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tunneling exponent, we found the observed tunneling
current to be about 10—40 times larger than that pre-
dicted by Kane's expression. This discrepancy seems too
large to be accounted for by the uncertainty in the
magnitude of the electron-phonon coupling constant.

It should be emphasized that the good quantitative
agreement between the temperature dependence of the
tunneling current calculated from Kane's theory of in-
direct tunneling and the experimental data does not
prove the correctness of Kane's expression. It merely
indicates that the coeKcient of Eg'"m*'t'jF which
appears in the exponent is at least approximately cor-
rect. Since our comparison is insensitive to the shape
of the I-V characteristic, we cannot offer any evidence

relating to the structure of the D function. Furthermore,
no evidence for the asymmetry of the tunneling ex-
ponent with respect to forward and reverse current Qow
was observed.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the help of M. Cuevas,
G. Rochlin, and L. Silverman with the experimental
and computational work. We are also pleased to
acknowledge the general support of the Institute for the
Study of Metals by the U. S. Atomic Energy Commis-
sion and of the Low Temperature Laboratory of the
University of Chicago by the National Science Founda-
tion which made this work possible.

PHYSICAL REVIEW VOLUME 132, NUMBER 6 15 DECEMBER 1963

Microwave Conductivity of Semiconductors in the Presence of High
Steady Electric Fields

B. R. NAG AND P. DAS

Institnte of Radio Physics and Electronics, University of Calcntta, Calcntta, India
(Received 19 July 1963)

The distribution function of carriers in a semiconductor when subjected to a small microwave field and a
high steady electric field is derived, considering both the acoustic and optical phonon scattering. Expressions
for microwave conductivity and change in apparent dielectric constant are obtained from the distribution
function. It is shown by numerical calculations that the conductivity evaluated from these expressions agree
closely with the experimental value. The calculated value of the change in apparent dielectric constant,
however, is found to be of the same order as the experimental value, but the agreement is poorer than that
for the conductivity.

I. INTRODUCTION

HE microwave conductivity of semiconductors in
the presence of high steady electric fields has been

studied by several workers. In the first experiments re-
ported by Arthur et at.' the attenuation of a microwave
signal produced by the sample of known dimensions in
the presence of a steady field was measured. The
attenuation so produced was assumed to be proportional
to the slope mobility and the experimental data were
used to derive the high field conductivity. This as-
sumption is apparently justified if the product of the
microwave frequency and the momentum relaxation
time is negligible compared to unity, as was the case in
these experiments.

Later experiments carried out by Gibson et ul. ,
' how-

ever, show that the microwave mobility in the presence
of high steady fields is riot the same as the slope mobility
but is intermediate between the slope mobility and the
dc mobility. This result that the microwave mobility is
different from the slope mobility even when the product

J. B.Arthur, A. F. Gibson, and J. W. Granville, J. Electron. 2
145 (1956).

s A. F. Gibson, J. W. Granville, and E. G. S. Paige, J. Phys.
Chem. Solids 19, 198 (1960.

of microwave frequency and momentum relaxation time
is much less than unity may be explained when the
mobility expressions applicable to the problem are
properly developed. Such expressions have been derived
by Paranjape' and also by Gibson et ul.'

It has been assumed that the carrier density is high
enough to produce a Maxwellian energy distribution
due to predominant interelectronic collisions. But, the
carrier temperature which is determined by the energy
and momentum balance conditions, is higher than the
temperature of the lattice. It is then shown that the
perturbation in the carrier temperature produced by the
microwave signal is not in phase with the signal, but
leads it. The lead angle is determined by the applied
steady field and the product of the microwave frequency
and the energy relaxation time, rather than the mo-
mentum relaxation time. Since this product is compara-
ble to unity at the experimental frequencies, the per-
turbed temperature of the carriers differs appreciably in
phase from the microwave signal. Hence, the microwave
conductivity is much diR'erent from that derived from
the slope of the conductivity versus field curves; also, a

' l3. V. Paranjape, Phys. Rev. 122, 13"/2 (1961).
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positive change in apparent dielectric constant is
produced.

