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Position-Dependent Superconductivity
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A discussion is given of several methods used in generalizing the Bardeen —Cooper —Schrieffer theory of
superconductivity to problems where position-dependence plays a key role. It is pointed out that the method
in most common use (that of Gorkov) is inappropriate for discussing the rather long-range effects on each
other (extending over distances of about 10 ' cm) ol two metals in contact. A method appropriate for de-
scribing such effects is obtained by generalizing the Nakamura theory of position-independent superconduc-
tivity. This method leads to results qualitatively similar to those obtained previously by Parmenter using
heuristic arguments. The various methods of treating position-dependent superconductivity are all different
limiting forms of a very general form of theory due to Blatt, or, in an equivalent but particle-nonconserving
form, due to Bogoliubov and Valatin. The saddle-point method of summing cluster expansions, used in both
the Blatt and Nakamura theories, is shown to be mathematically justified, in contrast to the situation with
most condensed systems.

I. INTRODUCTION paper we wish to replace the heuristic arguments by
more precise considerations. Having done this, we will

find a modification of the detailed form of the additional
term. However, this leads to no qualitative changes in
the theory. In particular, if we treat the order parameter
eel as being approximately independent of wave vector k
(as done in Refs. 8 and 9), we obtain the same form of
integrodifferential equation for co as was obtained be-
fore. The closeness of the present form of the theory to
that of Ref. 8 insures that the two forms will make
similar predictions with regard to a given situation. De-
tailed numerical calculations will not be carried out in
this paper.

The mathematical machinery necessary for carrying
out our program is available in the work of Nakamura"
and Blatt."Nakamura sought to reformulate the BCS
theory so that it would be manifestly particle-conserv-
ing. Unlike 8CS, Nakamura worked with many-electron
wave functions that are eigenfunctions of total electron
number. These wave functions are antisymmetrized
products of two-electron wave functions (the same
two-particle wave function for every pair of electrons).
This two-particle wave function is a product of a
singlet function of the spins of the two electrons times a
spatial function of the distance separating the two
electrons, the spin function being antisymmetric under
interchange of the two-electron spin coordinates. Naka-
mura showed that the problem of calculating expecta-
tion values of the many-electron Hamiltonian with
respect to such many-electron wave functions is very
similar mathematically to that of calculating the parti-
tion function in the Mayer theory of the classical im-
perfect gas."In both problems, the desired result can be
written as a so-called cluster expansion. Using the
saddle-point method" of analytically summing such

'HERE is a growing body of experimental ev-
idence' ' which suggests that a suKciently thin

61m of superconducting metal deposited on bulk normal
metal will have its superconductivity quenched by the
presence of the normal metal. Conversely, a sufficiently
thin film of normal metal such as copper apparently
can be made superconducting by being deposited on
bulk superconducting metal. In both cases, the critical
film thickness is of the order of, or somewhat less than,
the coherence distance of the superconductor. For
homogeneous soft superconductors the critical thickness
may be several thousand Angstroms. ' In an attempt
to understand these effects, the writer' has generalized
the Bardeen-Cooper-Schrieffer (BCS) theory of super-
conductivity to the case where there is position
dependence in the problem. The essential idea of the
writer was to generalize the BCS expression for the
energy density in a superconductor by adding a term
representing the center-of-mass kinetic-energy density
of the Cooper pairs. (In the BCS theory, there is no
center-of-mass motion of Cooper pairs. ) With the aid
of this additional term, the theory was able to predict
results in good qualitative agreement with experiment.
The form of this additional kinetic-energy term was
determined by heuristic arguments. In the present

' E. F. Burton, J. O. Wilhelm, and A. D. Misener, Trans. Roy.
Soc. Can. III, 28, 65 (1934); A. D. Misener and J. O. Wilhelm,
ibid. 29, 5 (1935).

'H. Meissner, Phys. Rev. 109, 686 (1958); 117, 672 (1960);
Phys. Rev. Letters 2, 458 (1959).' P. H. Smith, S. Shapiro, J. L. Miles, and J. Nicol, Phys. Rev.
Letters 6, 686 (1961).' P. Hilsch and R. Hilsch, Naturwissenschaften 48, 549 (1961);
P. Hilsch, Z. Physik 167, 511 (1962).

'A. C. Rose-Innes and B. Serin, Phys. Rev. Letters 7, 278
(1961).

'W. A. Simmons and D. H. Douglass, Phys. Rev. Letters 9,
153 {1962).

'Critical thicknesses as small as several hundred Angstro
were found by Hilsch (Ref. 4). This presumably results from
decreased coherence distance, which in turn is due to a norma
electron mean free path lowered by disorder scattering.

s R. H. Parmenter, Phys. Rev. 118, 11/5 (1960).' J. Bardeen, L. N. Cooper, and J. R. SchrieGer, Phys. Re
108, 1175 (1957).

ms ' K. Nakamura, Progr. Theoret. Phys. (Kyoto) 21., 713 (1959).
a "J.M. Blatt, Progr. Theoret. Phys. (Kyoto) 24, 851 (1960);
1- J. Australian Math. Soc. 1, 465 (1960).' J. E. Meyer and M. G. Mayer, 5tatistical Mechanics (John

Wiley & Sons, Inc. , New York, 1940), Chap. 13.
v. "M. Born and K. Fuchs, Proc. Roy. Soc. (London) A166, 391

(1938).
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series, Nakamura showed that the resultant expression
for the energy density could be made equivalent to the
BCS expression by a suitable choice of the two-electron
spatial function.

