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Theory of the Superconducting Transition Temperature and Energy Gap
Function of Superposed Metal Films
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A calculation is made of the transition temperature of a film sandwich composed of two thin superposed
films of different metals, only one of which is superconducting in bulk. Good quantitative agreement is ob-
tained with existing measurements of the dependence of the transition temperature on the thicknesses of
the two component films. The problem is shown to be mathematically equivalent to the simple one of the
energy levels of a particle in a one-dimensional square potential well.
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FzG. 1. Representative experimental curves taken from Hilsch
(Ref. 5) showing reduction in transition temperature from that
of bulk lead for a lead-copper film sandwich, as a function of the
component 61m thicknesses.

I. INTRODUCTION

A NUMBER of experiments' ' have been reported
recently measuring the superconducting transition

temperature of metal 61m sandwiches. In these experi-
ments, the sandwiches are composed of films of two
di6'erent metals evaporated one on top of the other,
only one of the metals being superconducting in bulk at
laboratory temperatures. In summary, such experiments

show that the transition temperature of a given film of
superconducting material (s) is decreased by the super-
position of a normal metal (n). The amount of the
decrease depends on the thicknesses D, and D„of the
two components. For D, much greater than a certain
characteristic length $., the transition temperature T, of
the sandwich drops with increasing D„, but approaches
a Rnite limiting value as D„becomes greater than
another characteristic length $„; whereas for D, much
less than $„T, drops rapidly below experimental de-
tection as D„approaches („.A representative plot of
such behavior is given in Fig. 1.Values of $. and („are
typically 10 '—10 ' cm. The various experiments'-'
differ in details, such as in geometry and choice of
metals, temperature of the substrate during evapora-
tion, and range of thicknesses investigated, but all show
the general effects indicated above.

Interspersed with the experimental publications,
several authors' ' have attempted theoretical explana-
tions of the phenomenon. Common to their approaches
is the notion that superconductivity in the bulk is
characterized by an electron pair correlation, with an
associated coherence distance typically of order 10 4-

10 ' cm, and that therefore this correlation should also

' H. Meissner, Phys. Rev. 117,672 (1960);IBM J.Res. Develop.
6, 71 (1962); Eighth International Congress on Low Temperature
Physics, London, 1962 (to be published).

~ P. H. Smith, S. Shapiro, J. L. Miles, and J. Nicol, Phys. Rev.
Letters 6, 686 (1961).

3A. C. Rose-Innes and B. Serin, Phys. Rev. Letters 7, 278
(1961).

4 W. A. Simmons and D. H. Douglass, Jr., Phys. Rev. Letters
9, 153 (1962).' P. Hilsch, Z. Physik 167, 511 (1962); P. Hilsch, R. Hilsch,
and G. v. Minnigerode, Eighth International Congress on Low
Temperature Physics, London, 1962 (to be published).

s R. H. Parmenter, Phys. Rev. 118, 1173 (1960).
7 L. N. Cooper, Phys. Rev. Letters 6, 89 {1961).
8 D. H. Douglass, Jr., Phys. Rev. Letters 9, 155 (1962).' P. G. de Gennes and E. Guyon, Phys. Letters 3, 168 (1963).
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extend a similar distance into a normal metal in contact
with a superconductor. It then becomes plausible that
superconducting films of thickness less than or com-
parable to a coherence distance will have their transition
temperature lowered by superposition of the normal
metal, and that this lowering should be independent of
normal metal thickness for D„ larger than a coherence
distance.

The argument of Cooper7 then, is that the correlation
introduces a nonlocality into the electron pair wave
function, so that pairs sample an eRective attractive
potential which is simply the spatial average of the
potentials on the two sides of the interface. Assuming
for simplicity the normal metal to have BCS coupling
constant (X(0)V]„=0,Cooper is led to write

LX(0)V],rr ——D,LN(0) V],/(D, +D )

as the eRective coupling constant, and

T,=1.140D exp( —LX(0)V],ii '}

as the transition temperature for the film complex. If it
is kept firmly in mind that these formulas can be valid
only for D, and D„both much less than the coherence
distance, that is (as we shall see) only for the thinnest
films, reasonable qualitative agreement with the existing
data can be obtained.