The expression for conductivity given by Paranjape
explains the experimental results qualitatively. This is
because the expression was derived assuming acoustic
phonon scattering only. However, there are other scat-
tering sources, namely, optical phonons, impurity
centers and intervalley phonons. It has been shown by
Conwell, Stratton, ' and Yamashita and Inoue' that dc
hot electron conductivity curves for room temperatures
may be explained if, in addition to acoustic phonon
scattermg, the eGect of optical phonon scattering only is
considered. The effects of impurity scattering or inter-
valley phonon scattering are not of appreciable im-
portance. It is, therefore, expected that a theory con-
sidering the eRect of optical phonons, in addition to
acoustic phonons, should give quantitative fit with
experiments. In the theory given by Gibson et al. ,' the
eRect of optical phonon scattering has been considered
and a relatively better agreement with experiments was
observed. However, like Paranjape, ' these authors also
assumed predominant interelectronic scattering though
the conditions of the sample did not ensure this. An
alternative approach to the development of the theory
when predominant e-e scattering cannot be assumed"
is to solve the Boltzmann equation assuming predomi-
nant acoustic and optical phonon scattering. The con-
ductivity may then be obtained using this distribution
function. This is the method used by Yamashita and
Watanabe~ for analysing the dc hot electron conducti-
vity characteristics. The purpose of this paper is to ana-
lyse the microwave conductivity of semiconductors in
the presence of high steady electric fields following this
procedure.

In Sec. II equations giving the energy distribution
function of the carriers are first derived, taking into
account the eRect of both acoustic and optical phonon
scattering. The perturbation in the distribution function
produced by the microwave field is obtained in Sec. III.
In Sec. IV the expressions for the conductivity obtained
from this distribution function are given. The numerical
results obtained for the experimental condition of
Gibson et al.' are discussed in Sec. V.

II. THE ENERGY DISTRIBUTION FUNCTION
FOR THE CARRIERS

Let f(K) denote the distribution function for the
carriers having the wave vector E at a time t. The
distribution function is assumed to depend on t because
of the presence of the microwave field. The distribution

~ E. M. Conwell, J. Phys. Chem. Solids 8, 234 (1959).
' R. Stratton, J. Electron. Control 8, 157 (1958).' J. Yamashita and K. Inoue, J. Phys. Chems. Solids 12, j.

(1960).' J. Yamashita and M. Watanabe, Progr. Theoret. Phys.
(Kyoto) 12, 443 (1954).

s R. Stratton, Proc. Roy. Soc. (London) A242, 157 (1958).

function f(K) satisfies the equation

Bf(K) Bf(K) Bf(K)

Field Bt g, ii Bt

Bf(K) BJ(K)

op

(3)

where Bf(K)/Bt ~
„and Bf(K)/Bt ~,~ represent, respec-

tively, the change in the distribution function due to the
interaction of the electrons with acoustic and optical
modes of lattice vibrations. The eRect of impurity and
e-e scattering is assumed to be negligible. The terms
Bf(K)/Bt ~

«and Bf(K)/Bt ~,i, may be written as'

Bf(K) A B'f (E' ) Bf
E +( +2E

[

Bt (E)'I' BE' (kT l BE

2E E
+ f K* g-, (&)

kT 2mc

Bf(K) 8 t B'f Bf
oooo(ee+1)~ E + +2(ee—1)

Bt .p Stop(E)'" BE' BE

( Bf E
Xi E +f K. (ee+1)g—, (5)

4 BE AQ) p

where A =Sec'/3 (rrk T)'I'li S=hoop/k T, 8=9/16
X (AD'/c') (Itsy/2mkT) (1/ee 1), c=velocity —of sound
in the solid, D= coupling constant between conduction
electron and optical mode of vibration, C=coupling
constant between conduction electron and acoustical
mode of vibration, i'= first nonvanishing reciprocal
vector of the lattice, keep=characteristic energy of an
optical phonon, E=energy of a carrier=k' K'2/m, p,
=low-field acoustical mobility, m=effective mass of
the conduction electron, assumed to be isotropic.

