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A statistical theory, developed earlier, to account for the ionization produced by violent collisions between
two many-electron atoms is here re-examined in the light of recent experimental results. It is found that
the statistical theory is consistent with the concept of an autoionization transition. This transition, which
occurs after the collision is over, is between an initial state in the discrete spectrum of the atom and a final
continuum state at the same energy. The statistical distributions introduced in the earlier papers are
intimately related to the density of final states p(Et) in the standard formula for the transition probability
between a discrete level and a continuum: so= (2ir/h)

~
Ht ~ep(Er). In addition to reinterpreting the previous

results, the statistical theory is here extended and improved, and simple algebraic expressions are obtained
for the ionization probabilities. Finally, the ionization process is considered in detail, and a theory for the
ionization energies appropriate to violent collisions is presented. It is shown that the appropriate ionization
energies increase monotonically with the excitation energy of the autoionizing level and are always larger
than the ionization energies as determined spectroscopically.

I. INTRODUCTION

~~ URING the past several years, a considerable body
of experimental data has been accumulated on

the ionization produced by violent ion-atom collisions
as functions of the collision parameters. In particular,
the differential measurements reported by Everhart
and his collaborators' ' and I'ederenko and his col-
laborators' ' are suKciently comprehensive so as to
make possible a detailed theoretical investigation of the
processes which occur in a collision between two many-
electron atoms. Initially, the experimental data gave
the probabilities that a projectile ion would become
n-fold ionized, as the result of a collision with a target
atom, as functions of the incident ion energy and the
angle of scattering. During the time that the initial
data was being collected, an attempt was made by the
present author, in collaboration with Thomas and Bul-
man, to formulate a phenomenological theory of the
collision process to account for the behavior of the ob-
served ionization probabilities. This work is described
in a series of papers, ' "hereinafter called I, II, and III.
The present work has, as its purpose, an extension and
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modi6cation of that 6rst theoretical attempt in the
light of illuminating results which have since become
available.

BrieQy, in its original form the theory held that the
collision leaves each of the colliding atoms with a sub-
stantial excitation energy which is a function of the col-
lision parameters and that, teport separation, this excita-
tion energy is statistically distributed among the elec-
trons in the outer shell. These statistical aspects of the
theory were successful in accounting for much of the
behavior of the ionization probabilities as functions of
the collision parameters. In this paper, the statistical
aspects of the theory are improved and made much
more comprehensive. It is shown that the statistical
aspects of the ionization probabilities are consistent with
the concept of an autoionization transition.

Despite the success of the original theory, the mecha-
nism proposed in I for the production of the excitation
energy now appears to be incorrect. In I, it was assumed
that the excitation was due to a friction-like mechanism,
resulting from random electron-electron collisions as the
two electronic distributions swept through each other.
At that time, the only direct measurements on the in-
elastic energies were fragmentary, ~ so that no direct
confrontation with experiment of the excitation mecha-
nism therein proposed was possible.

Recently, two papers have appeared whi. ch shed im-

portant light both on the nature of the excitation mecha-
nisrn and the reasons for the statistical distribution of
this excitation energy. Berry" has made measurements
on the energy distribution of electrons from ion-atom
collisions, and 6nds evidence for the production of dis-
crete intermediate atomic states, excited by the collision,
which later decay by autoionization transitions. Par-
ticularly in the case of He+ on He, the energy spectrum
of He being well understood, it is even possible to
identify the excited state and to obtain theoretical esti-
mates on the autoionization lifetimes of that state. The
results indicate that for collisions that take place at

"H. W. Berry, Phys. Rev. 127, 1634 (1962).
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energies in which we are interested, there is ample time
for complete electronic separation of the colliding atoms
before the autoionization transition occurs.

Morgan and Everhart" have measured the inelastic
energies associated with high-energy Ar+ on Ar collisions
as functions of the collision parameters. These measure-
ments indicate that the excitation energies are almost
completely insensitive to the relative velocities of the
nuclei and depend only on the distance of closest ap-
proach. The dependence on this variable indicates very
large abrupt increases in the excitation energy when the
I. shells of the two colliding atoms just begin to overlap
and again when the E shells just begin to overlap. This
behavior sheds considerable light on the nature of the
excitation mechanism, which is discussed in Sec. II.
In that section, also, the basic assumptions of the sta-
tistical aspects are restated more precisely in terms of
an autoionization transition.

This paper also reports a considerable improvement
in the calculation of the ionization probabilities. The
numerical procedures, described in I, II, and III, in-
volved in the calculation of the ionization probabilities
have now been carried out in closed analytic form. As a
result, analytic expressions for the ionization probabili-
ties have been obtained. not only for the uniform
ionization energy case required by the assumptions of
I, but also when the ionization energies vary with the
number of electrons escaping. The details of these calcu-
lations are presented in the Appendix, but the major
results are also stated in Sec. II. With these improve-
ments, it is now possible to consider the previously

anomalous case of Ne+ on Ne and as well, shed light on
the mechanism of the ionization process itself. Section
III treats in detail the theory of the ionization energies
which, in I, was merely stated in the form of an empirical
assumption, i.e., a constant ionization energy. It is
found that the ionization energies vary as functions of
the excitation energy and, to a lesser extent, on the
number of electrons escaping. Section IV compares the
theory with experiment.

II. EXTENSION OF THE EVAPORATION MODEL

Four assumptions which constitute the evaporation
model were stated in I; but a better understanding
brought about by additional evidence makes it possible
to restate them simply and more precisely.

A. The Assumptions

(1) (a) When two atoms or an atom and an ion suffer
a violent atomic collision, each atom or ion receives an
excitation energy which is a reasonably well defined
function of the collision parameters. (b) This excitation
energy is initially an excitation to one of the discrete
energy levels in the energ'y spectrum of the atom or ion.

(2) After, or nearly after, complete separation of the

"G.H. Morgan and E. Everhart, Phys. Rev. 128, 667 (1962).

Fto. 1. The energy
spectrum of helium. Dis-
crete energy levels, a
representative sampling
of which are shown, are
indicated by lines. Con-
tinuous portions of the
spectra are indicated by
hatched regions. Part
(a) shows the continu-
ous spectrum of the par-
ticle Hamiltonian only
(or, rather, of a suitable
unperturbed part there-
of), while part (b) also
shows the continuous
spectrum of the radia-
tion Geld. The overlap
of the two continua is
the region where auto-
ionization and spectral
emission are competitive.
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colliding atoms, each undergoes an autoionization transi-
tion from the discrete level to a continuum state at the
same energy.

B. Discussions of the Assumptions

The four assumptions of I have here been condensed
to two. The first deals with the excitation mechanism,
which was incorrectly conceived in I. A discussion of
this assumption, with a possible explanation for the
initial excitation to a discrete energy level is presented
later in this section. The statistical aspects of the origi-
nal presentation will here be shown to be a consequence
of the second assumption. In particular, they follow
from the density of states p that appears in the formula
for the transition probability from a discrete state to a
continuum. This connection will be demonstrated. im-
mediately. Finally, a re6ned treatment of the ioniza-
tion process, presented in Sec. III eliminates the need
for a separate assumption concerning the ionization
energies.