Douglass, ' on the other hand, chooses to regard the
normal 61m rather as a superconductor with free energy
higher than the normal state, and hence an "imaginary
critical field. "By making guesses as to the temperature
dependence of such a quantity, and minimizing a phe-
nomenonological total free energy expression for the
61m complex, he arrives at a formula which can be
fitted to the data of Simmons and Douglass. 4 Several
objections can be raised to this analysis, however. The
most serious is that fundamentally no such free energy
minimum exists corresponding to the continuation of
the superconducting state above the normal state (in
the absence of a magnetic field). If the minimum did
exist, the transition itself could not be of second order
as observed. Douglass also confuses a metal which is at
a temperature above its transition temperature and
hence in the normal state, with a metal having a repul-
sive electron-electron interaction and hence incapable
of superconductivity at any temperature no matter
how low.

The calculation of de Gennes and Guyon proceeds
in a more basic manner by generalizing Gor'kov's"
Green's function treatment of superconductivity to the
case of a position-dependent electron-electron inter-
action, with a consequent spatial variation to the energy

gap function A(r). These authors construct the linear
homogeneous integral equation satisfied by h(r) at the
transition temperature T, of the 61m complex. Although

they do not pursue the task of including the boundary
conditions on A(r) at the rs s-interface so as to obtain
explicitly the eigenvalue of the integral kernel (the
eigenvalue in this case being T.), they are able to draw
some general qualitative conclusions which reproduce
certain features of the experimental data, in particular
those of Hilsch. '

In the present paper, we adopt the point of view of
de Gennes and Guyon, ' and extend their treatment so
as to obtain a complete solution for A(r) and T,. By
transforming their integral equation into a differential
equation and including the proper boundary conditions,
we are able to make a simple one-to-one correspondence
between the superposed film problem and the quantum
mechanics textbook example of the energy levels and
wave functions of a particle in a one-dimensional po-
tential well. All the observed features of the 61m sand-
wich sketched in the opening paragraph can then be
intuitively understood from the well-known results for
the analog. Detailed calculations can easily be carried
out, however, for quantitative comparison, and for those
experiments where sufficient data is supplied, good
agreement is obtained without the use of adjustable
parameters.

To make the analysis tractable, we have resorted to
an idealized model of the 61m sandwich. The chief
assumption is that the two metals are identical in the
normal state, that is, have the same Fermi velocity ~p
and density of states at the Fermi level 1V(0), the same
residual resistivity, and the same Debye temperatures
8~. All differences between the metals we assume to be
contained in the BCS electron-electron interaction
parameter V, which we take to be a uniform constant
throughout a given metal. As a corollary assumption,
we take no explicit account of possible surface scatter-
ing, except in so far as it is included in the measured
mean free path.

In Sec. II, we treat the general problem of the transi-
tion temperature of a system with a spatially-varying
electron-electron interaction, obtaining the equations in
a particularly transparent form from which the simple
physical analog presents itself. Section III then
specializes to the case of two superposed thin 6lms and
presents detailed comparisons with the experimental
data. An Appendix supplies an alternative and more
detailed derivation of the integral kernel than that of
de Gennes and Guyon. '

II. GENERAL FORMULATION AND
PHYSICAL ANALOGUE

As our starting point we adopt the linear homogen-
eous integral equation of de Gennes and Guyon' for
the gap function at the transition temperature of the
sandwich,

'sL. P. Gor'kov, Zh. Eksperitn. i Teor. Fix. 34, 735 (1958)
Ltranslation; Soviet Phys. —JETP 7, 505 (1958)g.

A(r) = dsr'E(r, r') h(r'),
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and

where the kernel is specified potential well. The observed behavior of T,
with varying film thicknesses as sketched in the intro-
duction can readily be understood in terms of the well-
known dependence of a bound level on the width of
the well.