Blatt" generalized the work of Nakamura by taking
the spatial part of the two-electron wave function to be
an arbitrary function of the positions of the two
electrons, rather than simply a function of the distance
between the two electrons. This arbitrariness is,
of course, restricted by the requirement that the
two-electron wave function be antisymmetric under
interchange of electronic coordinates. Thus, with the
spin portion of the wave function being antisymmetric
under interchange of the two spin coordinates (i.e., a
singlet state), the spatial part must be symmetric under
interchange of the two-electron position coordinates.
Like Nakamura, Blatt took his many-electron wave
function to be an antisymmetrized product of these
two-electron wave functions (the same function of
position and spin coordinates of the two particles for
every pair of electrons). Such many-electron wave
functions are eigenfunctions of total electron number.
The expectation value of the many-electron Hamil-
tonian with respect to this many-electron wave function
can be written as a series which is analogous to a cluster
expansion. Blatt also used the saddle-point method of
analytically summing such series to get an expression
for the energy density. This expression properly goes to
the BCS expression for the energy density in the limit
where there is no position dependence left in the
problem.

Invoking periodic boundary conditions, we may
expand the spatial part of the Blatt two-electron wave
function as a double Fourier series, the coefficients of
which are fis . The BCS case corresponds to fjs
= fqlq, i, , i.e., f is diagonal in k, —k . In addition, there
are three other limiting cases of special interest. The
first case corresponds to f being nearly diagonal in k,—k' in the sense that all off-diagonal elements of f
are much smaller than the diagonal elements. The
second case corresponds to f being nearly diagonal in
a different sense; namely that f be nonvanishing only
for very small values of (k+k'), the center-of-mass
wave vector of the electron pair. The third case corre-
sponds to f being Hermitian in k, —k' so that f may
be made diagonal by a suitable unitary transformation.

The first to these three cases is appropriate for
treating deviations from position independence by
means of perturbation theory. Blatt made use of this
case for discussing the Meissner effect in a gauge-
invariant manner. The second case is to be discussed
in this paper. It is the appropriate method for under-
standing the rather long-range effects of normal metals
on superconducting metals, and vice versa. The third
case is equivalent to a generalization of the usual
Hartree-Fock method. A set of orthonormal one-
electron orbitals is chosen. By pairing each orbital with
its time-reversed mate, one can set up a many-electron

wave function similar to the BCS ground-state wave
function. By minimizing the expectation value of the
many-electron Hamiltonian with respect to this
many-electron wave function, one finds equations for
the one-electron set of orbitals which are self-consistent;
i.e., those which are solutions to the one-electron
Schrodinger equation containing the effective field due
to all the electrons except the one occupying the given
orbital. Like the Hartree-Fock method, there is a
contribution to this effective field resulting from correla-
tion between parallel-spin electrons (the exchange field).
Unlike the Hartree-Fock method, there is also a contri-
bution to the effective field resulting from correlation
between antiparallel-spin electrons.

The particle-nonconserving analog of this third case
has been developed by Gorkov, " who introduced a
version using one-electron Green's functions. It appears
dificult, if not impossible, to interpret the experimental
results mentioned before in terms of the picture
represented by this third case. The essential difhculty
lies in the fact that appreciable position dependence of
the effective self-consistent potential will be restricted
to regions lying within a Debye screening length

( 10 ' cm) of an interface between two different

metals. The modification of the one-electron wave
functions near the Fermi level by this effective field will

be restricted to regions lying within a Fermi wavelength

( i0 " cm) of the interface. It is only over such

regions that the perturbing electric fields appearing in
the self-consistent Hamiltonians for the various one-

electron orbitals are large enough to appreciably modify
the probability density of the orbitals, despite the fact
that there is correlation between antiparallel-spiri
electrons extending over the Pippard coherence distance

$s, orders of magnitude larger than the screening length
or the Fermi wavelength. The magnetic analog of this
is the screening out of a, magnetic field within the
penetration depth X, which may be much less than $s.

The small Fermi wavelength in a metal is directly
attributable to the relatively large kinetic energies
associated with conduction electrons in a metal. The
larger the kinetic energy of an electron, the larger must

be the electric field to appreciably modify the electron's

trajectory. "
"L. P. Gorkov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958)

Ltranslation: Soviet Phys. —JETP 7, 505 (1958)j.
"Several recent calculations using the Gorkov method Le.g.,

P. G. de Gennes and E. Guyon, Phys. Letters 3, 168 (1963)j
appear to obtain reasonable agreement with experiments on
superposed Alms of superconductors and normal metals. This
agreement seems to be reached at the expense of self-consistency
of the calculations; i.e., the one-electron wave functions which

upon time-reversal pairing give rise to the position-dependent
pairing potential are different from those wave functions which
are eigenfunctions of the one-electron Hamiltonian containing
this same pairing potential. The negligible long-range effect of
the pairing potential on the one-electron wave functions is con-
sistent with the fact that the static long-wavelength longitudinal
dielectric constant is indifferent to the presence or absence of the
superconducting phase in a superconductive metal )see, e.g.,
R. E. Prange, Phys. Rev. 129, 2495 (1963)g.
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In contrast, if we allow the electric field to modify the
center-of-mass motion of the various Cooper pairs
(rather than the motion of individual electrons), we
have the possibility of position dependence extending
much farther into the metal. Because of the very small
kinetic energy (possibly even negative) of the Cooper
pairs, minute electric fields can appreciably modify the
probability density of the pair wave functions. In effect,
we have a de Broglie wavelength for pairs which is
much larger than the Fermi wavelength of the electrons.
It should be noted that there is no a priori reason that
this de Broglie wavelength be equal to the Pippard
coherence distance. The discussion of the present
paragraph corresponds to the second of our three cases.

A particle-nonconserving generalization of the Gorkov
theory (and thus also of our third case) is due to
Bogoliubov and Valatin. "The additional generality is
obtained by constructing the many-electron generalized
Hartree-Fock wave function from paired single ferrrtiort-
orbitals, rather than single electrort o-rbitals. (As long
as we restrict ourselves to the case of zero current and
zero magnetic Geld, as we are doing in this paper,
it is appropriate to pair time-reversed single-fermion
orbitals. ) The use of single-fermion orbitals (represent-
ing part of the time an electron, part of the time a hole)
rather than simply single-electron orbitals allows the
Bogoliubov-Valatin formulation to be as general as
that of Blatt, a fact recently pointed out by Baranger. "
By the same token, both formulations appear to be
equally dificult to solve. As has already been discussed,
the specialization to one-electron orbitals is too restric-
tive to obtain long-range effects. The more general
single-fermion approach does allow the possibility of
long-range effects, since a fermion built out of electrons
and holes near the Fermi level may have a much smaller
kinetic energy than that of an electron near the Fermi
level (due to cancellation of electron and hole kinetic
energies). The Gorkov formulation can be made
equivalent to that of Bogoliubov-Valatin only by
introducing a more general form of single-particle
kinetic-energy operator than is conventionally used.

