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Moment Calculations in Lattice Dynamics. L fcc Lattice with
Nearest-Neighbor Interactions
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A new method, using a high-speed computer, is introduced for the evaluation of large numbers of spectral
moments for crystals with short-range interactions. As an example, the first 34 even moments are obtained
for the fcc lattice with nearest-neighbor central interactions. Accurate algebraic expressions for the thermo-
dynamic properties have been obtained, at all temperatures, by the use of the Pads approximant on the
high-temperature moment expansions, together with three terms in the low-temperature expansion. To
estimate the order of magnitude of the errors to be expected, the method is applied to a linear chain and the
results compared with the exact solution. The fractional error has a maximum of order 2&(10, and is less
than 1)&10 ' for much of the range. An approximation to the spectrum of the fcc lattice is derived by an
orthogonal polynomial expansion.

INTRODUCTION

'UCH work has been carried out to determine the
- ~ spectra and thermodynamic properties of crystal

models since Born' first proposed his theory of lattice
vibrations. As the number of models which have been
solved exactly' is small, most of this work has been con-
centrated on the approximate methods.

These methods fall into two main groups, the
sampling methods and the exact series expansions. The
sampling methods enable a histogram approximation of
the frequency spectrum to be obtained by evaluating
the frequencies at a finite number of points in the
Brillouin zone. Blackman' first developed this method
by using hand calculations. The advent of digital com-
putors, in the 1950's, led many workers4 ' to carry out
extensive sampling calculations. The speed at which
these calculations could be performed enabled the
accuracy of the spectrum calculation to be increased by
an order of magnitude. This provided a simple means
of investigating the properties of models, and little
attention was given to its possible application to the
exact series expansion method.

The sampling methods require the spectrum to be
stored, numerically, in the form of a histogram. There-
fore, numerical techniques have to be applied to obtain
the thermodynamic properties, and the accuracy of the
final result is not easy to assess. This makes it dificult
to compare related models.

Exact series expansions can be derived at high and
low temperatures. At high temperatures, Montroll' '

'M. Born, Atomtheorie de festen Zustands (Teubner, Leipzig,
1923).

2E. W. Montroll, in Proceedings of the Third Berkeley Sym-
posigm on Mathematical Statistics and Probability (University of
California Press, Berkeley, California, 1956), Vol. 3, p. 209.

'M. Blackman, Proc. Roy. Soc. (London) A148, 365 and 384
(1934).

4 E. H. Jacobson, Phys. Rev. 97, 654 (1955).' C. B. Walker, Phys. Rev. 103, 547 (1956).' W. C. Overton, National Research Laboratories Report 5252,
1959 (unpublished).

r K. W. Montroll, J. Chem. Phys. 10, 218 (1942).
8 E. W. Montroll, J. Chem. Phys. 11, 481 (1943).' E. W. Montroll and D. Peaslee, J. Chem. Phys. 12, 98 (1944).
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has expanded the thermodynamic properties in terms of
the moments of the frequency spectrum. He obtained,
by analytical methods, the first seven even moments for
a number of ordered cubic models. The moment expan-
sions have none of the disadvantages of the sampling
methods and provide the added attraction of an
algebraic expansion for both the spectrum and the
thermodynamic properties. The main reasons why this
method has not been inore widely used are (a) the
difficulties in obtaining higher moments, and (b) the
divergence of the series expansions when 0'/T=27r
(where O~=kv, „,/k and T is the temperature), i.e., at
low temperatures. The low temperature series expan-
sions are usually restricted to two terms, due to the
complexity of the integrals involved.

In this paper a new method is described based on the
equivalence, under certain restrictions, of the moments
on a finite lattice with those on an infinite lattice. The
use of an electronic computer enables the exact value
of large numbers of moments to be calculated on the
finite lattice, and thence for an infinite lattice. This
overcomes difficulty (a).