The term Bf(K)/Btl „written above is obtained as-
suming that the average energy of an electron is much
greater than the characteristic optical phonon energy in
the solid. This assumption is valid in the field range
higher than 1 kV/cm and at lattice temperatures, at
which the experiments have been conducted.

Solution to (1) is obtained assuming that f(K) may
be expanded as

f(K)=f(E)+K.g(E), (2)

where E is the component of the wave vector in the
direction of the applied field F, and f(E) and g(E) are
functions of only the energy, E, of the carriers. The total
number of electrons is obtained from f(E), whereas the
current is obtained from g(E). )The functions f(E) and

g (E) are written henceforward as f and g, respectively,
for the sake of simplicity. )

In the case of nonpolar solids like Ge and Si at room
temperature, the term Bf(K)/Bt ~ o,ii may be written as
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B'f E B 2 8
+l +2 + f+

BE' kkT BE kT 2A
ko)p(es+1)

B'f Bf Bf
,+ +2("—1)l E +f IBE' BE k BE )

The term Bf(K)/Bt l
F' ]o may be written as

f(K) eF Bf Bg=—K +g+ 'E
B3 p' ig 5 BE BE

One obtains from (1), (3), (4), (5), and (6)

(6)

gg
———ek/m 2mc'/AQ.

(E)/. /P

dfp dfg) 2mc po

+ l
1+j . (15)

dE dE) AQ (E)'/'
Putting

r, = (kT)'"/A, (8/2A) (es+ 1)S=q

r = 2mc'/AQ(kT)'/' (8/A ) (es—1)= r,
p (3s/16c )p~ Fp (p/Q)+(8/2A) (es+1)5 p

E/kT=s',

where

d dfp
(s'+p's) + (2s'+2rs') fp

——0,
ds ds

(16)2mc' 1 eF Bf Bg+-
AQ (E)'" k BE Bt

(8)

'p/Q—
l
s'+ +qs + (2s'+2rs') fg

ds 4 1+j(/or /s) ds(8/A) (2mcp/k~p) (es+. 1)

Bf eF-Bgy
— and eliminating gp and gz from (12) through (15) one

(7) obtains
A (E)'" Bt /rt E BE~

Since the microwave 6eld is in the same direction as
the dc 6eld the total 6eld F may be written as

F=ReFp(1+Re'"'),

2p d(dfp
=j 4/or, s f& l

s ——. —(17)
Q dsk ds

Equation (16) is the same as that obtained for the
steady field case. '

The functional form of the solution of (16) is

where Ii 0= the steady 6eld, XFO= the amplitude of the
microwave field, and co= the microwave frequency. The
effect of the microwave 6eld would be to perturb both
f and g. Since X is a small quantity, this perturbation
may be considered to be small and f and g may be
written as

fp (s'+p')"——'—"exp( —s'). (18)

The perturbation in the energy distribution function f&

is, however, given by Eq. (17).(10)f= f,+hf, e&

g =gp+~g~e'"
III. THE PERTURBATION IN THE DISTRIBUTION

FUNCTION BY THE MICROWAVE FIELDOn substituting (10) and (11) in (7) and (8), and col-
lecting the 6rst order terms only, one obtains

d dfp E
+ fp

dE dE kT

d BkT dfpy
esy1)S E I+ (es 1)(Efp)

dE 2A dE) A

2 ePO d
(E"'go),

3AS dE

1 dfp
~ Po

(E)'/' dE
gp ———ek/m 2mc'/AQ.

d dfy E
E2 + f

dE dE kT

d BkT ( df, 8
+ (e'+1)~l E +—("—1)(Ef )

dE 2A k dE A

2 eIip d j~(E)1/2
EE'"(a+go)7+ fi (14)

3AS dE A

z'+2rs')
fp= exp

2p'
(19)

The quantities symbolized by r, and v. may be
identified at this stage, respectively, with the energy and
momentum relaxation time. Their values for germanium
are found to be about 2.24)&10 ' and 2.50)&10—"sec.
The value of ore, and cv7. at a frequency of 2.18&&10"
rad/sec (the experimental frequency of Gibson et at. )
are, respectively, 48.6 and 0.056. Evidently then, the
effect of cur on f~ is negligible for all energies except

(12) for very small values. Neglect of this term in Eq. (17)
will, therefore, introduce errors only for low values of E.
However, since f& is very near zero in this range of

(13) energy the ultimate result will be very little in error if
&or /s is neglected in Eq. (17).

