the following
considerations. Apparently the biggest integral occurs
when all the functions are centered about the same
atom, R;=R;. If atomic orbitals replaced the Wannier
functions in Eq. (7), this would be the same integral as
is used in discussing Hund's rule (the magnetic moment
of isolated atoms and molecules). Next in importance is
the Heisenberg nearest-neighbor exchange mechanism
given by the integral (7), when E, and R; are nearest
neighbors on the lattice. If, for example, Hund's rule
exchange gave typical matrix elements of magnitude
JH„and the Heisenberg exchange-matrix elements of
typical magnitude JH.;, then the Fourier transform-
say on the simple cubic lattice —would be

Jq= Jrr +2JH. ;(cosq,a+cosq„a+cosq,a), (18)

where the components q, etc., are restricted to the
first Brillouin zone:

(19)

But as we shall always be interested in relatively long
wavelengths, the first terms in the expansion

Jq= (JH~+6JH. ;)—a'JH„q'+ . (20)

will be sufhcient. How important is the q dependence of
the matrix elements? This depends principally on the
relative magnitude of

(JH„+6Jrr.;) and (JH„).

SPIN WAVES

The theory of spin waves in metals has been studied
in the past. 4 Very plausible arguments have been
advanced for why spin waves must exist in metallic
ferromagnets, at least for long wavelengths, regardless
of the interaction mechanism. No one should be sur-

prised that we now proceed to study the equations of

4 For example, C. Herring and C. Kittel, Phys. Rev. 81, 869
(1951);and C. Herring, Phys. Rev. 87, 60 (1952).

j„fJ, (k) —f&(k+q+E)1=—P
1V k A+e(k+q+K) e(k) ——Ate;

(22)

press the band index f in the energies e(k), as these are
degenerate bands. ~ The new eigenvalues Ace; interlace
the unperturbed eigenvalues A+a(k+q+E) c(k), ex--

cept for the bound states which are the spin waves. So
long as the spin-wave energies lie outside (either above
or below) the continuum of unperturbed eigenvalues,
the sum in Eq. (22) may be replaced by an integral,
with negligible error. When the solutions merge with the
continuum, the lifetime of the collective state becomes
so short that it may become merely a resonance, or lose
its character entirely. Even so, one may continue the
bound-state solutions into the continuum by a simple
expedient, such as arbitrarily replacing the sum by a
principal parts integration, and this is precisely what we
shall now do.

~ The random-phase approximation and the technique of
"equations of motion" (summing all ladder or bubble diagrams)
are extensively studied in D. Pines', The Many-Body I'roblem
(W. A. Benjamin, Inc. , New York, 1962). Our method follows
closely the paper by K. Sawada, K. A. Brueckner, N. Fukuda,
and R. Brout, Phys. Rev. 108, 507 (1957), which is reprinted
therein, and our Eq. (22) bear resemblance to the dispersion
equation for the plasmons.

6 Similar equations have previously been found in this manner
by T. Izuyarna, Progr. Theoret. Phys. (Kyoto) 23, 969 (1960), in
an unpublished thesis by M. M. Antonoff (Cornell University),
or M. M. Antonoff, Bull. Am. Phys. Soc. 8, 227 (1963) Lwho also
finds a cutoff of tf j, in a mimeographed circular in Japanese
by K. Yosida and T. Kasuya, by E. D. Thompson, Ann. Phys.
N. Y. 22, 309 (1963), and probably by many others. However,
the distinction between the direct Coulomb interaction and the
exchange interaction, given in our Eqs. (7) and (8), is not very
clear in these earlier theories. As a result, they may predict ferro-
magnetism in nondegenerate bands as readily as in degenerate
bands, in contradiction with the arguments we have discussed
(see Ref. 2) and of experimental evidence. Often, one finds Bloch's
original band theory of ferromagnetism thus revived in one form
or another. Bloch had supposed the direct Coulomb interaction,
our Eq. (8), to be the relevant mechanism. This idea was refuted,
however, by E. P. Wigner PE. P. Wigner, Trans. Faraday Soc.
205, 678 (1938)j on sound physical grounds, and the concept of
electronic correlations invented by him to show how the Coulomb
interaction, even when quite strong, might have little eGect on
the free-particle nature of the electron gas. Wigner's arguments,
however, did not encompass exchange forces such as our Eq. (7).