The divergence of the thermodynamic expansions
when 1/T becomes large has been overcome by the use
of Pade approximants. " ' This, together with only one
term in the low-frequency expansion, yields an accuracy
of over one part in 10' at all temperatures. At very low
and high temperatures the accuracy is much better. The
spectrum can be expanded in an orthogonal set of poly-
nomials whose coeKcients are linear combinations of
the moments. The optimum convergence of this expan-
sion can be obtained by first obtaining the position and
behavior at the critical points in the spectrum, "' and
subtracting their contribution from the moments of the
spectrum.

At present the fastest computers enable about 100

"G. A. Baker, Jr. , Phys. Rev. 124, 768 (1961)."G. A. Baker, Jr., J.L. Gammel, and J.G. Wills, J.Math. Anal.
and Appl. 2, 21 and 405 (1961).

'2 C. Domb and C. Isenberg, Proc. Phys. Soc. (London) 79, 3
and 509 (1962)."L.Van Hove, Phys. Rev. 89, 1189 (1953).

M. Lax and V. L. Lebowitz, Phys. Rev. 96, 3 (1954).
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even moments to be obtained. These calculations require
the use of multilength working, on the machine, if all
of the information contained in this number of moments
is to be extracted. The method is applicable to lattices
with complex unit cells and to models with interactions
extending to 30 nearest-neighbor atoms. (This limit is
set only by the speed of the machine. ) Moments could,
thus, be derived for all but ionic crystals, where the
interactions are long range. The method can also be
extended to yield moments on the disordered lattices.

THEORETICAL ANALYSIS

In this section it is shown that under certain condi-
tions the spectral moments on a 6nite lattice, with
cyclic boundary conditions, are equal to those on the
infinite lattice.

Consider a lattice made up of E)&&V)&X cells each
defined by vectors a, (s= 1, 2, 3). Then the position of
any cell is given by

in which C is the total potential, n and n' are two direc-
11 .

tions in the crystal, zz
~

is the displacement of the Kth

atom in the 1th cell in the rr direction, and

lq
KK ) t lq (0

Bu.
i

idzz.
i41

where this derivative is evaluated at equilibrium. The
derivation of equation (7) assumes that the forces are
short range, and cyclic boundary conditions are imposed
on the lattice. The 2eth spectral moment of this lattice
is de6ned by

(&)= —Z '"(8)
3rX' ~.~

(10)

where &v, is the jth root of (7). Since the trace of the szth

power of a matrix is equal to the sum of the powers of
its roots we have

where

3

~=+ h, b. h, = 1, 2, X,
1

a,

(3)

Let zlz„(lV) be the 2zzth moment of the spectrum for the
6nite lattice in which there are interactions between cells
for which /, ~&T (s= 1, 2, 3). Then we shall show that,

zz2„(iV) =zzz„(~) providing n(X/T

If b, are the vectors of a cell in reciprocal space it is con-
venient to define

1 — )8
zl, „(X)= Q Tr D"~

3'& s

z.-P') = —2 2'D-, -;D-a-l" D- -, (12)3'' ~

where the prin1ed sum indicates a sum over all rI, indices

i, j, k, ~ -m of the cyclic product of elements of the D
matrix, in which the ith jth elements is D, , Letting

denote the cyclic product of elements rr,n, this
becomes

2' 3

8=—Q h.b„
z z-P')=

3rE'
(13)

whereupon

There are r particles in each cell of which ~th and ~'th are
typical with masses M, and M„., respectively, then the
secular equation for the frequencies of the normal modes
of this lattice are given by"

(8)"
4K'J

Assuming that interactions occur only between
atoms for which

l„~&X s=1, 2, 3

and substituting into (13) for D, , from (7) we obtain

1
i z. (&') = 2 2'll (~.~") '"3'' ~

pr (1
C

~
exp(il 8) . (14)

l 1, l2, la= r kKK

where %e now multiply out the sum over /&, l2, (3, so that each

8 1 term contains only one exponential term. In order to do

= (3f.M. ) 'I'QC,
~

exp(i1. 8), (8) this we introduce 1„,; where p is the pth term in the
EKK l (KK expansion of

'~ A. A. Maradudin, E. W. Montroll, and G. H. Weiss, in Solid
State Physics, edited by F. Seitz and D. Turnbull (Academic
Press Inc. , New York, 1963), Suppl. III.