It may be noted, further, that for values of the steady
field in the range of 1 kV/cm to 4kV/cm, the value of p
is of the order of 30—400. Hence, one may reasonably
introduce the approximation p/Q))z', since Q is of the
order of 2. With this approximation Eq. (18) may be
reduced to
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Also, Eq. (17) reduces to

d dfy—sp' + (2s'+2rs') fg
GS

lo—

2P d dfp)
=j4 ~,s'f, ——s— ~. (20)

0 ds ds f

The perturbation in the distribution function due to
microwaves may, hence, be obtained from (20) in the
presence of steady fields in the range of 1—4 kV/cm.

It has not been possible to obtain an analytical solu-
tion of Eq. (20). In order to study the nature of the
function f~, numerical solution of (20) was obtained by
a digital computer retaining only the terms due to
acoustic phonon scattering and for a value of cur, /(2p)'~4
=12.5, corresponding to Fp=2 kV/cm. The plots of f~
so obtained are shown in Fig. 1. Because of the presence
of jr' in Eq. (20) evidently f& consists of both a real and
an imaginary component which are shown separately in
the figure. It may be mentioned that the real component
gives the in phase component of microwave current,
while the imaginary part gives the out of phase com-
ponent of current.

It is of interest to note here that the perturbation in
the distribution function due to the microwave field is
of oscillatory nature, which means an increased concen-
tration of the carriers at certain controllable energy
levels. It is conjectured that this concentration may be
made more intense by enhancing the strength of the
microwave field, and an application of the microwave
hot electron property of semiconductors to amplification
by arranging for the interchange of energy with the
desired signal may be realized. However, in the present
problem, these distribution function curves could not be
further utilized. This was due to the fact that the
calculation of the final current involves an integration
of these curves, and due to their oscillatory nature, the
final accuracy obtained in numerical integration was
rather poor. Hence, the microwave current was calcu-
lated using a diGerent procedure outlined in the next
section.

IV. MICROWAVE CONDUCTIVITY AND CHANGE
IN DIELECTRIC CONSTANT

The distribution function giving the number of
carriers may be written as

f=&ufo+&(fx +j f~')j (21)

where f&, and f&; represent respectively the real and
imaginary components of f& and X is the normalization
constant.

The normalization constant X is given by

1V=Xp/$1+X(m„+ je;)), (22)

where Ep is the normalization constant in the absence of
the microwave field and e, and n; represent, respec-

\

\
I

V

FtG. 1. Perturbation in the distribution function of carriers due
to the microwave Geld. Solid line: real part of the function;
dashed line: imaginary part of the function.

tively, the integrals

and

where

e„=— fg,s'ds
Sp|

'0;=— fy,s ds,
Rp

(23)

(24)

Bp= fps ds. (25)

The integrals m, and m; may be evaluated directly from
Eq. (20). On integrating both sides of (20) between 0
and ~, one readily obtains

fgs'ds= 0, (26)

(afp af„af&;q+ +j I (»)
as as as &

The above expression is obtained from (15), expanding
the denominator in the binomial form and retaining
only the first term. It should be mentioned here that the
term cur /s, which was neglected while writing the
equation for f&, is retained here, since its contribution to
the out of phase component of current may be ap-

since fp, f& and their derivatives are zero at infinity.
Hence n„and m; are each equal to zero and lV is same

as Sp.
The part of the distribution function, contributing to

the current, may also be written as

ek Fo(r=( 1—j
2mkT s'k s 1
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preciable in comparison to that contributed by f&;. The where at, ao, etc. , are constants like ap.
microwave current is given by On putting (39) into (36) one also obtains for ft

eA
J=Fte'"'Np —K 'gtdKQK dK

m

mp= fps«,

and

m = (ft„s+—(4)r )ft,)«

On substituting gt from (27), one obtains

J=Fte'"'od, )1+m,/ms+ (j)m;/mpj,

where az, is the dc conductivity,

(28)

(29)

(3o)

(31)

ft= (ao+ats+aos + ' ' ') fp (40)

To evaluate ao, a&, ao. etc., one may convert Eq. (31)
into a set of linear simultaneous algebraic equations.
This is done by multiplying both sides of Eq. (38) by s",
integrating between the limits 0 to ~, and varying e
from 1 to nz, if a should be the highest coefficient
chosen in (39).