Henceforth, we will deal with the second of the three
limiting cases of the Blatt theory. Rather than attempt-
ing to analyze this second case in detail by making the
appropriate specialization of the Blatt theory, we shall
choose the alternative of making the appropriate
generalization of the Nakamura theory. Such a choice
leads to greater simplicity of treatment and ease of
understanding. In carrying through the analysis, we
will take pains to demonstrate the applicability of the
saddle-point method of summing cluster expansions, "
the reason being that the method is usually thought to
be inapplicable to a corldeesed system, and a super-

"N. N. Bogoliubov, Usp. Fiz. Nauk 67, 549 (1959) )transla-
tion: Soviet Phys. —Usp. 2, 236 (1959)j. J. G. Valatin, Phys.
Rev. 122, 1012 (1961);J. G. Valatin, in Lectlres em Theoretical
Physi'cs, edited by W. E. Brittin, B. W. Downs, and J. Downs
(Interscience Publishers, Inc. , New York, 1961), Vol. IV.

"M. Baranger, Phys. Rev. 130, 1244 (1963).

conductor is certainly a condensed electron system.
Neither Nakamura nor Blatt gave su%cient attention
to this point.

II. THEORY

In the BCS theory of superconductivity, the ground-
state wave function is

+s' II[——(1 hk)—'t'+hk't'ckt*c kt+ J—@0

Co is the vacuum-state wave function. The c~'s are the
usual electron creation and destruction operators. The
parameters hI, lie in the range 0&~hA, ~&1. This ground-
state wave function does not characterize a state of
fixed number of electrons. That portion of +0' which
represents the case of precisely 2Ã electrons being
present is given by"

This is equivalent to an antisymmetrized product of X
two-electron wave functions (the same two-electron
wave function for each of the N pairs of electrons).
Thus, we choose a many-electron wave of this type for
our ground state, i.e.,

4s ——Q (—1)&P(x (1,2)y(3 4) )t(21'—1, 21')), (3)

P being the permutation operator (of parity p) working
on the 2Ã electronic coordinates, each coordinate
including position r and spin 0-. Corresponding to the
fact that opposite spin electrons appear together in

(1) and (2), the two-electron wave function y must be
a singlet, i.e.,

x(1 2) L+(+&)P(+s) P(+&)cr(os)j4'(r& rs) (4)
v2

ct and P being the usual spin functions. The spatial
orbital f must be symmetric under interchange of
I'y and x2.

We wish to calculate the expectation value, with
respect to 4'0, of the many-electron Hamiltonian

.2
'b

ps/2rrt representing the kinetic energy of the ith
electron (or, in the effective-mass approximation, the

' Here we are making the assumption that hI, &1.Depending on
the detailed form of the electron-electron interaction, this may
or may not be the case. Certainly h& —+ 1 as h moves deep inside
the Fermi sphere in reciprocal space. For convenience, we shall
continue to treat h& as though it fails to reach unity. An alternative
procedure is to redefine the vacuum state to include those electrons
for which h&=1. In any case, the final results are independent of
what is assumed for hg, .
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Bloch energy), and P;; representing the potential energy
of interaction between the ith and jth electrons.
Nakamura has proved that this expectation value

Let us now consider p(ri, r2) as a function of

R» ——-', (r,+r2),
(14)

lVo = (No, &+2)/(Vp, +o)

can be written in the form"

Wo=Z'h( .ml )g bl"'/ml!y

Xp' g bl"'/ml! (7)

8( ml ) =p ml(ti+vl)+ p mimi vll.

where

bi=i '(—1)' '
lit (ri, r2)f(r2, r3) p(r2l, ri)d'r",

tl ——l—'(—1)' 'bl ' p(r2, r3)p(r4, r3) lit (r21,ri)

the center-of-mass position of the two electrons, and
the interelectronic distance. Thus we write f(R12112),
although it must be understood that f is not the same
function of R12 and r12 that it was of ri and r2. (Note that
p must be an even function of r12, since p is symmetric
under interchange of ri and r2.) The basic assumption
of the present paper is that P(R...r,;) is a very slowly
varying function of R;;. (The validity of this assumption
will be checked in Sec. III.) Specifically, with respect to
the clusters

4(R12,r»)p(R23 r23) ' ' '4'(R21, 1,1'21,1)

appearing in the integrals de6ning bg, t~, and e~, we
assume that the 2l distinct R, ;+1 may all be replaced
by the center-of-mass coordinate of the cluster,

2l

R=(2l)—' Q r, ,
%=1

X2 (P4'/2™)0'(ri r2)4'(r3 r4) ' '

Xllt'(r2l —1 r21)lE r

X 2 Q $ 'lf(rl, r2)f(r3, r4) ' ' '$(r21—1, r2l)d &

v =l 'I' '(—1)'+'b 'b 4(rir2)4(r2r3) ".
X4'(r21 rl)2 Q 413 j'4 (rl' r2')$('r2' r3') ' ' '

Xf(121')ll')lpy 'd3r

vi= 1 '(—1)' 'bl '
1t (r2,r3)p(r4, r3) f(r21,ri)

The major contribution to these integrals will come
from those regions of configuration space where all 2l
electrons lie close to one another, since P(R;;,r;;) and

(10) @;;are presumed to be appreciable in size only when r,;
is not large. Thus, R;; will not be very diferent from R,
and the slowness of the variation of P(R,;,r,;) with R;;
will allow the latter to be replaced by R. In a similar
fashion, with respect to the two clusters appearing in
the integral de6ning vll. , we assume that the R;; may
all be replaced by the center-of-mass coordinate of the
2(l+f') electrons composing the two clusters.