7 The cubic crystal Geld does not lift all the atomic degeneracies,
and there are as many as Gve, or as few as two degenerate d bands
which are taken into account in the present theory. Interactions
with partly occupied s and p bands are neglected, although not
negligible.

motion of the elementary spin-raising operators

q, k, t=~ k/q, t, t&k, t, i i or & k+q+rr, t, t&k, t, i t (21)+

with a view to discovering which linear combinations
of these are raising operators for the Harniltonian of
Eq. (11), within the random-phase approximation. '
Using this technique, which is standard by now, we
find an implicit equation for the new eigenvalues.
Everywhere we indicate by IC, that if k+q is not in the
first Brillouin zone (B.Z.), it is to be brought back by a
reciprocal lattice vector E. Otherwise, E=O; this is
known as "umklapp. "We find' lt is permissible to sup-
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If e(k) is understood to be extended periodically out-
side the 6rst B.Z., then we may dispense with E.
entirely. Also, it is convenient to introduce a single
Fermi function

effective mass approximation, setting

ei —jPks/2m*.

We used the convenient units

(26)

f(ep)—=fl(e~) f("+~)=f1'(e~). (23) (27)

Then, after some elementary simplification, the integral
equation becomes

P.P. d'k( f(es) f(e~—,+6))

referring Ii to the "spin-down" Fermi surface.
With these various points in mind, one readily

integrates Eq. (24) by means of standard integral
formulas and obtains

6+ ps+ p
—ey —A%i

jap

jan@

=0 (24)
2 jpp 1—(1—6)s" 1

=—L~(~)—(1—~)J'(&)3, (»)
3j~„A 2g

indicating principal part by P.P.
It is the interesting results we have found, on the

basis of this equation, that we discuss in the balance of
this work —with the aid of tables and graphs of numer-
ical data. But first, we note that it is possible to find
the eigenvalues at q=0 without any knowledge of the
band structure or any numerical analysis. They are

where
1 x+1

F(x)= -'(x' ——1) ln +x

2q (1—6)'"
6—q' —tp, (q)

(29)

(30)

Ace, =0 single root

=6 multiple solution (double root at least)

1——single root for each distinct jp„. 25
jpp&

The fact that there is a zero eigenvalue at q=0 is very
encouraging, for the corresponding operator merely
rotates the total magnetization partly into the X-I'
plane, and the zero eigenvalue expresses the
rotationally invariant nature of the approximations
made so far. As for the second eigenvalue, all the
branches in the continuum must meet at 6, because at
g=0 the continuum collapses to a single E-fold de-
generate point at A. The position of the higher roots
depends most of all on the structure of the Jp, «matrix.
In the case when only two d bands are being considered,
the ratio (jp„/jpp)= —1. In the case of three ig bands,
there are two degenerate roots for which (jp„/jpp) = —s.
In the (unlikely) event that all five d bands are im-
portant, then a more complicated eigenvalue spectrum
can be expected. Assuming, however, all constant
matrix elements then (jp„/jpp)= —4, in that case,
for r=1, 2, 3, 4.

The "acoustic" branches belonging to r =0 are
independent of the number of d bands. We have
calculated these as well as the upper, or "optical"
spectra corresponding to the two d band problem. For
the numerical calculations, it was necessary to make
two principal and related assumptions. These were
chosen consistent with electrons, or holes, occupying
only a small fraction of the Brillouin zone. First, we
systematically neglected umklapp; however, we shall
return to this point below. Second, we adopted the