The eth row of this set of simultaneous equations is
given by

m Mr. a„ 2p
P ra„I~„+j P I„+~o= (e+1)I, (41)
r=t p' rm @+1 p'Q

where

(fthm o~rm(ftr+fo))« ~ (32) sKfp«.
(42)

The microwave conductivity and change in dielectric
constant are given by

K= rl,+r, n+r+3, etc.

and
o =ad, (1+m„/mp), (33)

(Odc/tpoo) (m, /mp) . (34)

It should be noted that by varying e from 1 to ns, one
obtains from (41) m equations, whereas there are m+1
unknowns. The other required equation is obtained from
Eq. (20).

haft 2s +2rs
y(s)= +, f .«2p' (35)

The undetermined function ft may be written in terms
of y(s) as

Ir) the above expressions mo may be directly evaluated,
since fp is known. For evaluating m„and m;, the method
of momenta, used by Dykman and Tomchuk' for
solving a similar problem has been used. This is detailed
below.

Substitute

Q arI„~o 0. ——
r=O

(43)

and

tn+1 m

m, = p a&K t~rIK+ooor~ 2— aK IK,~

%=1 X=O
(44)

After evaluating the constants co, u~, etc., from the
above-mentioned set of linear algebraic equations, the
constants m„and m; of (31) and (32) are obtained from
the following equations:

ft= ao+
g

(fo) 'y(s)« fo (36)
m+1

a(K—t)HAIK o(drm(IK=O+ Q aKrIK) ~ (45)

4M' 2p ~f0)
sy(s) =j s'ftrfs

p , p'n « &

(37)

fp is as given by Eq. (19), and ao is a complex constant.
On substituting y(s) from (35), Eq. (20) is converted
into the integral equation

fir= (aor+atrS+aors +' ' ')fp

fi;= (ao~+atp+aop + ' )fo.

(46)

(47)

The above equations are derived from (31) and (32)
replacing ft„and ft; by

4a)r,
sy(s) = —j

p'

2p ( ~fo
s'f, as

~

s
p'n& «

Using Eq. (26) one writes Eq. (37) as
The subscripts r and i identify, respectively, the real

and imaginary parts of the constants.
One, thus, obtains the conductivity and change in

(38) dielectric constant using Eqs. (33), (34), (30), (44),
and (45).

y(s)=( &a+2,as+3aos+ ), (39)

I. M. Dykman and P. M. Tomchuk, Fiz. Tverd. Tela 2, 2228
(1960) f translation: Soviet Phys. —Sohd State 2, 1988 (1960)j.

Since ft is finite for all values of s, the above equation
may be solved putting

V. NUMERICAL RESULTS AND DISCUSSION

The determination of conductivity according to the
theory given in the previous section requires evaluation
of the integrals IK and solution of m+1 simultaneous
equations, if ns is the highest order of the constants
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TABLE l. Values of the constants c0, ui, etc., for predominant acoustic phonon scattering.

Cp«

G0

+oi

a&X (3.9094)-& u2X (3.9094)~
02«

asX (3.9094) ' as X (3.9094)~

a5X (3.9094) ' asX (3.9094) s

0.040950 0.043574 —0.047365 0.086709

a&X (3.9094) ' asX(39094) '

—0.074253 0.464759 0.107237 —0.216700 —0.395210 —0.295473

asX (3.9094) '
a5« +8« +9«—0.398596 —0.045964 0.019437 —0.072918 —0.2138/1 —0.028022 0.176261 0.062792 —0.043573 —0.016469

chosen. If one considers the effect of acoustic and.
optical phonons together, fs has such a form that IIr
cannot be directly integrated. One may evaluate each
of the Iz in series form or numerically. To keep numeri-
cal work to a minimum, numerical results have been
obtained considering two special cases as discussed
below.