For the purposes of the present paper, P;; may be
assumed independent of the center-of-mass coordinate
R 3.. It does, however, depend on both the position and
velocity of relative motion of the two electrons. We
shall Fourier-expand P and f with respect to r;, i.e.,

)Note: Since magnetic fields are of no concern in the
present paper, f has been assumed to be a real function,
i.e., not complex. A crystal of unit volume has been
assumed. ]The integrals appearing in bl, tl, vl, and vli
are the so-called cluster integrals, while the sums
appearing in (7) and (8) are cluster expansions. Ql
and gl represent sums and products, respectively, over
all positive integers 1, there being a specified non-nega-
tive integer ml associated with each value of l. p
represents a sum over all possible ways of choosing the
set of numbers m~ consistent with the restraint

lm) ——T.

P(R,r 1)=Q f2(R)exp(3k r;;),

We obtain

$ —f
—1( 1)l 1 d3g Q f2l— (18)

—2( 1)l—1$ —1 d3R Q f 2il—1l

X L (l34'0'/2m) f2'+ t (fl'/8m) (Qll fi)'] (19)

Vqq = exp( 2k r;;)l—tl;; exp(+2k' r;;)d r,;. (17)

' Nakamura's proof of this result is independent of the func-
tional form of p(r1,r2). Thus, his proof holds more generally than
for the special case of interest to him, where p was a function only
of I'I —r2.

vi=2( —1)' 'bl ' O3RQ (f3 fj;) 'f3 f321V23 . —(20)
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In these last three equations, the R dependence of fz is
understood. Equations (18) and (19)follow immediately
from the previous equations; Eq. (20) is proved in
Appendix C of Nakamura's paper. Equation (19)
contains two terms giving, respectively, the internal
kinetic energy and the center-of-mass kinetic energy of
the two electrons in each Cooper pair. It is this second
term that distinguishes the present theory from that
of Nakamura.

We assume that Vpq vanishes when k=k'. This
corresponds to saying that that part of p which does
not scatter has been absorbed into the one-electron
portions of the many-electron Hamiltonian. It is now
easy to prove that

Now

Q)v= (2v Z~) ' expLGp(Ze"') iN8]d8 . (30)

i9

[G—p(Ze") iN—8]= i(tG)(Ze") N]—,
88

82
((

G p
(Ze'P) iN8]—= Gp—(Ze'P) .

$82

We specify that the radius Z be such that

We take this contour to be a circle of radius Z centered
on the origin. Thus

v)) =0.

Thus, Eq. (7) can be written more simply as

(21) Gi(Z) =N.

From (18) and (24), we have

(31)

8
Wp ——g(t,+v()b, inQ)v,

l Bbg
(22)

where Q)v is defined as

Q~= E' lI b, -~/m, !. (23)

At this point we introduce the saddle-point method"
of evaluating Q)v. Define

Gp(z) =Z(1+f"z) ' (32)

Assuming P(R,x) to be real and to represent vanishing
velocity of relative motion of the two electrons, it
follows that fp is real, so that Gp(Z) is positive. Thus
the point z=Z(8=0) is a saddle point of z (~+')Q(s),
a maximum with respect to variations in 8, a minimum
with respect to variations in Z. Expanding Gp(Ze')
—i' as a power series in 8, keeping only the constant
term and the term quadratic in 8, we get

G„(s)=Q l"b(s',

Q(s) = goo(~)

(24)

(25)

Q
—(2 ~ZN)

—Ivy (z) exp) ——,'Gp (Z)8']d8,

Expanding the exponent in (25), we get

1
Q(z) = 2 (2 b(z')~.

N=O gt
(26)

It can be shown that Gp(Z)))1, so that the integration
limits +x can be replaced by &~ with negligible error.
Thus,

Q)v ——Z- e " 'L2v.Gp(Z)]-"'

lnQ)v ——Gp(Z) —N lnZ ——,
' 1nL2)rGp(Z)]. (33)

(P b(z'))v= P' N! g(b(z') '/m)!, (27)

Q(s)= Z z Q~.
N=O

(28)

Choosing a contour of integration in the complex s
plane lying within the circle of convergence of (28),
we may write

where, as in (7) and (23), the summation is over all
possible ways of choosing the set of non-negative
integers m( consistent with the restraint (13). Combin-
ing (11), (23), (26), and (27), we get the result"

In order to evaluate Eq. (22), we need to differentiate
lnQ)v with respect to bi In doing t.his, we can ignore the
last term on the right-hand side of (33). From (32)
we see that Gp(Z) is very insensitive to the particular
values of f&'Z, since the major contribution to the sum
over k comes from regions of k space where f), is effec-
tively zero. (This is also the reason why Gp(Z)))1.)
Thus lnGp(Z) should be insensitive to variations of b(.
In differentiating (33) with respect to b~, we should
remember that Z varies with b~. However, we can
actually ignore this, since Eq. (31) shows that the
partial derivative of Gp(Z) —N lnZ with respect to Z
will vanish. Thus,

Q = s—("+')Q(s)ds
27ri

~Here we are assuming that the power-series expansions in
Eqs. (24} and (28} both have Gnite radii of convergence about
the origin in the z plane. It will become clear that this is true
provided hl, &1, the condition mentioned in Ref. 18.

lnQ)v= Z',
Bbz

so that (22) becomes

W p Q(ti+ v)) b)Z——'.