These transcendental equations were solved for the
two-band case on the IBM 7094 by Doherty of this
laboratory. The eigenvalues j„(r=0,1) were assumed
to be independent of q for the purposes of this calcula-
tion. This was done at first because there was no
convenient a priori method of deciding on the relative
Inagnitudes of JH„and JH„,other than deciding that
one or the other vanishes. A more convincing reason
appeared after the calculations were performed. The
range of q for which the acoustic spin waves lie below
the continuum is always less than 0.75 hp. But, as we
shall see, k~ itself must be small compared to sm./a in
order that the neglect of umklapp be valid, and that
ferromagnetism be stable versus antiferromagnetism.
We shall return to this point subsequently. When these
arguments are applied to Eq. (20), it is seen that at the
very worst if JH„were somehow unexpectedly to vanish,
the assumption of a constant eigenvalue would lead to
not more than 20% error in the results. But with more
realistic assumptions about kp and the relative magni-
tudes of the two exchange forces, the maximum error
might be as little as 1%.

In Table I and Figs. 1—5, we present the results of
the spin-wave calculations for several values of h. Note
that there is a universal spectrum for A&1, when Lr; is
expressed in units of A. Note also that there is a Inaxi-
mum wavevector for solutions ever in the continuum.

Hund's rule coupling is of the order of several eV in the transi-
tion atoms, and, therefore even when screened in the metal is
quite substantial enough to account for magnetic energies
kT, 0.1 eV. On the other hand, the magnitude and even the sigrI,
of Heisenberg nearest neighbor exchange in the metals has been
the object of dispute rather than agreement. The Heitler-London
scheme, in which it has been often calculated, is in current dis-
repute fC. Herring, Rev. Mod. Phys. 34, 631 (1962)j.Probably,
the nearest-neighbor exchange energy is in the range 0—~~ eV in
magnitude, at most.
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d th o tical branch above continuum opt. , at
f o i b h b E . (31)—( )1 —33=0 3 0 5 and b, &1.0. Small —g behavior o ac

nd b: s ) +1 (ac.) and s(q)= —1 (opt. ,

evenl s aced), for 6=, , an
and is dehned as t e poin w ere

E (30) of the text. The unit of energy is sag (
th o o di F i to,

spectrum joins
b d) and the unit wave vector is sg, e correrelative to thebottomof the Uan an e

6=0.3, q (keg)
Ace,. (10 'est)
As&,vi. (eJ t)

6=0.5, q (ki;g)
%co . (10 's~t)
A „t,. (egg)

6)1.0, q (kp t)
6 'Bar (10 ')
a-'ACV „pg.

0.05
0.72
0.618
0.05
0.138
1.01

0.10
0.199
2.02

0.06
1.01
0.626

0.08
0.351
1.03

0.15
0.445
2.04

0.07
1.35
0.635

0.11
0.648
1.05

0.20
0.785
2.07

0.08
1.73
0.645

0.14
1.013
1.08

0,25
1.213
2.11

0.09
2.13
0.656

0.17
1.423
1.11

0.30
1.722
2.16

0.10
2.54
0.668

0.20
1.841
1.15

0.35
2.303
2.22

0.11
2.94
0.680

0.22
2.094
1.17

0.40
2.943
2.29

0.12
3.32
0.694

0.23
2.203
1.19

0.50
4.332
2.45

0.13
3.65
0.708

0.26
2.379
1.24

0.60
5.681
2.66

0.14
3.86
0.723

0.27
2.340
1,25

0.70
6.532
2.91

0.15
3.86
0.738

0.29
1.657
1.29

0.75
6.250
3.06

0
Vv' th t there is one point on whicu the present

results a ree with conventional spin-wave t eory
the Heisenberg Hamiltonian. ue o e
bolic behavior o ef th lowest acoustic branch, the

netic s ecific heat, and the deviations from satura-

temperature. ~ e~~The prediction of the original ban
lawtheories of a awf T~ l w near T=O, or worse, o a aw

su ose theex ( 6/kT), i—s not confirmed, and we suppose e
ne lect of the collective spin-discrepancy caused by neg ec

wave mo csin ed
'

the earlier theories. ) On the ot er an,
h ve already mentioned, the long-wave engas we ave area y

ctl ex lainedacoustic ranet' b nch results were later correc y exp
b Herring and Kittel4 and others') on the basis of

very general considerations. vie supp
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iu(0) = (5/D)m", 6)1.
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and umklapp would have its 6rst effect on the quartic
terms. Moreover, as they are very tedious to calculate
explicitly, we do not carry out the analytic expansion
beyond the eBective mass approximation given above.