X(r)—= (2m) ' d'ke'"'x(knptk'/67rkiiT, ), (3)

X(s)—=4 (s+ss) —0(s),

III. SPECIAL CASE OF AN n-s FILM SANDWICH

A. SoIution and EigenvaIue Equation

with f being the digamma function. "
derivation of Eqs. (1)—(4) is given in
We proceed by rewriting Kq. (1) as

An alternative
the Appendix.

T,(r) =T„, 0&x&D, ; (10a)

We next specialize to the case of two superposed
thin films, one of a known superconductor,

A(r') LnPT, (r')/T, ]= d'r"X (r' —r")6(r"), (5)

where a local bulk transition temperature T,(r) has
been defined by

LX(0)V(r)]—'= Ln/1. 140ii/T, (r)]. (6)

We next introduce the function X(r),

and one of a metal which is not superconducting at
presently available laboratory temperatures, but which
we assume to have a nonvanishing attractive electron-
electron interaction and thus a small but nonvanishing
transition temperature,

T.(r) = T... —D.&x&0. (10b)

Solutions of Eq. (9) can immediately be written down:

Q(r) —enisle 0&x(D

X(r)=—(2x) ' d'ke'~'x '(Pk') (7)
where k, ,„satisfy

~+&~a D +ggo

with P—=Awpl/6irk&T, . Multiplying Eq. (5) on both
sides by X(r—r') and integrating over r', we find

g(r) = d'r'X(r r') Lnt T, (r')—/T, ]4(r') . (&)

x(—( V )a(r) = Ln[T, (r)/T, ]w(r), (9)

again plus boundary conditions.
Since Eq. (9) looks very much like a Schrodinger

equation, we can now make a direct mathematical
correspondence with the quantum motion of a particle
of energy Z in a potential U(r). We immediately identify
Lneii/T, (r) with L~'(r), Ln8D/T, with E, and x(Pk') with
the free particle kinetic energy k'/2m. Also A(r) corre-
sponds to the particle wave function, although we will

see shortly that they obey different boundary conditions.
The superconducting film problem, where we expect
T.(r)

~
~;.„&T,& T.(r)

~
~, , is thus analogous to that of

the lowest bound level of a "Bloch electron" in a

"See, e.g. , H. T. Davis, Tables of Higher Mathematical PNnctiong
(Principia Press, Inc, , Bloomington, Indiana, 1935), Vol. I.

Input since x(0) =0 from Eq. (4), the definition (7) is
ambiguous in that no specification has been given for
integrating around the pole of the integrand. However,
when we recognize that X(r) is just the Green's function
for the differential operator 7t(—pV'), it is clear that
specifying the contour of integration is equivalent to
choosing the boundary conditions satisfied by D(r).
More importantly, the identification of X as a Green's
function enables us to cast Eq. (7) into the differential
form

k, tank, D,=k„ tanhk„D„. (14)

Kquat. ions (4), (12), and (14) are sufficient to deter-
Hllne T .

'2 C. Caroli, P. G. de Gennes, and J.Matricon, J.Phys. Radium
23, 707 (1962)."P.G. de Gennes, Phys. Letters 5, 22 (1963).

7t(Pk ') =lnT„/T„—x(—Pk„')=LnT,/T«. (12)

We must now pick the appropriate boundary condi-
tions. As discussed by de Gennes and co-workers'""
we require that dA(r)/dx vanish at metal-insulator or
metal-vacuum surfaces, here at x=D, and x= —D„.
This condition insures that a single superconducting
film no matter how thin has virtually the same transi-
tion temperature as the bulk material. At the metal-
metal interface, however, we cannot choose h(r) to be
continuous and have a continuous first derivative, as we
would for a Schrodinger wave function. This is because
A(r) is proportional to V(r) LEqs. (1) and (2)] and is
thus discontinuous. On the other hand, h(r)/V(r) is
directly proportional to the Gor'kov Green's function
Q(rg (r)), which can be interpreted as the wave func-
tion of a correlated pair and which should obey the
standard continuity conditions of Schrodinger wave
functions. Thus dA/hdx is continuous, even though 8
and its first derivative themselves are not. Applying all
boundary conditions leads to the final solution

h(x) ~ U, cosk, (x—D, l/cosk, D„0&x&D„
~ V„coshk„(x+D„)/coshk„D„, D„&x&0, —

(13)
and
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B. Comparison with Experiment