As is well known, when a many-electron atom is
excited to an energy level above the first ionization
energy, the processes of autoionization and de-excitation
by photon emission are competitive. Below this energy,
only the latter process is possible. Figure 1(a) shows,
for purposes of illustration, the energy spectrum of
helium, although we are primarily interested in atoms
with many more electrons. However, calculations of
the highly excited states of such atoms have not been
made, whereas the calculations have been made in the
case of helium. A few of these states are illustrated in
the diagram. This is but one example of a discrete energy
spectrum embedded in a continuum. A much more
familiar example of a discrete spectrum embedded in
a continuum is the quantum mechanical system which
consists of an atom plus the radiatioN field In this.
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example /Fig. 1(b)j the radiation field supplies the
continuous part of the spectrum and one of the most
elementary problems of the quantum theory of radia-
tion is to calculate the transition probability from a
state in the discrete spectrum (atom in excited state, no
energy in the radiation field) to a state in the continuous
spectrum at the same energy (atom in ground st:ate, a
photon present in the radiation field).

For these excited states wi.th excitation energies
higher than the erst ionization energy, the autoioniza-
tion process competes with photon emission. Wentzel"
discussed this problem as early as 1928, and calculations
were carried out by Kreisler, "Kiang, Ma, and Wu,""
Wu, "and Bransden and Dalgarno" on autoionization
transitions in neutral helium atoms. Bransden and Dal-
garno point out that the discrete and continuous states
involved in the transitions under discussion cannot be
eigenstates of the total particle Hamiltonian

Finally, the autoionization process proceed. s by a
statistical distribution of the excitation energy among
the outer electrons. This follows once the idea of an
autoionization transition is accepted. The general form-
ula for the transition probability when the initial state
is in the discrete spectrum and the final state is in the
continuum is given by (see, e.g., SchifP')

w= (2'/fz) [II;f'f'p

where w is the transition probability per unit time, H;y
is the matrix element of the interaction term in the
Hamiltonian between the initial discrete state P; and a
final continuum state Pr with E,=E~ and p gives the
density of states in the vicinity of Pr. For a nondegener-
ate continuous spectrum with the states normalized to
a delta function,

but of some "unperturbed" Hamiltonian Bo„, the re-
mainder of H„being the perturbation responsible for
the transitions. Bransden and Dalgarno conclude that
for those excited states in helium for which autoioniza-
tion is not forbidden, autoionization is the predominant
process over photon emission by a factor of the order
of 10'.

Thus, Assumption (1) states that a violent collision
between many-electron atoms leaves each of the collid-
ing atoms excited to one of the discrete energy levels
embedded in the continuum. Assumption (2) then. holds,
in extension of the conclusions reached for helium by
Bransden and Dalgarno, that the probability of de-
excitation by photon emission can be neglected. The
autoionization transition should distribute the excita-
tion energy among only the outer shell of electrons. This
is justified on the basis that the most violent collisions
observed by Morgan and Everhart'2 involved excita-
tions of about 600 eV per atom in Ar+ on Ar which ap-
pear to be excitations of the L shell. This is barely
enough to remove two electrons from the L shell and
that only if all of the energy is somehow transferred to
just these two electrons. Thus, the predominant event
in this case is a transition which involves de-excitation
of the L shell transferring the energy to the outer elec-
trons only (i.e., an Auger transition). For the lowest
excitation energies observed by Morgan and Everhart,
even the initial discrete excitation undoubtedly involved
M-shell electrons only, inasmuch as the entire excitation
energy was not sufficient even to excite a single L-shell
electron.

"G. Wentzel, Z. Physik. 29, 321 (1928)."J.Kreisler, Acta. Phys. Polon. 4, 15 (1935)."A. T. Kiang, S. T. Ma, and T. Y. Wu, Phys. Rev. 50, 673
(1936).

"A.T. Kiang, S.T. Ma, and T. V. Wu, Chinese J.Phys. 2, 117
(1936)."T.Y. Wu, Phys. Rev. 66, 291 (1944).' B. H. Bransden and A. Dalgarno, Proc. Phys. Soc. (London)
A66, 904 (1953).

then p is unity, i.e., "one state" per unit energy range
or, otherwise stated, one state per energy cell of unit.
size. On the other hand, if the spectrum, at the energy
in question is v-fold degenerate with equal matrix ele-
ments to all members of the degenerate set, then addi-
tivity of the transition probability demands that p= v.

Consider, now, multiple ionization of a many-electron
atom resulting from an autoionization process. To make
the problem tractable, it is necessary to assume that all
those matrix elements which do not vanish are, om the

average, equal. Those matrix elements which do vanish
determine the "selection rules, " e.g., conservation of
angular momentum, etc. let z~,&&~& be the total auto-
ionization transition probability for an outer shell con-
taining S electrons. Further, let m &N~ be the sum of the
transition probabilities to all final states in which m

electrons are ionized from the outer shell. Thus,

N
(N) Q rn iN} (2)

"L. I. Schiii, banters 3Eechaeics (McGraw-Hill Book Coni-
pany, Inc. , New York, 1949), p. 193.

Note here that the bound-energy region (i.e., the energy
of a given electron is lower than the ionization energy)
is also considered to be a continuum. Thus, there is a
possibility that the excitation energy can be distributed
among the outer electrons so that none have sufhcient
energy to escape. This implies that there also exist con-
tinuum states which are fully bound, or at least that the
data conspires to make it appear that these states exist.
This question was considered in I and it was there con-
cluded that agreement between theory and experiment
requires this assumption.

According to the above discussion, it follows that
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Here, Ez is the excitation energy, c is the size of the
energy cell, I Er/ej is the integral part of ET/e (e.g. ,
L2.4j=2), M is the mean value of the nonvanishing
matrix elements and Ez(m) is the number of ways
of expressing m as the sum of S nonnegative integers,
i.e., the number of ways of dividing the energy ET =mc
among X electrons. The factor f is the number of differ-
ent Anal state angular momentum combinations for
which the matrix element M is not small. In this con-
nection, it should be noted that the matrix element is
required to vanish completely only when angular mo-
mentum between initial and final states is not conserved.
However, if, as is reasonable, the autoionization process
is primarily a radial explosion, then all matrix elements
would be small for which the angular Tnomentum of any
individual electron is substantially changed in the
process. This would have the eRect of making f have a
value close to unity. At any rate, the factor E&f/e~ '
in Eq. (3) is just the degeneracy mentioned previously
or, as otherwise termed, the "number" of 6nal states
at the given energy. Thus,
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If the final states are now classified according to the

ionization state and I'„'~) is defined to be that fraction
of the total number of final states which are e-fold
ionized, then these are just the ionization probabilities
whereby theory and experiment are compared:

ton'"'(ET) = totot'~'(ET) I' n'"'(ET) .

Assuming that f is not a function of the number of elec-
trons escaping (even if it is not exactly equal to unity),
P„(~' is, then, the number of ways in which the energy
Ez =me can be divided among E electrons such that n
and only m have more then the ionization energy
E;,„=re, divided by the total number of ways in which
the energy me can be divided among Selectrons. Mathe-
matical expressions will be obtained below for these
ionization probabilities, but at this point, the mecha-
nism for the initial discrete excitation will be considered.