+r 1)
Q C.;, ~

exp(il 8),
KK 3
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and the indices i, j refer to this sum. Hence,

where g is the cyclic product in i and j, and P" is the
sum over all possible values of p. We can condense the
notation by writing

and

So that,

~s-(») = (&.v}
Q Q' Q" I'({lr,s'})A

3rlV' & KK

Xexp(i6 Ql„,;), (16)

where P 1„;;is the sum over all I„;, occurring in the
product g in. (15). From (6),

~s-(ll') =
1 (l„;,}2' 2"~((,"})Al

3r+ hs, hs, ha=1 ( Slr'

( k.
XIIexpl 2~s—PI..' I

(1&).V )

where l„,,= (l»;;, ls„;,, ls», .). Now, providing

Q l„,,($,
the sum of the geometric series

N h,r exp 2 ~—r /. ,';)=h'h, * „;;
ktt=1 Ã

(19)

But, we have insured that I, &~T (s= 1, 2, 3), i.e.

(20)

Hence, as there are only rI, terms in the sum

p l,„,,&rhT.

If (19) and (20) are to be satisfied simultaneously, we
must have

Ã&rI,T. (21)

~ -P')= Z Z' E"III(~.~") '"33'' ~

/l„, ~XQ C';,
~ ~

exp(i6 l;,), (15)' '4«')

Substituting in (17) from (19) finally yields

2 2"1(t,"})Al
3rlP Erclr')

X H &ho, zt, ;;, (22)
s=l

1 (I„;;) s
=—2'2" I (&,"})Al ~II 5.,...„„

3r
'

km''). =i
(23)

This sum is independent of )lt' under condition (21).
Thus, the first e even moments on a Gnite X)&X&(X
cell lattice (i.e. excluding rh= 0) are equal to the
moments on the infinite lattice, providing

tt(X/T. (24)

The optimum condition occurs when e is equal to the
integer which is just below 1V/T.

This result can be seen more easily by expanding the
moments in terms of walks with returns to the origin""
on the lattice. The eth even moments, on the X)&Ã&(lV
lattice with cyclic boundary conditions, depends only on
the walks which return to the origin in less than (I+1)
steps. If the interaction extends between cells, at least
one of whose coordinates, (ti,ls, ls) differ by T then the
largest step is of size T. The distance covered in any one
walk is less than or equal to rIT. Now providing, during
the course of a walk, we do not completely encircle the
lattice i.e., nT&S the result will be the same as on the
infinite lattice.

The first e even moments on any infinite lattice can,
thus, be calculated, under condition (24) by numerically
evaluating the traces of the dynamical matrix, D, for a
Qnite E)&E)&Elattice. This can be accomplished very
easily with the use of a digital computer and provides a
simple, straightforward, method for obtaining numerous
spectral moments.

APPLICATION TO THE fcc NEAREST-
NEIGHBOR MODEL

The Q.rst seven even moments, on this lattice model,
were originally evaluated by Domb and Salter' using
the results of Montroll' on the simple cubic lattice.
Montroll expanded the traces of the dynamical matrix
algebraically and then summed over all 8 values. This
method soon becomes cumbersome, and the work
involved increases rapidly if further moments are to be
obtained. The algebra might be carried out on a com-
puter, but the limitations on the storage space limit the
number of moments that may be calculated to about ten.

The secular equation for the fcc lattice has been de-
rived by Leighton' and is

2—cosx (cosy+ coss) —X' SlI1$ Sing sin@ sins
siny sinx 2—cosy(cosx+ cosz) —)ts siny sins
sins sin@ sins sing 2—coss (cosx+ cosy) —) '

"C. Domb, A. A. Maradndin, E.W. Montroll, and G. H. Weiss, Phys. Rev. 115, 1, 18, and 24 (1959).» C. Domb and L. Salter, Phil. Mag. 45, '/ (1952).]
&s R,. B. Leighton, Rev. Mod. Phys. 20,.165 (1948).