(34)

(35)
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With the aid of Eqs. (18)—(20), this can be written

Wp —— d'RWp(R),

where we define
—tz/t'k'

Wp(R)=2+(1+fp Z)
~

fk Z
& 2zzz

A2

+ (V tt f~)'Z(1+ f~'Z) '
Sm

2Z

+2 2( I'»
(

— /. (3&)
»'l 1+f/'Z 4f/ f/. i—

It should be understood that f/, and fp are both
functions of R in this expression. By interchanging Ir

and k', we can write the potential-energy term in a more
symmetric fashion,

— A2k2

Wp(R) = 2 Q (1+f/, 'Z) '
f/, 'Z

2m

Gp(s)=g bzs'= d'RQ Q l '(—1)' '(f 's)'
l Ic l 1

=—Q ln(1+ f/. 's)
Q R, Iz;

=—Pin 1+
n~,. 1—ki(Zi (43)

Here we have replaced the integration over the crystal
J'd'R by the corresponding summation over all atomic
sites 0 Pzz, 0 being the atomic volume. This replace-
ment is justified by the slow variation of f&(R) with R.
From the definition of Q(s), we have

Q/~) = II )+( )(
—

l
(44)

It is clear that Gp(s) has singularities along the negative
real axis at those points where

s= —Zk/,
—'(1—kp) .

A2

+ (V tzf/)'Z(1+ f/'Z) '
Sm

fifi Z(1 fpf~ Z)—
+Q I'»

(1+f~'Z) (1+f~'Z)
(38)

Equation (31), the defining equation for Z, becomes

/' fa'Z
dzR gl ='V

/ &1+fizZ
(39)

Now de6ning

k„l/2—(1+f 2Z) )/2f„Z)/2—

we transform the last two equations into

(40)

k'kzy
Wp(R)=2+ ~k/, + +L4k&(1—

k/, )]—'(V/zkp)'
2zzz) 4zzz ~

+Q V» Llzp(1 —ki)k/, (1—kp )]"'

and

2 &// kafka,
It:It."

(41)

d'R Q kp=E. (42)

Here kp and kp are functions of R.
It is appropriate to point out why the saddle-point

method of summing cluster expansions worked in the
present problem, despite the fact that a superconductor
is a highly condensed system. Consider Gp(s).

It will be seen presently that, independently of R,
k/, (R) is less than or greater than one-half dependent on
whether k lies outside or inside, respectively, the Fermi
surface in k space. Thus those k lying inside the Fermi
surface give rise to singularities lying inside the contour
of integration in Eq. (29). This is a consequence of the
condensed nature of the system we are studying. For
most problems, singularities in Go would imply singular-
ities in Q= exp Gp. Singularities in Q inside the contour
of integration would, of course, negate the applicability
of the saddle-point method. For our particular problem,
however, singularities in Go do not imply singularities
in Q. As can be seen from (44), the singularities of Gp

correspond to zeros of Q, so that the saddle-point
method is applicable despite the condensation of the
system. " Equation (45) shows that it is necessary to
assume ha&1 in order that both Gp(s) and Q(s) have
finite radii of convergence about the origin. "A further
difhculty occurring in the theory of the condensed
imperfect gas results from the volume dependence of
the cluster integrals. '2 There is no analogous problem
here because the total volume occupied by the electrons
is set by the dimensions of the crystal, not by the
degree of condensation of the electrons.

The last term on the right-hand side of (41) is missing
from the BCS theory because of truncation of the many-
electron Hamiltonian in that theory. It turns out that
this term is independent of R, and thus may be ignored
in determining the dependence of kp on R. The R

"This result appears to be a consequence of the type of cluster
integral b& occurring in the present theory, the so-called chain
cluster integral, in contrast to the more general form of cluster
integral appearing in imperfect-gas theory.

zz T. L. Hill, Statzstzcat 3feeha)zzes (McGraw-Hill Book Com-
pany, Inc. , New York, 1956), Chap. 5.
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independence of this term is a consequence of the
dependence on k and k' of V» k/, k/, , as will become
apparent presently. Let us redefine the zero of energy
of Wo such that this term disappears from (41) and, in
addition, the first term on the right-hand side of (41)
becomes 2+i e/, k/„where

A2

eL
—— (k' —kp'),

2m
(46)

and kp is the Fermi momentum (i.e., we take the
one-electron energy e/, to be zero at the Fermi surface).

It is instructive to rewrite the second term on the
right-hand side of (41):

ZL4k (1—k)?'(& k)'
4m &

gL(V ~ (ka) "')'+(Vz (1—4)"')'j.
4' I

(4'/)

In the writer's previous paper, ' it was assumed that the
term (V/4nz) (V~(k/, )'/')' appeared only for k) kp, and
the term (5'/4m)(&~(1 —k/, )'/')' appeared only for
k&kp, whereas the analysis of the present paper has
demonstrated that both terms should appear for every k.
Intuitively, the first term represents center-of-mass
kinetic energy of a Cooper pair of electrons; the second,
center-of-mass kinetic energy of a Cooper pair of holes.
The inclusion of both terms will modify quantitatively,
but not qualitatively, the results of the previous paper.
For e/, large and positive (i.e., k/, —+ 0), only the electron
term is important; for e/, large and negative (i.e.,
k/, —+ 1), only the hole term is important.

We now wish to find the function kq(R) which
minimizes 8'p. This is obtained from the Euler-I-agrange
equation

Wo(R) =0.
-~kk cjV Rkk-

(48)

Inserting Wo(R), we get

2e&—(h'/8m) (Lk/, (1—hp)?"'& g) 'k/, + (1—2k/, )

XLk/(1 —k/, )$ "'g V» [k/, (1—k/, )j+"'=0 (49)

III. THE SUPERCONDUCTING METAL

Henceforth we shall assume

V» =~V for
=0 otherwise, (51)

Ace being a mean phonon energy. The minus sign
(attractive interaction) is to be taken for the super-
conducting metal to be discussed in this section; the
plus sign (repulsive interaction) is to be taken for the
normal metal to be discussed in the following section.
We write

so that
4=-', [1—(~~(~/, '+~o~') '")], (52)

~pa (''+ o ') "'
&oa

1 d)'
(~ 2+~ 2)1/2

~
(~/2+~o 2)—1/2 1 (55)

8'/il fOi dx 1

(The prime on the summation sign indicates that k'

is restricted by the condition
~

e/,
~

&A&a.) If eo& were
independent of x, then Eq. (55) implies that eo& would
also be independent of k (for

~
e/,

~
&fute). Since we are

especially interested in the value of cp~ at k=kg, the
Fermi surface, we shall solve (55) for this case, making
the approximation that (ep/, /eo/, )=1 in the k' summa-
tion. Designating the value of epA, at the Fermi surface
by ep with no k subscript, and replacing the summation
by the equivalent integration, we have

X(0)V arcsinh(5&v/eo) —(I'i2/8m) (d'/dx') (1/eo) = 1, (56)

E(0) being the density of one-electron states (of a
given spin) per unit energy at the Fermi level in the
metal in the normal state. Since under all conditions of
interest to us 6p&(S~„wemay approximate

arcsinh(Ace/eo) by ln(25co/&o) .