In the collisions which are being discussed, projectiles
such as Ne+ and Ar+ are incident at energies up to 100
keV. At these energies the projectiles are moving with
velocities comparable to those at which electrons would
move with kinetic energies of the order of 0.7 to 1.4 eV.
Thus, even the most violent of the collisions considered
are proceeding slowly when compared with even the
lowest energy orbital motions. It might be expected,
therefore, that these collisions would be adiabatic.
Figure 2, reproduced from Fig. 7 of Morgan and Kver-
hart, shows, however, that this is far from the case.
On the basis of the results shown in Fig. 2, the following
excitation mechanism is now proposed.

As the two colliding atoms approach, diatomic
molecular orbitals begin to form in an almost adiabatic
way. However, it will be remembered that the static
molecular orbitals are referred to a s axis which is the
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internuclear axis. The internuclear axis is here rotating,
as is illustrated in Fig. 3. Thus, superimposed on all the
molecular orbital motion is the rotary motion of the
internuclear axis. For purposes of illustration the case
of Ar on Ar will be considered and attention restricted
to the I.-shell orbitals for the case in which the projectile
energy is 25 keV and the internuclear separation at
closest approach is approximately twice the radius of
the I. shell. Note that this is where the very steep rise
in excitation energy occurs in Fig. 2. Assuming that the
diatomic molecular orbitals have formed, each of the 16
electrons (8 from each atom) has superimposed on its

I'Io. 3. Rotation of
the internuclear axis.
The circles represent the
mean radius of the I
shell of argon. The
dashed ellipse repre-
sents, schematically, a
molecular orbital tra-
jectory.
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Pro. 2. Experimental values for the inelastic energy as a function
of the collision parameters for Ar+ on Ar. This 6gure is reproduced
from Morgan and Everhart. '2 The ordinate in this 6gure is Q',
the mean inelastic energy, excluding the neutrals, the energy of
which could not be determined. Q' is the inelastic energy, which
is shared by both participants in the collision. The excitation
energy Er for one of the atoms is assumed to be half of Q', on the
average.
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orbital motion a velocity m„„, given by

v„„„.= (2E;„,/M)"'= 3.5&(10' cm/sec,

where E;„,is the incident ion energy and M the mass of
the argon nucleus. This will give each electron an extra
angular momentum /' which is roughly equal to (see
Fig. 3)

l'=mv„„, (ro+2rr) =0.19&&10 '~
g cm'/sec=0. 18k,

where ro is the nuclear separation at closest approach,
rl. is the radius of the I shell and m the electronic mass.
For the case under consideration E;„.= 25 keV,
ro ——0.25X10 ' cm, 2rl, ——0.35&10 ' cm. Thus, the
nuclear motion would give each electron 0.18 quantum
units of angular momentum relative to its frame of
reference, were the electron capable of accepting that
much. However, each L shell contains eight electrons
and, therefore, receives 1.4 units of angular momentum
due to the nuclear motion, in this simple classical model.
If, as is reasonable, quantum mechanics roughly reflects
the classical analogy, then it is expected that the colli-
sion will leave the L shell of each atom with a unit of
angular momentum. Being a full shell, it cannot accept
this angular momentum without an excitation energy of
about 250 eV (at least enough to raise one of the elec-
trons out of the L shell to one of the higher orbitals, so
that the resultant state can be one of angular momentum
other than zero). Moreover, since the classical picture
leaves each electron with only a fraction of a unit of
angular momentum, it is reasonable to expect that the
excited state is one in which not merely a single electron
is excited to a higher orbital, but is a collective excita-
tion of the entire shell, in which all electrons share the
additional angular momentum.

Since there is more than enough angular momentum,
on the basis of the classical picture, to force whatever
excitation is achieved, it is reasonable to expect that
the excitation energy is not a function of the incident ion
energy, but rather a function of the minimum inter-
nuclear separation. This, of course, is suggested by the
results of Morgan and Everhart, which also shows a simi-
lar phenomenon occurring for the two E shells. The
small excitation energies at large impact parameters is
undoubtedly a similar result for the M shells. As a
final point, it must be remembered, in referring to the
work of Morgan and Everhart, that they measure the
total excitation energy for the entire process whereas
we are considering the excitation energy per atom.
Therefore, the energies in Fig. 2 should be divided by 2,

C. The Ionization Probabilities

Let P„in'(Er) be the probability that when excitation
energy Ez is statistically distributed among X electrons
in the outer shell, e and only e will have enough energy
to escape. On the basis of the discussion in paragraph
3, this is given by the limit, as ~ —+ 0, of the number of
of ways in which Er/e units of energy can be distributed

among Ã electrons such that e and only e electrons have
enough energy to escape, divided by the total number
of ways in which Ep/e units of energy can be distributed
among the E electrons. In order to achieve continuity
in the presentation of the physical aspects of the theory,
the final results will here merely be stated, with the
proofs relegated to the Appendix, where the countings,
followed by the limiting process e —+ 0, are carried out
in detail.

(6)

for n+h&E&/Eio" &n+h+1,

where E""is the ionization energy. Note that the ioni-
zation probabilities are given by diferent functional
forms in each integral range of Er/E" . Inasmuch as all
the counting and limiting processes are carried out for a
fixed value of Er/E", the result given by Eq. (6) re-
mains valid if E""is a function of the excitation energy
E~. There is good reason for believing that such is the
case, as will be shown later.

Z. The Staggered Ionization Energy Case

In the case in which the ionization energy depends on
the number of electrons escaping, let E„""denote the
energy needed Per electron when the total number of
escaping electrons is e. Note that E„""is got the eth
ionization energy, but the minimum energy needed to
remove all e electrons divided by e. In this case, it has
not been possible to derive exact expressions for the
ionization probabilities, but reasonably good approxi-
mate expressions have been obtained:

(iv)
~

(x
—

s)

mE ""+~Z~ '")" '

X
F-T

tor h(E&/E ion nE ion/E ion( h+ 1

(7)

As before, the ionization energies can, and will, be func-
tions of the excitation energy. The results expressed by
Eq. (7) reduce to those given by Eq. (6) in the event that
all the ionization energies are equal, and in that
event, the expression is exact. %hen the ionization
energies are staggered, however, the expressions given
by Eq. (7) are all slightly too large, as is pointed out in
the derivation in the Appendix. For the cases of interest,

1. The Uniform Ionization Energy Case

If the ionization energy is independent of the number
of electrons escaping, it is shown in the Appendix that

P (iv) (E /Eion)
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the sum of all the errors is of the order of a few percent
and is, therefore, inconsequential.

D. Ion-Atom Collisions

So far, the ionization probabilities have been con-
sidered that result when a neutral atom has excitation
energy ET statistically distributed among the electrons
in its outer shell. However, the experimental data which
has been obtained are for collisions of projectile ions on
target atoms. In this case, the probability I' that the
projectile is e-fold ionized is given by

P =aP &"'+(1—a)P r'" " (8)
where e is the electron capture probability, which is a
function of the collision parameters. This equation was
postulated in I'II, but because of the better understand-
ing of the physical processes involved, the result now
makes more sense. The evaporation process is now re-
garded as an autoionization transition which occurs
after separation of the two atoms, that is, after the
probability of further electron exchange is negligible.
Therefore, it is, indeed, reasonable to introduce a cap-
ture probability and to write the over-all ionization
probability in the form given by Eq. (8).