=0 (25)
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1

I,„= x'"g (x)dx.
0

where kB=2m'm'/n, n being the nearest-neighbor force where x= tr/t, „and g(x) is the spectrum or
constant, and v the frequency, and m the mass of an
atom.

Also
(28)

y =—(tl—ttt+ 33),E

where the indices l, m, e, take the values 1, 2,
The calculation of the moments requires the evalua-

tion of the sum of the even powers of the roots of this
equation for a finite value of iV. The number of moments
that can be calculated is (X—I) as the interactions are
restricted to nearest-neighbor atoms. This calculation
can be done most efhciently by storing all the cosines
that will be required in the course of the calculation, and
then evaluating the first three traces s~, s2, s3 for a point
in the Brillouin zone. From these traces all subsequent
traces can be calculated by the well-known relationships
in the theory of equations":

p', „= (1—x') "g(x)dx, (29)

The main difhculty encountered in using the mo-
ments, for the calculation of the spectrum and other
properties, is that the higher moments are heavily
weighted with respect to one end of the spectrum. This
gives rise to ill-conditioned equations. The values of the
moments must, thus, be calculated to very high ac-
curacy if the higher moments are to provide any extra
information about these properties. Consequently, if
more than twelve even moments are required, the
evaluation has to be carried out using multilength
working in the computer, whose single length register
can hold up to eight significant digits.

The moments in this fcc lattice were first calculated
on a Ferranti Mercury computer to double length ac-
curacy, i.e., 16 significant figures. The program was
later converted to triple length, '0 i.e., 24 significant
figures. The first 34 even moments are given in Table I
together with the displaced moments defined by

For e&3

sr+Pr= 0,
s3+prst+ 2p3= 0,

S3+P1$2+P2S1+3P3 (26)

so that on expanding (1—x')",

(30)

N2n= &max
—2

v max

t'"g(x)dx, (27)

Sn+ plSn 1+p2Sn 2+p—3Sn 30—~—
The three unknown coefficients Pr, P3, P, can be deter-
mined from s~, s2, s3 and, thence, one can calculate s„
for e& 3. Alternatively the roots of the equation can be
obtained directly and raised to the appropriate powers.

The calculation can be reduced by a factor of 48 by
using the cubic symmetry of the lattice. The secular
equation need only be solved in one symmetry element
of the Brillouin zone, which is repeated 48 times. The
traces of the dynamical matrix, at any point in this
element, must be suitably weighted according to its
position in the Brillouin zone. For example, points that
occur along an edge of the symmetry element will have
a diferent weight from those that are situated in a face.
The sum of the weighted traces, at all the points in this
element, will give the moments. In practice it is con-
venient to use the normalized moments u2„defined by

The spectrum can be derived by the use of an orthogo-
nal polynomial expansion. If P„(x) is an orthogonal set
of polynomials in the range

~
x~ &~I, the spectrum can

be expanded as

g(x) =P P„(x)tt„,
0

where

P.(x)g(x)dx.

The coeKcients can be evaluated directly in terms of the
moments. The spectrum using 21 and 22 even moments
in a Legendre polynomial expansion is shown in Fig. 1,
together with the spectrum obtained mechanically by
Leighton. "Unfortunately full use could not be made
of the 34 moments as triple length working is not
available on the University of London Computer, where
this work was carried out. The convergence of this
expansion is slow. This is due to the singularities which
occur in the spectrum, and are characteristic of a three-
dirnensional lattice. By locating the position of these
singularities, " the behavior of the spectrum at these

'3 H. W. Turnbull, Theory of Eguateons (Oliver 8r Boyd, London,
1939).

~ I am grateful to C. E. Phelps of the Oxford Computing
Laboratory for performing this transformation.
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TABLE I.The moments of the fcc lattice; Uq„ is the 2nth normalized moment and V2„ is the 2nth normalized displaced moment.
These are both given in Qoating point convention i.e. u, b =u&10 .