A. Acoustic phonon scattering predominant

It is assumed that optical phonon scattering is com-
pletely absent. This is also the assumption made by
Paranjape. Hence, the results obtained from the ap-
proximation may serve as a basis of comparison be-
tween the method used by this author and that of the
present paper.

Under the above assumption, fs may be written

fo= exp( —s'/2p) .
On substituting (48) in (42) one obtains

Considering co7.

AO 0d0 O

=0.0013,
&dc &dc

he =0.219.

The value of Asr/sr', and Ae obtained from Paranjape's
formula are, respectively, 0.0013 and 0.149. The experi-
mental values are, however, 0.229 and 1.33. It is thus
observed that the results of this present analysis are
very close to those of Paranjape, though both are much
different from the experimental values.

fs ——exp( —rs'/p') .
The integral Iz may then be written as

(50)

B. Optical phonon scattering predominant

It is assumed that in the expression for fe the term
s' is negligible compared to 2rs' so that fs may be
written as

E+ii
(2p) (If+I) /4P (49)

Ao.—=0.2368 ) 3 e= 0.4311.
m=0.12X9X10 "kg,
p, =0.38 m'/v sec,

8/A = 63 (from Refs. 4, 10) .

e=1.6X10 "C,
c=5.4X10' m/sec,

S=1.333,

|Tdc

The values of hsr/sr', and he as calculated in this case
fit quite closely with the experimental values. ho./sr',
agrees to within 5%%uq of the experimental value. The
agreement in the value of A~, though better than that
obtained considering acoustic phonons only is, however,
poorer than that for hsr/sr', . It is dificult to decide at
this stage whether this is a shortcoming of the theory or
due to any experimental error.

It should be noted that in this case though 8/A has
been considered to be much larger, the effect of acoustic
phonon scattering has been partially taken into con-
sideration through the choice of p'. In dc conductivity
calculations, also, agreement with theory and experi-
ment was found with similar assumptions by Yamashita
and Inoue,

The values of the constants obtained numerically are
shown in Table I.The values of hsr/o and he calculated
using Eqs. (44) and (45) are also given at the bottom of
the table.

Neglecting ~r

~o o'dc —o =0.0029,
o'de o dc

2 &=0.336.

's J. Yamashita, Progr. Theoret. Phys. (Kyoto) 24, 357 (1960).

The values of the constant, Asr/sra, and Ae calculated
The value of m was chosen to be 9. The value of p was

for the same condition as in Case A are shown in
~ ~

of 2 kVy'cm and experimental temperature of 300'K.
Table II.The values of the different parameters of the Ge sample

were assumed to be as given below:
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TABLE II. Values of constants ao, a&, etc. , for predominant optical phonon scattering. F0= 2 kV/cm, T=300'K.

ap,

ap

aps

agX(0.7817) '"
aIr

asX(0.7817) '

a2r

as X (0.'/817) '"
a31',

a4X (0.7817)~
a4s

asX(0.781/) '" asX (0 7817) '

—0.812519 0.260418 0.241280 —0.021382

arX(0.7817) '" a X (o.7817)-4

—0.009446 0.003038 0.638935 —0.037532 —3.345988 —1.276863

a9X (o.7817) '"
a6r

0.252538 0.719359 3.487547 —0.733107
avr ave—1.278321 —0.633259

asr as'
1.524858 2.258067

ags—0.039384 —0.221570

It should be mentioned that the present analysis has
been, made with the assumptions: (i) Effective mass of
carriers is isotropic. (ii) Impurity, intervalley and e-e
scattering are negligible. (iii) For fields of or above 2

kV/cm, optical phonon scattering is predominant. (iv)
Average energy of a carrier is much larger than the
characteristic energy of optical phonons. It is, however,
found that even with these assumptions the theory
shows good agreement with experimental results which
probably indicates that the deviation from the above
assumptions is either small or of negligible importance
in the calculation of conductivity.

It may be further noted that the numerical results
given here are for a particular value of steady field.
Calculations may be extended to cover other values of

steady field and it is expected because of the general
nature of the expression that similar agreement would
be obtainable.
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