III. THE IONIZATION ENERGIES

A. General Theory

In the previous section expressions were obtained for
the ionization probabilities in terms of the ionization
energies. This section will be concerned with a rather
crude determination of the ionization energy as a func-
tion of the number of electrons escaping and of the exci-
tation energy of the electronic shell. Also, inasmuch as
the notion of ionization energy which is suitable for
spectroscopic studies is not suitable for the study of
collision ionization, this quantity must be redefined for
the present purposes.

In the crude calculation of the ionization energies
which fo'llows, the relatively small eRects such as the
fact that a 2s electron is bound somewhat more strongly
than a 2p electron will be neglected. Rather, o'nly the
gross electrostatic eRect will be considered which makes
the mth electron removed from an atom require approxi-
mately e times as much energy as did the first, because
it has to be separated from a core that has e times the
charge of the core from which the first electron is
separated. ""I,et 8„,'I' be the mth spectroscopic ioniza-
tion energy. This is the energy needed to remove the
eth electron, if electrons are removed one at a time, while
leaving all other electrons that remain in the atom un-
excited. Then, the total energy needed to remove
n electrons is, in the present approximation,

"A.Russeir, in Second International Conference on the Physics of
Electronic and Atomic Collisions (%.A. Benjamin, Inc. , New York,
1961), p. 45.

s' A. Russek. , Trans. N. Y. Acad. Sci. 23, 681 (1961).

TABLE I. Average ionization energies for neon and argon.

ion, sy for neon
Experi- Theo-
mental retical

21.6
31,4

55.8
69.9
84.6

102.1
119.2

26.5
39.8
53.0
66.3
79.5
92.8

106.0
119,2

E„"n '~ for argon
Experi- Theo-
mental retical

15.8 16.0
21.7 24.0
28.1 32.1
36.0 40.1
43.8 48.1
51.7 56.1
62.5 64.3
72.3 72.3

Now, denote by 5' the ground-state energy of the outer
shel/, and by X the number of electrons in the outer
shell. Since TV is defined to be the energy needed to
remove all. X electrons,

W=-,'cV(X+1)h, "p.

Eliminating Br,p from Eq. (9), yields

rt(rt+1)
t'3 .

f1'(%+1)

(10)

Remembering, now, that in the autoionization process
all the electrons which escape come out simultaneously,
and they will, therefore, all require the same ionization
energy. This is given by the average of the erst n
spectroscopic ionization energies as customarily defined,
since when e electrons escape, they will need the same
total energy to do so, regardless of whether they leave
simultaneously or one at a time.

1" I+1
ionep Q g sp 8'.

rt =i X(%+1)
(12)

Thus, F ""'P is the energy needed by each electron
which escapes.

Crude as the approximation made above may be, it
nevertheless yields quite good results as can be seen io
Table I, which compares E„"'r as computed from Eq.
(12) with the experimental values.

Here, e is the number of electrons escaping and E ""'P

is the mean ionization energy per electron when e
electrons escape. The theoretical values are calculated
from Eq. (12).

In Eq. (12) the designation E„""'p indicates that
this ionization energy is, in some sense, a spectroscopic
limit. Notwithstanding the fact that the electrons are
now considered to come off simultaneously, Eq. (12)
has been derived under the implicit assumption that
those electrons which remain behind are unexcited.
This is the important characteristic of the spectroscopic
case. On the other hand, in the high-energy autoioniza-
tion transitions under consideration, even the electrons
which remain in the atom are excited and this, as will

now be shown, aRects the ionization energies of those
electrons which do escape.
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The quantity 8' is defined to be the binding energy
of the outer shell in its ground state. Suppose, for heur-
istic purposes, the whole outer shell is excited, giving
each electron an energy E which is insufhcient to ionize
it. The total binding energy m of the outer shell would
now be reduced;

In the ordinary sense, the ionization energies e„ for
an atom so excited would be, by analogy with Eq. (12),

1V(X+1)

Defining, now, Eg as the excitation energy which
remains with the electrons which do not escape,

Eg (iV—n)E—.— (16)

However, it must be remembered that the evaporation
theory of the preceding paragraphs has implicitly in-
cluded E in the definition of the ionization energy, for,
the ionization energy is the energy needed to remove an
electron which is initially in the ground state. Therefore,

n+1
j011 E+ 'R,

X(%+1)

the spectroscopic limit E„"""~,thus, justifying the
notation. It is also clear that as the residual excitation
increases, each of the ionization energies also increase.

B. The Self-Consistent Ionization Theory

It is now possible to derive, without further assump-
tion, the ionization energies appropriate to violent col-
lisions. (It will be recalled that, in I, the spectroscopic
ionization energies were found not to be consistent
with the data and a special assumption, the uniforni
ionization energy assumption was there postulated to
achieve agreement with the data. )

Consider an autoionization transition at excitation
energy Ez and suppose that, as a result, e electrons
escape. The remaining E—e electrons will, in all proba-
bility, be excited, and the total excitation of these re-
maining electrons will be denoted by Ez and called the
residual excitation energy. Now, even with m and E&
given, there is not a single residual excitation energy
associated with the collision. Rather, there is a distribu-
tion of residual excitation energies, denoted by
T(n,Ep, En), just as there is a distribution of kinetic
energies carried off by the escaping electrons. It is
shown, in Appendix III, that this distribution function
(not normalized) is given by

This is the excitation state of the residual shell after the
ionization has taken place. Since [jV~/ga Iion j (—1)' E~

i!(Ã—n —i)! E„,""

T(n,hr,.ha) = (hi nh "'—Ei))"——'

E—n—1

Eq. (15) becomes

Eg n+1 iV
ion — + . Ill = E

V n.V( V+1)— V n, —

where (En/h~i" t is the integral part ot En/E~~i"".
A few typical distribution functions are shown in Fig. 4,
and it can there be seen that the peaks in these distribu-
tions are sufficiently sharp so that the most probable

n+1 5'—
V(iV+1) V+1

DISTRISUTlON-in- E„
N=8
Ev/E ion= 6

and, Anally, after regrouping in a somewhat peculiar
way:

(n+1)LW/A (iV+1)j
1—(1/1V+ 1)(E /Ea„" )

IOI1, SP
n

where Eq. (12) ha, s been used to simplify the final ex-
pression. Here, E ""is expressed in terms of En/E ""
because the evaporation theory itself can supply the
values of this latter quantity just as well as it yields
the ionization probabilities.