5.0—

2,5 —.

FERROMAGNETISM OR ANTIFERROMAGNETISMP

For 6&1, all electrons have spin down. This is an
eigenstate of the Hamiltonian of Eq. (11) as well as of
the kinetic energy and exchange interactions separately.
According to the criterion of "spin-wave stability" this
is, moreover, the true ground state, ' since all the spin-
wave energies we have calculated are positive. How-
ever, let us examine this more closely.

Recently, in attempting to explain the antiferro-
~agnetism of chromium by the band theory, Tachiki
and Nagamiya' found that when the Fermi sphere
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Fn. 4. Spectra for 6=1.0, 0.5, 0.1, plotted on same scale
for comparison.
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FIG. 3. Same as Fig. 2, but 6=0.9 for comparison.

more or less half-6lled the Brillouin zone, and when the
coupling was strong enough to produce localized
magnetic moments (i.e., when criterion (17) is obeyed),
that these would be antiferromagnetically ordered
rather than parallel as in ferromagnetism. ""This may

' "Spin-wave stability" is a necessary, but Not slgcserst, criterion
for ferromagnetism. Cf. D. Mattis, Phys. Rev. 130, 76 (1963).

'e M. Tachiki and T. Nagamiya, Phys. Letters 3, 214 (1963).
The very interesting related problem of spin waves in a band-
theoretic antiferromagnetic remains to be studied."It would be confusing if the definition of "ferromagnetism"
was "same magnetic structure as iron, " because when iron is in
its y phase (face-centered cubic) the magnetic moments are
alteferromagrtetecatty disposed (see Ref. 12). The problems this
poses in semantics are enormous, but the agreement between
theory (Ref. 10, 13) and experiment (Ref. 12) is pleasing.

'~S. C. Abrahams, L. Guttman, and J. S. Kasper, Phys. Rev.
127, 2052 (1962).Assuming that iron, with 2.2 tse/atom, has a half-
filled B.Z. , the antiferromagnetism is not surprising. Conversely,
all crystallographic phases of pure nickel (0.6 pe/atom) should
remain ferromagnetic, as k~ is sufBciently small that umklapp
may be neglected. But a chemical shift downward of the Fermi
level in Ni might cause that substance to become antiferromagnetic
g,iso.

I.O—
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E
~ 0.5

0 0.4 0.8
I

l.2

Fzo. 5, Cutoff wave vector q, as function of coupling constant
A. Upper curve is maximum wave vector at which solutions of
Eq. (28) exist. The lower curve is wave vector at which acoustic
branch enters the continuum, and at approximately the same
value the optical branch also crosses into the continuum. -

"D.Mattis and W. Donath, Phys. Rev. 128, 1618 (1962).

be seen in the present theory also. If the Fermi surface
was neither small nor spherical, and umklapp became
important, then the calculated spin-wave spectrum
obtained from Eq. (24) might well become negative
and achieve its minimum value for some qor 0. The
ground state would then be, to some approximation,
a spiral antiferromagnetic structure of spiral pitch qo.
That is, once the coupling constant became strong
enough to produce some sort of magnetism, which