Of the various experimental investigations, the only
one to supply mean free path information is that of
Hilsch, ' using lead and copper evaporated at liquid He
temperatures. Thus, we can attempt a quantitative
comparison of our predictions with these measurements
only. Other investigators' 4 find qualitatively similar
results.

As a preliminary step, we replace the function x(s)
of Eq. (4) by the simple expression

4(l+ls) —4(l)»[1+( 's/4) j,
~ (~'/4) ln(1ys), s&0,

the two being identical for s((1.The functions are both
plotted in Fig. 2, and in the region of interest ~s~ &1,
the approximation is seen to be adequate for present
purposes. Since the final results are comparatively
sensitive to this approximation, the correct expression
(4) should be used when more precise data becomes
available, especially for lower values of T,. This replace-
ment, however, enables us to solve Eqs. (12) explicitly
and find

(1e)

We will also assume throughout that the "normal"
metal has a transition temperature sufficiently below
the conventional laboratory range that (T,„/T,)4/ '«1.
Although accurate measurements should be capable of
determining T,„, or at least setting an upper limit,
satisfactory agreement with present experiments is
found by neglecting T, altogether.

The first situation we investigate is that of the normal
metal film being very thick, k„D„))1,so that T, no
longer depends on D„. We can then combine Eqs. (14)

N~ 0

—.:+(|/z+ |/zz)-. +(&/e)

. :1o(tk 4 z) z- o
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FIG. 3. The solid curve represents reduced transition tempera-
ture t of a lead-copper sandwich versus reduced lead Glm thickness
d„as predicted theoreticaily from Eq. (17).Data points are taken
from Hilsch (Ref. 5).

where we define the reduced variables

Using the value t//, =0.50&(10s cm/sec for Pb, and
extracting values for l, from Fig. 8 of Ref. 5a, expression
(17) is plotted in Fig. 3. Data points are taken from
Fig. 5 of Ref. Sa on quartz-Cu-Pb sandwiches; the
observed differences in T. between these and Cu-Pb-
Quartz sandwiches remain unexplained. Error flags are
assigned by the present author, solely on the basis of
scatter and uncertainty in reading data from the pub-
lished graphs; no estimate of uncertainty in D, or I, is
made in Ref. 5. Under the circumstances, agreement
between theory and experiment must be considered
good.

To make similar comparisons at finite D and fixed
D„we need not go to the trouble of numerical computa-
tions. Hilsch states that his data are well-fitted by the
formula

t=1—(1—8)(1—e—n / )

where (i= t(D„~ ao), and a —100 A. Rearranging Eqs.
(14) and (15) into the form

and (15) to write

d, = (~/2)(1 —t)-'/' cot [(2/~)(t-' —1)'/'j (17)

FIG. 2. The function x(s) =f($+sss) —P(~~) and the aPProxi-
mation X(s)—InD+ (st/4) j, s&0; (ss/4) in(1+s), s&0; plotted
versus s.

~'k, tanhD„/( -'
t= 1+—

4 tank, D,
(20)
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&=[1+(~'/4)(D-/D. )j ',
whereas Cooper's formulas can be rewritten as

1= (1.140D/T„) n.tn*.

(23)

Although in both cases t decreases monotonically from
one with increasing D„/D„ the initial decrease being
linear, the differing functional dependence between
Eqs. (23) and (24) should be resolvable experimentally.
However, in a more exact treatment which includes the
diRerences in vp and l of the two metals, we feel that
the coeflicient of D„/D, in Eq. (23) would probably be
modified to include these parameters.
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and introducing 8, which we have just found. we can
predict rather well, we arrive at

t 1 —(1/8—)(1—8) tanhD„/$, (21)

where here ( is to be evaluated at t=0, and is roughly
150 A. As also noted by de Gennes and Guyon, agree-
ment between formulas (18) and (21) is reasonable,
with the identification a ~ —,'(.