It is clear from Eq. (17) that in the limit in which the
electrons which remain in the atom are unexcited (i.e.,
En=0), the nth ionization energy is just that given by

I''xo. 4. Typical distribution functions for the residual excitation
energy E~, which remains with the electrons that are not ionized.
The curves shown here are computed from Eq. (18) for the par-
ticular case of the uniform ionization energy, with excitation
energy Ez =6K" . Although the curves are not normalized, the
ratios of areas under them are equal to the ratios of the correspond-
ing ionization probabilities. The values of Eg at which the peaks
of the distribution functions occur are indicated by vertical dashed
lines. These are the most probable values of Eg, and are denoted
by Ez.
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TABLE II. Self-consistency check of the uniform-ionization energy
theory at excitation energy Er/Eio =6.

TABLE III. The self-consistent ionization energies compared
with the spectroscopic ionization energies.

I

Es&/Eion

3.50
2,60
1.77
1.00
0.33
0.00

ion/E ion, sp

1.64
2.11
2.49
2.81
3.11
3.50

ion/E ion

1.00
1.29
1.52
1.71
1.90
2.14

E&/E ion

1.00

2.00 1.12 1.00 1.00

1..28
1.56

1.00
1.22

1.00
1.50

ion/Eiionsp , E ion/Eiion E ion, sp/E ion, sp

1 1.00 1.00 ].00

4.00 1.49
1.73

1.00
1.16

1.00
1.50

LIMITS
5.0

E
Ioii
n

E iehslP

hn52.0

1.0

ET/E ion, sp
I

15 20

Pro. 5. The self-consistent ionization eneries. These are plotted
as functions of the excitation energy Ez as abscissa. The units
here used are absolute energy units; namely, the fIrst spectroscopic
ionization energy (e.g. , 15.8 eV for argon).

value of Eg may be ta,ken as the value of Eg in the col-
lision. Thus, as is illustrated in Fig. 4, an effective value
of Eri/E„"" can be associated with each collision. De-
noted by E&/E„io", it is a function of E& and e, and, as
can be seen from Eq. (18), it also depends on the ratio
E,„""/E„+t'"".This value for Eri/E " can then be sub-
stituted int. o Eq. (17) and the value of E„""is then pre-
dicted by the theory of the ionization energies given in
paragraph A. These calculated ionization energies ought
to be consistent with the ionization energies which were
assumed at the outset. When this condition is fulfilled,
the ionization energies are termed the self corIsistc-NI

ioeisatioe emergi es.
Before attempting to obtain the self-consistent ioniza-

tion energies, it is useful to first investigate how close to
being self-consistent is the uniform ionization energy
(which was assumed without theoretical justi6cation in

I, II, and III).
Figure 4 gives, for a typical excitation energy

Js.r/Eio"=6, the distribution, functions T(ri,,Er, Eii) of
residual excitation energies Eg which follow from the
uniform ionization theory. These have been computed
from Eq. (18), where all the ionization energies have
been set equal to each other, and consequently the sub-
script e has been dropped. Table II lists, for this excita-
tion energy E&, the most probable residual excitation
energy Eri/E"", for each value of e which is indicated
on the abscissa of Fig. 4. Substituting these values into
Eq. (17) yields the ionization energies which follows
from the statistics of the uniform ionization energy
theory. These, too, are listed in Table II, and it can be
seen that the uniform ionization energy theory is not

6.00

8.00
2
3
4

1.76
1.94
2.17

1.80
2.07
2.29
2.53

1.87
2.23
2.50
2.72

:1.00
1.10
1.23

1.00
1.15
1.28
1.41

1.00
1..20
1.34
1.46

1.00
1.50
2.00

1.00
1.50
2.00
2.50

1.00
1.50
2.00
2.50

10.0()

12.00

1.89
2.31
2.64
2.90
3.12

1.91
2.36
2.73
3.02
3.25
3.53

1.00
1.22
1..39
1.53
1.65

1.00
1.24
1.43
1.58
1.70
1.85

1.00
1.50
2.00
2.50
3.00

1.00
1.50
2.00
2.50
3.00
3.50

consistent with itself. It predicts that the ionization
energies shall vary as a function of the number e of
electrons escaping.

The self-consistent ionization energies are then ob-
tained by inserting the ionization energies just calcu-
lated into Eq. (18) and starting all over again. As is
the usua, l procedure for getting any self-consistent re-
sults, the iteration process is repeated until the output
ionization energies finally agree with the input ioniza-
tion energies. The self-consistent ionization energies
thus obtained are listed in Table III and also plotted in

Fig. 5. It should be noted that in Table III the excita-
tion energies are given in terms of Er/Et"", while the
abscissa of Fig. 5 is given in terms of Er/Er"" 'p.

In Table III, the first column gives the excitation
energy (in units of the 6rst ionization energy), and the
second column gives the ionization state. The third
column gives the nth self-consistent ionization energy
in terms of the 6rst spectroscopic ionization energy (e.g. ,
15.8 eV for argon), and it can there be seen that the self-
consistent ionization energies increase as the excitation
energy increases. The fourth column gives the ratio of
the eth self-consistent ionization energy to the 6rst
self-consistent ionization energy, while the fifth column
gives, for comparison purposes, the corresponding ratio
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FIG. 6. The ionization probabilities for Ne on Ne. The points show the experimental data. The solid curves are the theoretical ones
which follow from the uniform ionization energy assumption and a capture probability of one half. The dashed curves follow from the
self-consistent ionization energy assumption, also with a capture probability of one half.

for the spectroscopic ionization energies. A comparison
of column four and column 6ve shows that the self-
consistent ionization energies are, indeed, considerably
closer to the uniform ionization energy limit than they
are to the spectroscopic ionization energy limit. This, to
a great extent, justi6es the uniform ionization assump-
tion of I. Nevertheless, as can be seen in Figs. 6—8, the
differences between the ionization probabilities which
follow from the two assumptions considered here, con-
cerning the ionization energies, are considerably greater
than the experimental inaccuracies involved. There is no
doubt that the case of Ar+ on Ar follows the uniform
ionization limit rather than the self-consistent limit.
It is also clear that Ne+ on Ne agrees much better with
the self-consistent limit and that Ne+ on Ar lies part
way between the two. These points will be taken up in
greater detail in the next section.

IV. COMPARISON WITH EXPERIMENT

In this section, the predictions of the theory are com-
pared with the experimental results. In doing so, how-
ever, it must be remembered that the data thus far
obtained related to ion-atom collisions. Therefore, ac-
cording to Eq. (8), one would expect that the depend-
ence of the capture probability on the collision param-
eters would have to he empirically Gtted before a com-
parison could be made. In an attempt to avoid this
empirical aspect and thereby achieve a direct compari-
son of the ionization and statistical aspects of the theory
with experiment without benefit of any empirical adjust
meet zhateve~, the ionization probabilities are here
plotted as functions of n, the mean ionization state of
the scattered projectile. The reasoning behind this is as
follows. The excitation energy, as pointed out previously,
depends principally on the distance of closest approach,
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FIG. 7. The ionization probabilities for Ne+ on Ar. The points show the experimental data. The solid curves are the theoretical ones
which follow from the uniform ionization energy assumption and a capture probabliity of one half. The dashed curves follow from the
self-consistent ionization energy assumption, also with a capture of one half.

whereas the capture probability depends principa11y on
the time of collision which, in turn, depends (for a given
projectile) only on the incident projectile energy. Thus,
the various combinations of impact parameter and inci-
dent projectile energy which result in a given distance
of closest approach will result in diferent capture
probabilities. Consequently, plotting the ionization
probabilities as functions of n will tend to average out
the capture probability. This average capture proba-
bility should be one half, for collisions in which pro-
jectiles and target are of the same species. On the other
hand, for cases in which projectile and target are not of
the same species (e.g. , Ne+ on Ar), the average capture
probability should not be expected, on a priori grounds,
to be equal to one half. Nevertheless, in the comparison
of theory and experiment which follows, a capture proba-
bility of one half will be consistently assumed.