1.00000
5.00000
3.12500
2.22656
1.71630

00000 00000 00000 000, 0
00000 00000 00000 000, —1
00000 00000 00000 000, —1
25000 00000 00000 000, —1
85937 50000 00000 000, —1

1.00000 00000 00000 00000 000, 0
5.00000 00000 00000 00000 000, —1
3.12500 00000 00000 00000 000, —1
2.14843 75000 00000 00000 000, —1
1.56005 85937 50000 00000 000, —1

10
11
12
13
14

15
16
17
18
19

20
21
22
23
24

1.38824
1.15787
9.85897
8.51962
7.44508

6.56434
5.83080
5.21226
4.68549
4.23319

3.84210
3.50188
3.20430
2.94273
2.71179

2.50703
2.32478
2.16196
2.01601
1.88473

46289 06250 00000 000, —1
50610 35156 25000 000, —1
77946 47216 79687 500, —2
08208 /9936 21826 185, —2
52349 40052 03247 072, —2

12235 65861 58275 604, —2
37721 87209 68812 699, —2
44747 32819 50806 261, —2
89484 37327 72642 388, —2
55658 39764 64025 896, —2

72315 61048 27502 574, —2
35779 01526 97199 255, —2
09673 17510 88735 813, —2
57727 35107 58415 298, —2
25621 81928 99416 762, —2

45201 16797 13098 531, —2
35129 10221 62065 313, —2
89284 78080 48542 815, —2
15088 44515 15502 348, —2
28210 08826 03275 203, —2

1.17767
9.16786
7.32203
5.97683
4,97144

4.20330
3.60485
3.13042
2.74836
2.43629

2.17811
1.96201
1.77921
1.62308
1.48855

1.37171
1.26948
1.17944
1.09965
1.02855

33398 43750 00000 000, —1
19384 76562 50000 000, —2
72200 01220 70311 909, —2
89910 45951 84325 169, —2
85183 35819 24436 864, —2

06611 74580 45481 356, —2
57874 89213 98074 056, —2
33418 38195 48348 026, —2
14603 83819 12166 366, —2
83450 20304 62357 692, —2

93812 61861 55423 775, —2
96309 48347 56589 344, —2
69632 61716 74901 154, —2
47888 63482 28318 557, —2
70595 39037 05606 652, —2

33673 23317 43133 433, —2
52816 42612 00516 437, —2
56190 06111 53617 295, —2
52847 50039 13191 066) —2
06292 85414 69291 120, —2

25
26
27
28
29

1./6628
1.65908
1,56179
1.47324
1.39244

38580 92625 57463 887, —2
81429 45816 53901 046, —2
59788 27420 10708 711, —2
73720 76300 35907 933, —2
17729 43705 75964 459, —2

9.64859 67740 22976 91897 972, —3
9.07539 17759 14862 47747 225, —3
8.55726 83035 36202 58334 456, —3
8.08704 69759 60147 36731 355, —3
7.65870 92860 91062 75317 634, —3

30
31
32
33
34

1.31851
1.25070
1.18837
1.13094
1.07790

32271 55876 94419 981, —2
98567 71010 12099 665, —2
68304 68219 44941 274, —2
21647 89859 06965 998, —2
48356 71123 62285 800, —2

7.26717
6.90814
6.57791
6.27335
5.99172

72905 05374 21518 013, —3
05736 08361 93131 894, —3
93073 54590 48222 326, —3
50896 88701 99759 322, —3
33230 90801 98564 605, —3

FIG. i. Successive ap-
proximations to the spec-
trum of the fcc lattice
using 21 and 22 even
moments in a Legendre
polynomial expansion,
compared with that ob-
tained by Leighton.

I
'

I
'

I

g(X) —LEIGHTGN"""22 MOMENTS
--2l MOMENTS

points can be obtained. The eGect of these singularities
could then be subtracted out, ' leaving a series whose
convergence would be much improved.

It would not be dificult to get more moments on a
faster multilength computer, if greater accuracy was
required.

THE SPECIFIC HEAT AND OTHER
THERMODYNAMIC FUNCTIONS

The specific heat and all the thermodynamic functions
have high-temperature expansions in terms of the mo-

ments. The specific heat expansion is given by

C„(2n—1) /Oi'"
B.g,„i —i (—1)"+',

3Ã'k o 2m! kT i
(33)

(B„are the Bernoulli numbers) where 0'=hv~, x/k.
This series, however, diverges at O~/T =2~, i.e.,
T/0'= 0.159155.