We may also remark that all measurements' ' besides
those of Hilsch were performed on films evaporated
onto room-temperature substrates, a procedure which
has been criticized in the past as possibly allowing inter-
diRusion of the two metals, which, in turn, would
further alter the transition temperature and make inter-
pretation ambiguous. In fact, Rose-Innes and Serin, '
evaporating tin onto gold plates, noted that the T, of
certain of their samples was sharply reduced if they
were later reexposed for a few minutes in the evaporator
to the (empty) heated boat; this result they claimed
to be the interdiRusion eRect. Nevertheless, it is much
more likely that the brief heating of the sample resulted
in annealing of defects than in interdiffusion, and such
an annealing would account, in our theory, for their
observations. The particular samples they select for
treatment are those with tin thickness D, comparable
to f according to our conclusions in Fig. 3, since slightly
thinner samples have much lower T,. Annealing so as
to increase the mean free path would change the reduced
thickness d„and hence T„in the same way as an actual
decrease in D„' this is precisely Rose-Innes and Serin's'
result. It emphasizes the need for simultaneous T, and
resistivity measurements in future experiments; the
temperature of the substrate during evaporation or
subsequent storage is probably irrelevant except as a
tool for varying /. Exposure to air, however, can be
quite serious. '"

Finally, we should make a comparison between our
predictions when D„,((e and those of Cooper. r In this
limit, we 6nd

where u(r —r,) is the scattering potential of an impurity
at Site j, 13 iS the ChemiCal pOtential, and os= (2m+1)3rT
with v an integer. Then Abrikosov and Gor'kov" "have
shown that the Green's function averaged over all im-

purity configurations is

g„(r,r') = (23r)
—' d'pe'&" "'6 (y) (A2)

g„(p)= [it0—e(p)+i sgnte/2r7 '. (A3)

Here e(y)=—(ps/2m) —p and r is the scattering time to
be defined shortly.

Furthermore, at the second-order transition point,
the impurity-averaged gap function is sInall and satisfies
the equation"

where

A(r) = d rs'v(r) Q(r
—r')A(r'), (A4)

Q(r —r') = (2x)—3 d3~eis (r—r')Q(») (AS)

Q(»)=T P (27r) ' d'pQ (y, »—p). (A6)

The kernel function Q„obeys the integral equation'3

Q-(y, »—y) =(:-(p)g-.(»—y)

& 1+ (2 ) ' d'O'I (y —y') I'Q. (y' »—y'), (A7)

where e is the impurity concentration.
Since N(r —r;) is quite short-ranged, we make the

simplifying approximation that 33(r—r;) ~ N83(r r;);-
then in Fourier space 33(p—y') is just the constant 33,

and the scattering time becomes

1/2r=3rllV(0) Ills.
» L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 57, 1407 (1959)

Ltranslation: Soviet Phys. —JETP 10, 998 (1960)g.
'6 A. A. Abrikosov and L. P. Gor'kov, Zh. Eksperim. i Teor.

Fiz. 55, 1558 (1958) t translation; Soviet Phys. —JETP 8, 1090
(1959)g.