1 2k'= g~(gi2+goi ) / (53)

2(kg(1 —k, ))i/2 cpa(6&2+Epy2)
—i/2 (54)

Since h/, is a function of R, the order parameter eo/, also
is." We shall restrict ourselves to the case where hI,

and ep& vary along one direction only in the crystal, say
the x direction. Equation. (49) can be rewritten

Pg ki(R) =PT (50)

Anticipating the fact that VI,I, ~ is an eve+ function of eI,

and e/, , we can immediately infer from (49) that
(1—2k/, ) is an odd function of e/, . Now k/, —&0 for
eI,))0, h~ —+ 1 for &~&&0, this holding for all R. Therefore,

We define the constants

co(~) =2fuue '/~to&v

1/ 2A X/2

ei/w(o) v

8 (X(0)Vm(o

(5&)

a stronger condition than that of Eq. (42). )It should be
remembered, in comparing (42) and (50), that we are
considering the crystal to have unit volume. f Equation
(50), in effect, states that the density of Cooper pairs is
uniform throughout the crystal (no net change density).

and the variable

s(x) = eo(~)/eo(x), (59)

2'Unlike the position-independent case, &0k is not necessarily
equal to the excitation energy for producing a normal carrier, a
fact which will be discussed in Sec. VI.
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so that Eq. (61) becomes

2P (d2z/dx2) = lnz. (60)

This is the same equation obtained previously by the
writer. ' The only difference lies in the fact that the
present definition of 5 is a factor of W2 larger than that
of Ref. 8 l

a consequence of the fact that both terms
appear in Eq. (47)). As before, a first integration of
(65) gives

(69)Xi=A»/22»,

lns.
dR

(70)

X~ is a measure of the distance over which there is
appreciable variation of f with respect to r; X2 is a
measure of the distance over which there is appreciable
variation of P with respect to R. It is straightforward
to calculate

8(dz/dx) =&LE+z(lnz —1))'"

a second integration giving

(61) We see that X~ is two orders of magnitude smaller than

~2, in agreement with our previous assumption.

LE+z'(Inz' —1))-"'dz', (62)
IV. THE NORMAL METAL

so and E being integration constants. The constant
6p(~ ) is just the constant value of Gp 'to be found in the
interior of a bulk superconductor D.e., eo(~) is the
BCS value of eo). Thus, in such a bulk superconductor
we want s —& 1 as x —+ ~. At the same time we want
(dz/dx) ~ 0. This means that for a bulk superconductor
we must take

E=1. (63)

For this case, a plot of 1/z versus &x/8 can assume the
two possible forms diagrammed in Fig. 1 of Ref. 8.
The characteristic length 6 can be written

where
8= 22[2)phr/1V(0) V)'/',

Xr =22»/kr

(64)

(65)

is the Fermi wavelength, and

(o= Lj2V»/~&0(~)) (66)

(R,r) I'~'»
I y(«) I'd2r (67)

lv»2$(R, r) l
2/J, 2»

l p(R, r) l'd'r . (68)

is the BCS form of the Pippard coherence distance.
(zr is the velocity of electrons at the Fermi level. )
Typical values for a soft superconductor are 'Ar/22»

=10 ' cm, 8=10 ' cm, &2=10 ' cm. It should be
pointed out that critical thicknesses of metallic films
(either normal on bulk superconducting material, or
vice versa) are about an order of magnitude larger than
8, as was found in Ref. 8. This results from the weak
dependence on z of the term lnz appearing in Eq. (60).

In the previous section, we made the basic assumption
that the two-electron orbital f(R,r) was a much more
slowly varying function of the center-of-mass coordinate
R than of the relative coordinate r. We are now in a
position to get a measure of the accuracy of this
assumption. De6ne

need not necessarily be a positive number, although our
method of defining /2&'/' LEq. (40)) might lead one to
infer that f i~) 0. Actually there is no inconsistency in
allowiog hl, '/' to assume both positive and negative
values. l (1—h&)"' will always be non-negative. ) We
allow the signature pf hA,.

' tp be a randpm functipn of
k, consistent with the condition that (1—2h2) be a
continuous, odd function of ~~. The potential-energy
term in (49) thus becomes negligibly small (in the limit

of a large crystal) and may be ignored. By allowing this
random variation in the signature of hj,' ', we have
effectively quenched the repulsive interaction.

Equation (49) now becomes

where
e2—(I/'/16n2) (d'h2/dm22) =0,

—=(hj, (1—hp)) "'—.
ds

(71)

(72)

Thus
~„2=(I22/82/2e2) (hg —1+CD,2),

where C~' —1 is an integration constant to be set by
boundary conditions. Consider, for the moment, the
case t.l,&0.

(g/A) (82/2') i/2 —g—1 (82/26') 1/2
l k2 (1 I2/ )) i/2dg2—

Lh2(1 —hg) (I2i—1+CP2)) i/2d/2i

=Warcdn(&h '/' C2).

In Ref. 8 the discussion of normal metals was

restricted to the case VI,~ =0. Here we wish to general-
ize to the case of repulsive electron-electron interaction,
namely V~2 ——+V. Inserting such a V22 into Eq. (49),
we can see, by inspection, the trivial solution k~= 0 for
~1,&0, A'l, =l for cI,(0, corresponding to the position-
independent normal metal. In addition, however, there
are nontrivial solutions which can be obtained almost
as easily. The key observation is the fact that

fj,
——Lhl /Z (1—hi))'/'
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arcdn is the inverse elliptic function (i.e., elliptic
integral); Ci, is the modulus of the elliptic function.