magnetic structure might be stablest wouM depend on
the particular Fermi surface and crystal structure. ""
This is quite analogous to what we once discovered in
connection with the indirect exchange theory": ferro-
magnetism for small k p, antiferrorn. agnetic spiral
configurations for large kp. In the present case, with the
hole-electron syirunetry, if the bands are almost empty
or almost full, there can occur ferromagnetism, and in
half-61led bands, most likely antiferromagnetism, with
umklapp playing a major role (and consequently, the
dependence on crystal structure).
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In any event, the effective mass approximation used
in the present calculations is most accurate when there
is a small number of electrons (or holes), and in that
case also, umklapp is of no consequence. But, as these
are assumptions compatible with the existence of ferro-
magnetism, according to the previous arguments, they
are therefore quite proper in calculating the properties
of a ferromagnet (but not of an antiferromagnet), and
are self-consistent.
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Temperature Dependence of the Exchange Stiffness in Ferrimagnets*
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The temperature dependence of magnon frequencies is studied for ferrimagnets. The magnon frequency
increases for the acoustical branch and decreases for the optical branch, both in low-temperature regions.
Temperature variations obey the T'" law. In high-temperature regions, both acoustical- and optical-magnon
frequencies decrease with increasing temperature. The sign change of the temperature variation of acoustical-
magnon frequencies is due to optical-magnon populations which increase with temperature. The sign change
occurs at a lower temperature for a magnon with a shorter wavelength. This feature is in accordance with
Riste s neutron-scattering experiments performed with magnetites. The second-order shift has proved to be
small at low temperatures. In the course of its calculation, we give a simple expression for the matrix element
of a magnon interaction. This bears a close relationship to Dyson s dynamical interaction in ferromagnets.

I. INTRODUCTION
' 'N ferromagnets, the spin-wave frequency (the excita-

tion energy of magnons in units of h) decreases with
increasing temperature. The decrease is proportional
to T'~' at low temperatures. Here T is the temperature
in 'K. This feature has been given implicitly in the work
of Dyson. ' Oguchi' obtained the same result on the
basis of the Holstein-Primakoff formalism. Keffer and
Loudon' gave the expression explicitly for temperature-
dependent frequencies on a physical basis. In antiferro-
magnets" magnon frequencies also decrease with in-
creasing temperature, where the decrease is proportional
to T4 in the absence of anisotropy energies. Recent
experiments of the inelastic scattering of neutrons by
magnons have made it possible to observe directly the
temperature dependence of magnon frequencies. 4 ~
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University, Osaka, Japan; Kettering Foundation Fellow of
Magnetism.

$ Present address: Centre d'Etudes Nucleaires de Saclay,
Gif-sur- Yvette, Seine-et-Oise, France.

~ F. J. Dyson, Phys. Rev. 102, 1217 1230 (1956).
s T. Oguchi, Phys. Rev. 117, 117 (1960).
3F. Keffer and R. Loudon, J. Appl. Phys. 32, 2S-7S (1961);

see also J. Kanamori and M. Tachiki, J. Phys. Soc. Japan 17,
1384 (1962).

s T. Riste and A. Wanic, J. Phys. Chem. Solids 17, 318 (1961)
(antiferromagnetism); M. Hatherly et at. (to be published) (ferro-
magnetism).

s H. Kaplan, Phys. Rev. 86, 121 (1952);see also P. W. Anderson,
lecture given at University of Tokyo, 1954 (unpublished).

We shall report a notable feature of the temperature
dependence of magnon frequencies in ferrimagnets. In
ferrimagnets, the magnon spectrum consists of two
branches, analogous to the acoustical and optical
branches in the vibrational spectrum of diatomic crys-
tals. Long-wavelength magnons in the acoustical branch
are similar in their character to that of ferromagnets';
the dispersion relation is of the form ek ——Dk . Here ~j, is
an energy of the magnon with a wave vector k. How-
ever, the temperature dependence of the exchctrtge stQF
mess D in ferrimagnets is opposite in sign to that in
ferromagnets at low temperatures; D increases as T"'.
This is caused by the thermal excitation of acoustical
magnons. The thermal excitation of optical magnons has
the effect of making D decrease more effectively; hence
the exchange stiffness decreases sufficiently at high tem-
perature to create a considerable population of optical
magnons. Due to competing effects of thermal-acoustical
and optical magnons, the temperature dependence of D
Is rather weak up to a certain high temperature. Magnon
frequencies in the optical branch decrease as T'I' due
to thermal-acoustical magnons at low temperatures.
Thermal-optical magnons work to make optical-magnon
frequencies increase. But this effect is weak. Thus
optical-magnon frequencies decrease rather rapidly with
increasing temperature.

~ For Spin-wave spectrum of magnetites, see T. A. Kaplan,
Phys. Rev. 109, 782 {1958);F. J. Milford and M. L. Glasser,
Phys. Letters 2, 248 (1962).