Domb and Isenberg" have shown that with 14 mo-
ments this series can be analytically continued, by the
use of the Pade approximant, down to (T/O~) 0.05.
Below this temperature the low-frequency expansion of
the spectrum gives the accurate behavior of the specific
heat. Two terms in the low-frequency expansion of the
fcc lattice have already been obtained by Barron and
Domb" so that the third term can be obtained approxi-
mately by extrapolating the displaced moments as dis-
cussed by Domb et al."The low-frequency expansion,
thus, gives

v g (x)=2.6033x'+4.639x'+ 7.45x'+ . (34)
0

p 0.2 p,4 0.6 0.8 2'T. H. K. Barron and C. Domb, Proc, Roy. Soc. (London)
A227i 447 (1955),
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T
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Fro. 2. The reduced equivalent Debye temperature ~On/0
against T/0 using a

I 15,18$ Pade approximant to (C,/31Pk)2
down to (T/0) =0.038, and three terms in the low-temperature
expansion for (T/0) &0.038.

The last, extrapolated, coefficient is correct to 5%. At
low temperatures the specific heat" becomes

C„ /27rTqs /27rT '
o

3N~ ke) Ee

=0.038 where its value is 1.4)&10 4. The fractional
error rapidly decreases to less than 10 4 outside the
range 0.056) T/Q') 0.02, becoming less than 10 ' out-
side the range 0.07)T/Q) 0.012. One may expect from
the results of different Pade approximant. s and the low-
temperature expansions, that the fractional error in the
specific heat for this fcc mode1 would be of the same
order of magnitude as that for the linear chain.

The use of the Pade approximant together with the
low-temperature expansion has enabled the specific heat
to be outlined to an accuracy which at the very least is
a factor of 10 better than any previous method, and
over most of the temperature range is a factor of 10'
better for 0.07& T/0&0.012.

THE ZERO-POINT ENERGY

Domb et al."have shown that the zero-point energy
of the lattice can most easily be obtained by expanding
it in terms of the displaced moments, and correcting
for the remaining unknown moments by means of the
low-frequency expansion, to give

+7.45wa.
l I+ ", (35)&Q)

27rT ' 27rT '
I
+O.347OIEo) ho)

27rT 7

+ 0.78
Q~ )

The specific heat expressed in terms of the equivalent
Debye temperature O'I7 is shown in Fig. 2 using 33 even
moments in a [15,18] Pade approximant to C„' which
gives the correct low temperature T' behavior, down to
T/0~=0. 0438. Below this temperature (36) is used.
Table II gives the coefficients in the Pade approximants,
where A is the [15,18] Pade approximant to C„s, the
coeKcients a, and b, are given by

2 —Sr / Q~qsr 7V / Qw
2r

[M,N]= Po„l —
I

3Nsl'r r=o E,T ) r=o (T

where (C„/31Pk)2[M,N] is the [M,N] Pade approxi-
mant to (C„/3NI/I)2, 8 is the [16,18]Pade approximant
to (C„/31Pk) and is tabulated because C„ is more easily
evaluated.

Figure 3 shows the fractional error (AC„/C„), plotted
on a logarithmic scale, in the specific heat one Tnay
expect by using 33 even moments in a [15,18] Pade
approximant for C,', for a 1-dimensional model, and
three terms in the low-temperature expansion. This was
worked out for the Inonatomic linear chain with nearest
neighbor interactions, for which C, can be calculated
exactly at all temperatures. The error is largest at T/Q'

J. DeLaunay, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1956), Vol. 2.

Z, 3-~I /-2=- Z l'2. (—1)"I
Nshr, „2 o k r)

Ep

+ h&max

= 1.022 662 15. (39)

(Error of &5 in the last decimal place. ) The accuracy to

bc:.
Cv

lo

I j l j I
j

I
j

I
j

I j I j J j
I—

10

(0

IO

I
t1O'—
t
IF
I

lO-e

0 0.02 0,04 0.06 0.08
Ty

I'IG. 3. A logarithmic plot of the accuracy of the specific heat
(AC„/C, )against (T/0) for the linear chain. The continuous curve
is the accuracy of L16r17j Padd approximant to (C„/3frrrk) and the
dashed curve the accuracy of three terms in the low-temperature
expansion.