(73)

(The two choices of sign in this expression are independ-
ent of each other. ) In the limit ki«1.

(g/g$) (8ygg/) '~' =~ 'gLlg„(/4—1+C„2)]—i~2d/g„

or

=&arccosh&Lh~/(1 —Ci')]' ', Cl, '&1
=&arcsinha Lhi/(Ci' —1)]' ' Ck'& 1

cosh (x~kg'= constX
~

—(8m6jg)
sinhkh J

(74)

This is the solution obtained in Ref. 8. In the opposite
limit h& —+ —',, Eq. (74) should be modified by replacing
(8m&~)'~' by (4m&i)'I'. We have thus far been considering
the case e,)0. Expressions analogous to (73) and (74)
hold for the case a~&0 L(1—hq)'' replacing (hl)''
and

~
e~~ replacing ei,].

V. BOUNDARY CONDITIONS

Before we can apply the results obtained thus far to
problems involving two different metals in contact, we
must discuss boundary conditions. We are immediately
confronted with the difficulty that the true boundary
conditions for any pair of electrons are not separable in
terms of internal and center-of-mass coordinates. Thus,
we are forced to replace the true boundary conditions
by approximate ones which are separable. '4 Specifically,
we assume that the two-electron orbital $(Ri2, ri2)
satisfies periodic boundary conditions with respect to
the internal coordinate r», while there is continuity, as
a function of the center-of-mass coordinate R~2, of
both f*f and /*Vga. It should be noted that not only
are we assuming separability of boundary conditions,
but in addition a possible loss of phase coherence of the
center-of-mass motion at the boundary. (This follows
from specifying that f*f and f~VIif be continuous
with respect to Ri2, rather than P and Vzg alone. )
Because of lack of geometrical perfection, on the atomic
scale, of most interfaces experimentally realizable
(epitaxially grown interfaces being a possible exception),
it seems reasonable to assume that Cooper pairs passing
through the interface will be "diffusely refracted" with
consequent loss of phase. It should be added that there
will be no phase coherence between two electrons
on opposite sides of the interface (that is, two such
electrons cannot form a Cooper pair) because of

'4 A similar use of separable, approximate boundary conditions,
with regard to a two-electron example of ferromagnetism, has
been made by J. C. Slater, H. Statz, and G. F. Koster, Phys. Rev.
91, 1323 (1953).

the lack of conservation to total momentum during
virtual exchanges of phonons between the two electrons.
In passing from one electron to the other, a virtual
phonon is refracted at the interface (with consequent
change of its momentum) because of the difference
in elastic properties of the two metals forming the
interface. "

To simplify the discussion, we shall restrict ourselves
to interfaces between two metals which di6er in the
strength of the electron-electron interaction, while
having the same one-electron energy levels. Under such
conditions, the boundary conditions on P are equivalent
to continuity of hi, (R) and Vzh&(R) at the interface,
but not necessarily continuity of (hi, (R))"~'. With regard
to the interface between a superconductor and a normal
metal, it is clear that hI,' ' cannot be both continuous
and nonvanishing at the interface, because of the fact
that hI, ' ' is positive in the superconductor but negative
(for some values of k) in the normal metal.

In practice, it appears difficult, if not impossible, to
get continuity of both h~ and Vgh~ because of the
necessity for making approximations in solving Eq. (49)
for a superconductor (e.g. , the approximation that the
order parameter eoi, is independent of k). In effect, any
reasonable approximation for solving the nonlinear
integro-differential equation for hA, is incompatable with
the boundary conditions. This impasse can be resolved
by relaxing the boundary conditions in the following
manner: h~ is made continuous as before; but rather
than having continuity of

Vithi

for all k, we require only
continuity of a suitably weighted average of Vghj„ the
averaging being over values of k. On physical grounds
we shall assume that such a suitably weighted average
is the surface-energy density associated with any
discontinuities in Vzhj, at the surface of a crystal. We
shall now calculate this surface energy. Consider that
portion of Wo due to center-of-mass kinetic energy of
electron pairs, which, from Eq. (37), can be seen to be

W '= (0'/4m) d'R Q(1+f'Z) '(V zfi)'Z (75)

Note that each term in the k summation is invariant
to replacement of fI,Z'~' by its reciprocal. We make this
replacement for all k(kp. Next, we expand each term
0&ki as a power series in f~ 'Z 'I'

This is a cluster expansion in terms of electrons lying out-
side the Fermi surface and holes lying inside the Fermi

"This is the reason the effective electron-electron potential V
can be taken to change discontinuously at an interface between
two metals, V being position-independent elsewhere.
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+ P P(—1)'—'Z-' ///'Rfk —
'~

— Vg'fk
A'

k&k/ / 4 4ml )
(77)

8'p" differs from 8'p' by a surface integral, i.e.,

where

Wp' = Wp"+ /f'&Wsp(R), (78)

A2

Wsp(R)= p g(—1)' '&'& 'fk'n VBfk'
4~ k)kp L

g ( 1)/ 1Z /) 1f—ln—.P'—f——/ (79)
4~ k(ky l

is the desired surface-energy density. Here n is the unit
vector normal to the surface. By analytically summing
the I series, and rewriting fk in terms of I//k, we get

A2

Wsp(R)= n $ Q (1—hk)
—'Vghk

k&ky'

+ P hk
—'&/r(1 —hp)]. (80)

k(ky

Since (1—2I/k) is an odd function of ek, it follows that
the two summations, p»k~ and pk&», make equal
contributions to Wsp(R). Thus,

h2

Wsp(R)= — n ~~ p ln(1 —hk).
4m

(81)

Rewriting hk in terms of the order parameter epk as
given by Eq. (52), assuming epk to be independent
of k, and replacing the summation by the equivalent
integration, we get

Wsp(R)

=—(A'/4m) n.Q/r X (0)
1

ln— 1+
(e2+ e 2)1/s

= —(///'/8m) (e.—2)X(0)ep n.&/r (1/ep) . (82)