APPENDIX

We here supply a derivation of Eqs. (1)—(4) as an
alternative to that of de Gennes and Guyon, ' which
makes clearer the nature and validity of the approxima-
tions used. The essential point is that we can borrow
extensively from the analysis of Gor'kov" concerning
the equation determining the gap function at the transi-
tion temperature in the presence of a dilute concentra-
tion of randomly distributed impurity scattering centers.
We first define G„(r,r') as the one-electron Green's
function in the presence of a particular configuration of
impurities, so that it satisfies

1
i&v+ P+P; N—(r r;)—+pG„, (r, r') =P(r—r'), (A1)

2m
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Equation (A/) can then be solved algebraically, and Q„
substituted into Eq. (A6) to obtain

Q(q) = T 2 &(tI)/L1 —~l ~l'~(tI)3, (A9)

where

The divergence in the sum over integers v can be cured
by subtracting Q(0) from both sides; a cutoff is then
introduced into Q(0) in the usual way. "We thus obtain

Q(q) —Q(0) =N(0)P, {Ll
2v+1l+ (ql)'(6nTr) '

X(1j27rTrl2v+1l) 'g ' —l2v+1l 'l (A13)
&(a) = (2w) ' d'p(:-(It)(:--(tI—It) (A10)

Substituting expression (A3) into (A10), the integra-
tions may be carried out, provided q«pv, with the
result that

E(q)= (2srN(0)/uvq) tan '(evq/L2lcol+(1/r)]). (A11)

If we only consider those values of q for which

q«(uv/2nT) '+l ', where l=nvr is the mean free path,
then we can expand the tan ' and find

Q(0) =N(0) ln1. 148D/T. (A14)

When 2mT~&&1, the "dirty' limit which is almost
always the situation in thin film experiments, the term
2srTr

l
2v+ 1

l
may be neglected in (A13), and so finally

Q(q)-Q(0)
——N(0) gL—'+—'(uvlq'/6rrT)] —P(—')}, (A15)

2- —1 where P is the digamma function. "
Combining Eqs.

Q(tI) =N(0)nT p leal+ —
l

. (A12) (A4), (A5), (A14), and (A15) just reproduces Eqs. (1)—
6r&1+2lllr (4) of Sec. II.
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High-Temperature Dielectric Constant of Potassium Chloride*
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A dispersion of the dielectric constant of zone-puri6ed potassium chloride has been observed at tempera-
tures above 650'C and in the frequency range between one and ten megacycles/sec. The data are inter-
preted in terms of the Debye equations and the assumption that the dipoles are vacancy pairs. The activa-
tion energy for reorientation of a vacancy pair is found to be 1.04~ ' eV and the heat of formation of a
vacancy pair is found to be 1.34+"7 eV. These quantities have been calculated by Tharmalingam and
Lidiard as 1.15 and 1.28 eV, respectively. The dielectric data yield, however, an absolute number of vacancy
pairs that is at least a factor of ten larger than is acceptable. Interfacial or Maxwell-Wagner types of
polarization are excluded as explanations of the data.

INTRODUCTION

ei ——e„+(e,—e~)/(1+co'r'),

41I 0' (es e~)coT
+

co 1+co T
62=

where v is the relaxation time of the Debye dipoles and

*Partially supported by the U. S. Office of Naval Research and
the U. S. Air Force Office of Scientific Research.

'H. Frohlich, Theory of Dielectrics (Clarendon Press, Oxford,
1949), p. tt'0.

'HE dielectric constant of pure potassium chloride
at high temperature and in the frequency range

between one and ten megacycles/sec exhibits a rather
simple behavior. The real and imaginary parts of the
dielectric constant, e& and e2, are described by the
Debye equations' and the expected contribution to 62

of the frequency-independent volume conductivity 0-.

co is the angular frequency. According to the simple
Debye theory, the difference between the low-frequency
dielectric constant e, and the high-frequency dielec-
tric constant e„ is given by

e, e„=47rrt tt—'/3k T, (3)

EXPERIMENTAL PROCEDURE

The potassium chloride crystals were prepared from
reagent grade powder by zone re6ning in an atmosphere
of chlorine. ' Twenty or more zones were passed through
the salt which was contained in an open silica crucible.
The zone speed was approximately 1 in. /h. The dc
conductivity of the zone-refined salt is illustrated in Fig.

2T. M. Srinivasan, Technical Note No. 3, AFOSR Contract
49(638)-529, University of Illinois, 1962 (unpublished).

where e is the number of dipoles per unit volume and
p, is the dipole moment.