C2

16(2p+1) (2p —1) 2(2p+3) (2p+1) (2p —1)

15C6
+ . (38)

8(2p+5) (2p+3) (2p+1) (2p —1)

where p=35, one greater than the number of moments
calculated, and'C~, C4, C6 are'the coeKcients in the low
frequency expansion of the spectrum as given in (34).
Substituting into (38) from (34),
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TAnLE II. A is the L15,18$ Pade approximant to (C,/3N'k)' and B is the L16,18j Pade approximant to (C,/3E'k). a, and b„are,
respectively, the coefficients in the numerator and denominator of the Pade approximants. (Note: The coefficients are given in ffoating
point convention where u, b=uX10~.)

0
1
2
3

5
6

8
9

10
11
12
13
14
15
16
17
18

1.0000000, 0
6.2510638, —2
4.7317557, —4—4.2763040, —5—6.7556233, —7
1.4988435, —8
2.8224286, —10—6.1735016, —12—2.2407414, —13—2.8918513, —15—2.0832640, —17—9.1582611, —20—2.6585246, —22—6.4914120, —25—8.6855623, —28—7.6880694, —31

1.0000000, 0
1.4584397, —1
8.2865620, —3
1.9691712, —4—4.1804517, —7

188AAAA 7—1.6732481, —9
2.0750606, —11
3.6248470, —13—2.3768265, —14—9.9632230, —16—1.9104360, —17—2.3019023, —19—1.8982890, —21—1.0982714, —23—4.42150267 —26—1.1896391, —28—1.9314971, —31—1.4000082, —34

1.0000000, 0
2.9295405, —2—2.4936205, —3—8.5237744, —5
1.2594683, —6
4.3192132, —8—8.1039094, —10—1.3907575, —11
3.9867657, —13
4.1511495, —15—1.4475964, —16—3.0210906, —18—2.2573017, —20—8.1667127, —23—1.6777684, —25—3.3282587, —28
2.8027457, —32

1.0000000, 0
7.0962071, —2—8.3895082, —4—1.7577770, —4—3.3529944, —5
5.7077285, —8
1.4736870, —9—2.8165452, —11—4.9851083, —13
1.4198298, —14
1.8914953, —16—6.9669695, —18—2.0758395, —19—2.4399176, —21—1.5625398, —23—5.7248442, —26—1.1273250, —28—9.1280289, —32
2.3615252, —35

which the zero point energy can be obtained illustrates
well the power of the series expansion method.

CONCLUSIONS

The evaluation of large numbers of moments has
enabled the thermodynamic properties to be obtained
accurately, down to temperatures of T/0' 0.038. The
spectrum, on the other hand, can be obtained to high
accuracy if one is prepared to locate the position of the
critical points and the behavior of the spectrum near
these points. Alternatively, if analytical methods fail to
locate the singularities, the direct moment expansion
can indicate their approximate position, and give an
approximate spectrum.

Together, the moment expansion at high tempera-
tures and the low-temperature expansion provide a
more detailed knowledge of the equilibrium properties
of crystals than has been previously obtained. The
extension of the method to more complex unit cells, and
larger range interactions is limited only by the time
taken for the computation. At present, using the fastest
computers, interactions between the first 30 nearest-

neighbor atoms could be taken into account for crysta]s
with cubic symmetry.

Results have also been obtained for other models of
the fcc lattice, with second neighbor interactions,
together with models of bcc, sc, and sq lattices. The
only monatomic lattices with more than one atom per
unit cell, for which moments have been calculated, is the
hexagonal close packed. This lattice has a similar
topology to that of the fcc which results in the two
lattices having very similar moments. It is hoped to
publish all these results in the future.
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