Caution Inust be exercised in interpreting the compari-
son with experiment, made in this manner, for small
values of n. Values of n less than one half are clearly
quite forbidden, unless the capture probability is greater
than one half. By the same token, values of n which are
close to one half undoubtedly select out from the data
those combinations of the collision prameters which
lead to higher-than-average capture probabilities fol-
lowed by relatively little excitation-induced. ionization.
For this reason, all discrepancies between theory and
experiment at values of n less than unity will be ignored,
even though some of the discrepancy might be very real
indeed.

In Figs. 6—8, the experimental ionization probabilities
are plotted as functions of n for the cases of Ne+ on Ne,
Xe+ on Ar, and Ar+ on Ar, respectively. Shown also, in
each of these figures, are the theoretical curves which
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Ar+on Ar

FIG. 8. The ionization probabilities for Ar on Ar. The points show the experimental data. The solid curves are the theoretical ones
which follow from the uniform ionization energy assumption and a capture probability of one half. The dashed curves follow from the
self-consistent ionization energy assumption, also with a capture probability of one half.

follow from the self-consistent ionization limit, drawn
as the dashed curves, and the uniform ionization energy
limit, drawn as the solid curves. Both sets of theoretical
curves have been plotted with the average capture
probability assumed to be one-half. The theoretical
curves are determined using Eq. (8) (with a=-', ) to-
gether with either Eq. (6), for the uniform ionization
energy case, or Eq. (7), for the self-consistent ionization
energy case. This, of course, yields the P„as functions
of the excitation energy. For each excitation energy,
n is then obtained, using the definition,

n=O

Figure 9 shows, for example, the dependence of n on
Er/E~""'& for the self-consistent ionization energy
case. With this dependence, the abscissa for the I'

curves can be re-expressed in terms of n. The experi-
mental curves are handled in the same way; for each
set of collision parameters, n is determined. In this way,
both theoretical and experimental values for the I'„
can be plotted as functions of n, despite the fact that the
theoretical values are initially determined as functions
of the excitation energy, while the experimental values
are determined in terms of the collision parameters,
usually the angle of scattering and incident energy of the
projectile ion.

When considering the discrepancies, apparent in Figs.
6—8, between theory and experiment, it should be borne
in mind that the agreement therein contained has been
achieved without benefit of any empirical adjustment
whatever, and, considering all the semiclassical approxi-
mations and simplifying assumptions made in the
derivations of the preceeding sections, both sets of
theoretical curves may well be considered as fitting the
data as closely as one would have the right to expect.
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Nevertheless, a discussion of the discrepancies will be
attempted.

First, consider the differences between the Ne+ on
Ne and Ne+ on Ar data, as shown in Figs. 6 and 7. Here,
it should be noted that the theory holds that the ioniza-
tion probabilities observed in a given species (Ne in this
case) should depend only on the excitation energy. The
ionization probabilities should, therefore, be independ-
ent of the target atom except, possibly, for a difference
in capture probability. To this end, it was assumed that
the Ne+ on Ne data were due to a capture probability
of one half; and indeed, the Ne+ on Ne data lies closest
to the self-consistent ionization energy curves with
capture probability one half. The capture probability
was then varied on either side of one half, in hopes that
a difference in capture probability could explain the
difference in the ionization probabilities when Ar was
used as a target instead of Ne. The results proved nega-
tive. A variation of capture probability on either side
one half made the peak heights of the theoretical curves
go Np, irrsiead of dotoN. In other words, the heights of
the peaks of the P curves are minimum for a capture
probability of one half. This negative result was not
unexpected, inasmuch as good agreement was achieved
in III for Ne+ on Ar by starting with the uniform ioniza-
tion energy curves and adjusting the capture probability.

Thus, it seems that the target atom has some effect
on the ionization energies, and argon as target seems to
cause the ionization energies to be independent of the
number of electrons escaping. As has been pointed out,
this effect does not lie within the framework of the pres-
ent theory. As a matter of fact, since only the self-
consistent ioization energies have been justified a priori,
the fact that the Ar+ on Ar data follows the uniform
ionization energy curves should also be considered as
anomolous. Possible explanations for this behavior are

(1) The possibility that the distribution-in-Zs (as
distinct from the distribution of Eg among the outer
electrons) is dependent on the target atom. A wider
half-width in the distribution-in-Ep tends to lower peak

I I I I I I I I 1 1 I 'I

0 R 4 6 8 IO IR 14 16 IS RO RR R4

& gE
ion, sP

FIG. 9. The mean ionization state n is here plotted as a function
of the excitation energy Ez in units of the Grst spectroscopic ioni-
zation energy. This dependence follows from the self-consistent
ionization energy theory with capture probability one half.
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FIG. 10. (a) The experimental ionization probabilities I of
the scattered incident particles are plotted vs the scattered inci-
dent angle for 25 keV Ar+ on Ar collisions. This data is reproduced
from Fuls et ol.' (b) The mean inelastic energy Q' measured by
Morgan and Everhart (Ref. 12) is plotted for this same case. The
circles show the experimental data and the solid curve is drawn
through them. The dashed curve shows the theoretical results
which follow from I assuming a constant ionization energy (in-
dependent of n and Ez) which is adjusted to force agreement at
large values of e. Finally, the broken curve shows the results of
the self-consistent ionization energy theory, with no adjustment
whatever.

heights. In this connection, see Table I of II (Ref. 9),
where the effect of a distribution-in-E~ was considered.
This effect is in the right direction and of the right
magnitude to make the self-consistent ionization energy
curves look like the uniform ionization energy curves.
The results obtained in II should, however, be regarded
as only qualitative, inasmuch as the distribution-in-E&
was there derived on the assumption that the excitation
energy was due to electron-electron collisions.

(2) A proximity effect. That is, there may be an ap-
preciable effect on the ionization energies if another
atomic system is nearby at the time of the autoioniza-
tion transition.

(3) The possibility that the division of excitation
energy between projectile and target may depend on
whether or not electron capture has taken place.