This expression differs from the corresponding expres-

surface. Each term in the l summations can be rec-
ognized as center-of-mass kinetic energy of a clusterof
2l electrons for k&kp, a cluster of 2l holes for k(kg,
the former cluster being represented by the wave
function fk', the latter cluster by the wave function

f k '. Here the kinetic energy is written as the positive
square of the gradient of the wave function; a more
conventional way of writing such an energy is in terms
of the negative of the second derivative of the wave
function, i.e.,

///'

W Ii Q Q( 1) /lz/ /13Rf / q 2f /

k)ky L 4ml

sion in Ref. 8 only by the additional factor (x.—2).
Equation (80) divers from the expression of Ref. 8
through the factor (1—I/k)

' for ek)0, the factor hk '
for ok&0.

where

Wk —— OPRWk (R), (83)

A2

W/, (R) = ek (1—2hk) — L4hk(1 —hk)]-'(~ghk)'
4m

—2(hk(1 —hk))' ' g Vkk (hk (1—hk ))"'. (84)

t It should be recalled that the last term on the right-
hand side of (41) has been removed by a redefinition
of the energy. ] In the case of a bulk superconductor,
the order parameter epk equals ep(po), the BCS value,
over the predominant portion of the material not too
close to a surface, from which it follows that

Wk (eks+ep2(po ))1/2 (85)

just as in the BCS theory.
We see that the excitation energy S'k is not a function

of position, despite the fact that the order parameter
6pk may be."This is a consequence of our assumption
that the additional electron occupies a single-particle

~6 In the case of a strongly disordered superconducting alloy, a
position-dependent excitation energy is possible. The value of the
excitation energy at any point is a weighted average of Wk(R)
over a region surrounding the point, this region being of the size
of the normal-electron mean free path in the alloy.

VI. EXCITED STATES

In principle, the mathematical formalism of the
present paper is unsuitable for a rigorous calculation of
single-particle excited states of the superconductor.
The difhculty stems from the fact that our many-
electron wave function is an antisymmetrized product
of two-electron wave functions, rather than an anti-
symmetrized product of one-electron wave functions.
In practice, we can visualize a single-particle excited
state in the following fashion. In addition to the 2N
electrons we have been considering thus far, we intro-
duce a (21V+1)st electron which occupies with unit
probability a given one-electron Bloch state of wave
vector k and spin s. In the limit of slow variation of the
two-electron wave function/(R, r) with R, the exclusion
principle now forces the k term to be removed from
every one of the wave-vector summations of Sec. II;
i.e., the 2X ground-state electrons cannot occupy the
single-particle orbital already ulled by the additional
electron. The total energy of the system will be ek, the
Bloch energy of the occupied orbital, plus the energy
given by the R integration of Eq. (41) after removing
the terms indexed by the wave vector k The single-
particle excitation energy Wk will be this total energy
minus the energy before the (2%+1)st electron was
introduced, i.e.,
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orbital extending throughout the crystal, rather than
one localized to the surface of the crystal, for example.
The reasonableness of this assumption can be inferred
from the discussion of Sec. I, where it was pointed out
that the electric fields which are modifying the Cooper
pair wave functions hundreds of Angstroms from a
surface will have a negligible effect on single-particle
orbitals more than a few Angstroms from the surface.
(It will be recalled that this behavior depends on the
low center-of-mass kinetic energy of the Cooper pairs in
comparison with that of an individual electron. ) For
all practical purposes, an individual electron sees a
Geld-free crystal.

For the case of two different metals in contact at an
interface, it seems appropriate to consider distinct
excited states for the two metals. The Bloch orbital
occupied in forming an excited state is an orbital which

spreads only over the metal with which the excited state
is associated. This is consistent with the loss of phase
of the wave function in crossing the interface, discussed
in the previous section. Consider the problem where
Bloch orbital lt in metal A is occupied, thereby forcing
hA, to vanish in A. The continuity of hl, and &gh~ at the
interface thereby forces hA, in metal 8, over a region near
the interface, to be smaller than it would be in the
absence of any excited electron in A. This means that
the excitation energy in A is, in part, due to a change in

Wp(R) in B. Such an effect is crucial for understanding
the possibility of a 6nite energy gap in a normal metal,
when that normal metal consists of a suKciently thin
Glm on a bulk superconductor. The absence of any
attractive electron-electron interaction in the normal

metal means that changes in Wp(R) in the normal metal
itself are incapable of explaining a 6nite energy gap;
changes in Wp(R) in the superconductor near the
interface can, however, give rise to the Gnite gap.

The presence or absence of a finite energy gap in the
excitation spectrum can be determined without actually
calculating what this excitation spectrum is. One makes
use of a theorem by Migdal. '~ Let h~ represent the
probability of occurrence of one-electron state lr in
the many-electron ground state of a metal. (This
definition of h~ is consistent with the present paper in
the limit of slow variation of ks with R.) The presence
of a discontinuity in ks (as a function of es) at the Fermi
level implies the absence of an energy gap in the single-
particle excitation spectrum; the absence of a dis-
continuity in h~ implies the presence of an energy gap.
An examination of Eq. (52) indicates that the former
situation corresponds to eg, vanishing with e~, the latter
situation corresponds to e()g staying Gnite as e~ —+0.
Thus, the vanishing energy gap goes with vanishing
order parameter so~ at the Fermi level; 6nite energy gap
goes with finite order parameter at the Fermi level.
With regard to Eq. (73), the form of kz'~' appropriate to
the normal metal, it is easy to see that the integration
constant Css(1 corresponds to finite cps(k ~ ks), while
Cs')1 corresponds to vanishing cps(k —+ks). As was
indicated in Ref. 8, a suKciently thin film of normal
metal on bulk superconductor will require the former
case.

P'A. B. Migdal, Zh. Eksperim. i Teor. Fiz. 32, 399 (1957)
Ltranslation: Soviet Phys. —JETP 5, 333 (1957)g; see also J. M.
Lnttinger, Phys. Rev. 119, 1153 (1960).