As a 6nal comparison of the theory with experiment,
Fig. 10 shows the inelastic energy for Ar+ on Ar collisions
which follows from the present theory. This is compared
with the experimental results of Morgan and Everhart. "
For each value of 0, n was determined from the experi-
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mental values for P„, shown in part a of Fig. 10. With
this, the excitation energy of the observed projectile
can be read off from Fig. 9, taking El""'P, the first
spectroscopic ionization energy for argon, to be 15.8 eV.
This excitation energy is then doubled to obtain the
over-all inelastic energy for the entire collision, which
is shown as the broken line in Fig. 10(b). Also shown are
the experimental curve (the solid line) and, for compari-
son, the empirical fit obtained in I (the dashed line),
assuming a constant ionization energy which was
adjusted so as to fit the inelastic-energy data at large
values. It should be mentioned, in this respect, that the
present agreement, shown by the broken line, was ob-
tained without empirical adjustment. It should also be
mentioned, however, that the self-consistent ionization
energy case was used in comparing the Ar+ on Ar data
which, as has been mentioned, follows the uniform
ionization energy curves. This was done because, as
mentioned previously, no theoretical justification has
been given for the uniform ionization energy limit. One
cannot, therefore, be sure of the exact values of this
ionization energy, other than that it would not be ex-
pected to differ greatly from the self-consistent ioniza-
tion energies. Thus, this uniform ionization energy has
been taken to be equal to El"" of the self-consistent
ionization energy theory. The closeness of the theoretical
to the experimental curve bears this out.

APPENDIX I

In Sec. II, P iN& (E&) was defined to be the probability
that when excitation energy E& is statistically distrib-
uted among the S electrons in the outer shell, e will
have enough energy to escape. This is given by the
limit, as e —+ 0, of number of ways in which Er/e units
of energy can be divided among X electrons such that
m, and only m, have enough energy to escape, divided
by the total number of ways in which Ez/e units of
energy can be divided among the S electrons.

To facilitate the counting, two quantities are intro-
duced, one of which was defined in I, and the other of
which is a generalization of a definition given in I.
First, E„(m) is the number of ways of expressing the
integer m as a sum of n nonnegative integers (where
1+2+3 and 1+3+2 are counted as two di8erent
ways of writing 6 as the sum of three integers. ) As
pointed out in I, E„satisfies the recursion relationships

E„i.i (m) =P E„(m—i),
i=0

(A1)
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Q.+i"(m) = 2 Q-"(m —i),
j'=0

(A3)

since taking the n+ 1st integer to be j (which takes on
values in turn from zero to r—1), the remaining n,

integers must add up to m —j.To start off the recursion
relationship, it is clear that

Qi" (m) = 1 for 0&m& r—1

=0 for m&r,
(A4)

since there is only one way of expressing an integer as
the sum of but one integer, and, if that integer is r or
greater, the defining condition is violated. This recursion
relation is solved by the following expression:

[m/~]

Q„"(m)= Q (—1)'~ E„(m ir), —
i=0

(As)

which is proven by induction in Appendix II.
Inasmuch as it wi11 be necessary to go to the limit of

very small cell size, the limiting expressions for m,
r))m will also be given:

E (m) —+ m" '/(n —1)! for m))0, (A6)

((m/r) —i)"—'
Q "(m) —+ Nr" ' Q (—1)'

i=0 i!(n —i)!
for m, r))n. (A7)

It is now possible to obtain the ionization probabilities
J' (~', first treating the "uniform ionization energy" io
which the energy needed by a given electron to escape
is independent of the number of electrons which escape.

After this, the results will be generated to the case
in which the ionization energy is a function also of the
number of escaping electrons. This latter has been
referred to as the "staggered ionization energy" case.

1. The Uniform Ionization Energy Case

I.et the ionization energy, which, in this case, is
independent of the number of electrons escaping, be
given by

E1011—y ~ (AS)

the solutions of which a,re given by

E„(m)=0 for m&0,

n—1 m+n —1
E„(m)= II (m+i)/(N —1)!=

i=1 m

for m) 0, (A2)

where is the binomial coefficient. Second,
m j

Q "(m') is defined to be the number of ways of expressing
the integer m as a sum of e nonnegative integers, all
less than r. This satisfies the recursion relationship
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Also Iet
Ep= m6. (A9)

Then, by a simple generalization of the result given in
III, the probability that ns units of energy statistically
distributed among S electrons will result in m electrons
having greater than or equal to the ionization energy is
given by

I'„i"'(m)

(g tn 1n—
K (j)Q& „'(m re —j)/K—v(m). (A10)
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The expression given by (A10) is easily interpreted. The
denominator K&(m) is the total number of ways in
which the energy Ez =me can be distributed among the
Selectrons. Clearly, the numerator must be the number
of ways in which e, and only e, electrons have energy
&~ r e. This is expressed as a product, one factor of which
is the binomial coeKcient, which gives the number of
ways that the m electrons which escape can be chosen
from among S electrons. In the sum which this bi-
nomial coefficient multiplies, K (j) is the number of
ways that the kinetic energy jr, which is carried off by
the escaping electrons, can be distributed among them.
This multiplies Q& „'(m rm j),—whic—h is the number
of ways in which the energy which remains with the
E—e electrons which stay being can be distributed
among them, remembering that all these electrons must
have energies &~re. The energy which these electrons
share is the excitation energy mc minus the energy mr ~

needed just to free n electrons and minus also the excess
energy jc given them in the form of kinetic energy. The
sum, taken over all possible excess energies, adds up the
number of ways associated with each of the latter.

Going now to the limit e ~ 0, the sum in Eq. (A10)
becomes an integral and, using the limiting expressions
given by Eqs. (A6) and (A7), the following result is
obtained:

0

G ROUND
STAT E
ENERGY

p. (Since, of course, p —e will be an integer whenever p
is.) Equation (A11) can be simplified somewhat to

[p,—n,—x]

~!(x—n —~)!

Xx"—'(p —e—x—f)~—"—'dx. (A13)

The integrals in (A13) can all be evaluated using the
standard formula,

a n!nz!
x"(a—x)"dx= — a"+~+' (A14)

(m+m+1)!

(e—1)!

to give, after a little regrouping and canceling, the final
expression for P„( &:

P (X) (E /Eion)

i 0 i!(S—e—i)!

where

IJ, =m/r= Ep/E"",
x=j /r =excess kinetic energy/E"". (A12)

These are clearly the quantities of physical interest.
Note that the upper limit of the summation in the in-
tegral depends on the variable of integration x. This
makes the integrand change discontinuously as p—m —x
passes through integral values. The functions I' '~'
will, however, be continuous functions of p, although the
slopes will change discontinuously at integral values of

for e+k& Ep/E"" &~ v+k+1,

which is Eq. (6) in the text. Note that Eq. (A15) yields
a different functional form for I'„'~' in each integral
range of Er/E"".

2. The Staggered ionization Energy Case

Consider, now, the case in which the ionization energy
is a function of the number of electrons escaping, Denote
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by E ""the ionization energy when e electrons escape.
Note that E ""is riot, the energy needed to remove the
nth electron. It is the energy per electron needed to re-
move e electrons. Before a mathematical expression can
be obtained for I' (~' in this case, it is necessary to first
decide which distributions will lead to the various ioni-
zation states. This is by no means an easy classification
to make. To make the calculations tractable, the distri-
butions are classified as follows: A gives distribNHom ziO
lead to the loss of n electrons if n electrons have energy
&~8 ""white the remoimmg S—rl huee energy ~&8~1"".
That this classification is reasonable, but not exactly
correct can be seen by reference to the illustration Fig.
11.Parts (a) and (b) of this figure clearly are distribu-
tions that contribute to I'3. Case a leads to no difficulty
at all. Three electrons have energy greater than E3""
while all the rest have energy less than Zz"". Case (b)
requires a bit more consideration, for here, four electrons
have energy greater than E3"".However, before all four
electrons could escape, they would all need more than
E4"".Hence, the electron with energy E3" (E(E4""
will have to remain behind. (Obviously, if all four cannot
escape, the one with the least energy willremain behind. )
Case c, however, points up the inexactness of the classi-
fication scheme. Here, again, four electrons have energy
greater than E3"". Two of these four have energy
E&""(E&84"" and one of these must be considered
to be one of the three electrons with energy greater
than Zz" (and, therefore, to escape), while the other
must be considered to be the one with energy less than
E,"n (and, therefore, remain behind). Clearly, the one

with greater energy will actually escape and the other
will remain behind. Nevertheless, according to the cri-
terion just defined, the roles of these two electrons can
be interchanged and the requirements still satisfied

(i.e., the electron with the smaller energy can be one
of the three which escape). Therefore, among distribu-
tions of this type, the number of ways of achieving
threefold ionization is overcounted by a factor of two.
It would, at this stage, be too difficult to employ a
condition which would not overcount and, fortunately,
the number of distributions which present this problem
constitute only a small percentage of the total.

Now, the fraction of the total number of ways of
dividing up m units of energy such that m have energy
&~E ""=r„ewhile E—m have energy ~&K„+1""——r„+,e
is, by analogy with the uniform-ionization energy case,

Defining

p.„=rn/r„, x=j/r, R„=r„/r„+i, (A17)

and going on to the limit ~ —+ 0:

p (/z/) —
I I(p // —i/(N 1) [}—[R n+i /z/—(Nq

kn&

and

(n —1)!

)& ((zz —n —x)R„—i)"—"—'dx

/zn +T/+n q Rn +n /+n+1 (A19)

zzn "+zE"
xI1—

for h &~ (Er—nEn"")/Ln~i"" &~4+1, (A20)

which is Eq. (7) in the text.

APPENDIX II

Here, Eq. (A5) is proved by induction. Assume that
for some n, Eq. (A5) is true; then, by the recursion
relationship Eq. (A3),

[m/r) (n) ri-
= 2 (—1)'I . IZ &-(I zr j), — —(A21)

s=0

[m/r] (n m—zr

Q„+i"(nz)= P (—1)'I ( P E (nz —ir —j)
i=0 2 7=0

carrying out the indicated integrals, using Eq. (A14),
and simplifying, yields

Nq ~ (LV n—
(—1)'I

n)'

N) m —nr~

I 2 &-(j)
m

XQ~ n"-+&(nz —nrn —j)/It&(rn). (A16)

The superscript r„+i on the Q allows each of the N n- .

electrons which stay being to have energy ~&X~1"",
as required.

So far, the order of summation has been interchanged
and a sum over the range zero to r—1 expressed as a
sum from zero to m —ir minus the sum form r to m —ir.
Using, now, the recursion relationship Eq. (A1), which
defines the E's to simplify the first term in brackets on
the right-hand side of Eq. (A22), and redefining the
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variable of summation in the second, it is seen that ET =me among X electrons such that @ electrons escape
ls

[~L/r] S
Q„+,"(m)= P (—1)' (E„+i(m ir—)

i=.0 z I P E„(&)Q
En);=0

The factor
I I

gives the number of ways in which the
k~)

n electrons which escape can be chosen from among
the X electrons in the shell. The factor E„(j) gives the
number of ways in which the excess kinetic energy j
can be distributed among the rl, electrons which escape,
and the factor Qv „""+'(m nr„—j) g—ives the number
of ways in which the residual excitation energy can be
distributed among the E—e which remain behind, with
the requirement, of course, that all have less than the
(m+1)st ionization energy E„+i""——(r+1) e. The resid-
ual excitation energy,

E//, (m —Nr——„—j)e,

m—(i+1)t
E„(n—(i+1)r—j)}

[m/r]
= P (—1)' I(E„+i(m—ir)i)

—E„+i(m—(i+1)r)},
[m/r]

Q„+i"(m)= g (—1)'I E„~i(m—ir)
i=0 Z

[m/r]+1

(—1)'I IIt +i(m ir), (A—23)
i=1 [,i—1)

/n)
Q„~,'(m) = (—1)'I IIV„~i(m)

[,0) is the difference between the over-all excitation energy
Er and the energy (nr„j)e —carried off by the n
escaping electrons. This latter energy is the sum of the
kinetic energy je shared by these e electrons and the
energy eE„""=mr & needed just to ionize them.

The product of these three factors,
I IE (j)
[,e)

Q/1/ „"~+'(m er„—j), i—s then the number of ways of
distributing energy E~=me among X electrons such
that e electrons escape and the remaining Ã—e share
the energy Ez (m —nr —j——) e. The summation in Eq.
(A16) is a sum over all possible divisions of energy
between the two groups of electrons, in order to obtain
all possible distributions in which e electrons escape.
I
The denominator E~(nz) in Eq. (A16) is the total num-

ber of ways, without restriction, of distributing the
energy Ez so that the ratio is that fraction of the total
number of ways in which e electrons escape, i.e., the
ionization probability F„[~](m).] From the above dis-
cussion, it follows that when energy Ep is distributed
among X electrons and e electrons are ionized, the rela-
tive probability that the remaining electrons will share
the residual excitation energy Ez is given by

[m/r] tL) tt
+ P (—1)'

I

— E„+i(m ir)—
i=1 i) 2—1

( 1 ) [m/r]+1

I m/r])

XE„+i(m—[[m/r$r r) . (A24)—

The first term in (A24) is just that term of the first
sum of (A23) for which i=0. The second term in (A24)
contains all terms in both sums of (A23) for which i
varies from 1 to Lm/r]. Finally, the last term in (A24)
is just that term of the second sum for which
i= (m/r]+1.

Now, m —fm/r]r —r is always less than zero, so that
the last term of (A24) vanishes Lsee Eq. (A2)]. Also, by
a little algebraic manipulation, it is seen that

Therefore, Eq. (A24) reduces to

/ m+1~
Q-+i"(~)= & (—1)'I . IE;,(m —ir), (A25)

i=0 $

which proves the theorem for n+1.

APPENDIX III

Consider, now, the distribution of residual excitation
energy E&, which resides with the electrons that are not
ionized, as a function of the over-all excitation energy
Ep and the number of electrons which are ionized. Ac-
cording to Eq. (A16) and the discussion which follows

Eq. (A10), the number of ways of distributing the energy

T(e,EP1 E~)= (ET nE„"" FP)" '— —
L&11/& +1""7 (—1)' EB

x
i!(/7—n —i)! E„+i""

(A26)

where again factors have been omitted which multiply
the entire distribution a,s a scale factor. This is Eq. (18)
of the text.

E„(j)Q& ~"~+'(m —er„—j) .

This is the distribution-in-E. The factors
I

and
(e

E//(nz) have here been omitted since only the unnormal-
ized distribution-in-Eg are desired. Substituting in the
limiting expressions Eqs. (A6) and (A7) for the two
factors yields


