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Finally, we close with a remark on terminology.
Although we have not had occasion to do so in this
communication, the need will likely arise to refer to
a channeled atom (or trajectory) as a particle with a
characteristic name. We suggest for this purpose the
term sterol, from the Greek noun ~a gyevos, denoting
a strait or a mountain pass."

"H. G. Liddell and R. Scott, Greek-L'nglish I.ericon (Oxford
University Press, London, 1940), p. 1638.
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The problem of deducing the values of the exchange integrals in yttrium and gadolinium iron garnet from
measurements of the magnetization and the magnetic contribution to the specific heat at low temperatures
is considered. For these garnets the spin-wave normal modes can be found by solving the semiclas sical
equations of motion which give rise to a set of n simultaneous linear equations, where m is the number of
magnetically inequivalent ions in the unit cell. Expressions for the thermodynamic functions at low tem-
peratures in terms of the frequencies of the normal modes are given assuming the validity of the spin-wave
approximation. It is argued that the temperature variation of the frequency of these normal modes on the
macroscopic properties can be completely accounted for without considering the zero point energy explicitly.
Due to the size of the unit cell, the equations for the frequencies of the normal modes can only be solved
numerically for general values of k. Such solutions are obtained for k lying along a L111j direction for various
values of the exchange integrals, and the thermodynamic functions corresponding to these choices of param-
eters are calculated. In the case of yttrium iron garnet, the value of D, the coefEcient of u'k' in the acoustic
dispersion law, is reliably known and fixes one linear combination of J«, J,z, and Jzz. By comparing our
calculations with the magnetization data of Solt, it was established that J', /J, e =0.2, but since the magneti-
zation was not very sensitive to variations of the ratio Joe/Joe its value could not be estimated precisely.
Taking Joe/Joe=0 2gives J«. Jes 6——35 cm=' .and Joe=31.8 cm '. For GdIG the speci&c heat data below
20'K is not very much inRuenced by the exact values of the iron-iron exchange integrals which were taken
to be those quoted above for yttrium iron garnet. Again one combination of J~, and Jz, is known from
the calorimetric determination of the single ion splitting. By comparing the specific heat data below 5'K
with calculations for various values of J„/Je, it was possible to determine Jo, and Je, separately: Js,=7.00
cm ' and Jo,=1.75 cm '. These values are about 25% larger than what one would expect using the Weiss
molecular field approximation.

I. INTRODUCTION

ECENTLY many investigations of the behavior of
the series of iron garnet compounds have been

made. Pauthenet' first interpreted their magnetic
properties below the Keel point at 550'K using the
Weiss molecular field (WMF) approximation. More
recently it has been demonstrated' ' that at the lowest
temperatures one must use the spin-wave approximation
in many cases to interpret the thermal and magnetic
properties of the iron garnets. The earliest calculations'4

*Work carried out with support of the U. S. Ofhce of Naval
Research under Contract Nonr 1811(12).' R. Pauthenet, Ann. Phys. 3, 424 (1958); J. Phys. Radium 20,
388 (1959).' H. Meyer and A. B. Harris, J. Appl. Phys. 31, 49S (1960).' R. L. Douglass, Phys. Rev. 120, 1612 (1960).

s B. Dreyfus, J. Phys. Chem. Solids 23, 287 (1962).' M, Tinkham, Phys. Rev. 124, 311 (1961).

gave a value of the excitation energy of the various
normal modes (spin waves) for k=O, where k is a
vector of the first Brillouin zone. While this is often
sufhcient to describe the resonance behavior of the
iron garnets, it would seem desirable to make more
accurate calculations of the macroscopic properties
which take into account the k dependence of the
excitation energies. Tinkham' has made such a calcu-
lation for a simplified model of the interactions in
ytterbium iron garnet (YbIG). He has shown that there
are spin-wave modes whose energy is not very dependent
on k and is roughly equal to the energy of the single ion
splitting of the rare-earth ion in the WMF approxi-
mation, which can be determined calorimetrically. Thus
the physical picture of the magnetic behavior of the

A, B, Harris and H. Meyer, Phys. Rev. 127, 101 (1962).
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iron garnets can be considered to be well understood.
The aim of the present more detailed calculation is
twofold. First, it was felt that by making accurate
calculations of the spin-wave spectrum for kWO a more
detailed comparison between theory and experiment
could be made. Second, it was of interest to see the
correspondence in detail between such a complete
calculation and other calculations, such as that using
the WMF approximation, which do not take full
cognizance of the structure of the unit cell.

For yttrium iron garnet (YIG) and gadolinium iron
garnet (GdIG) the difhculty in such a calculation arises
from the complexity of the unit cell. As is well known,
the frequencies of the normal modes of an isotropic
spin system can be found by solving the classical
equations of motion, which give rise to a secular
equation whose degree is in general equal to the number
of magnetic ions in the unit cell. A considerable simplifi-
cation in the numerical calculations is obtained if one
assumes that the energy surfaces in k space are spherical.
Under this assumption it is only necessary to solve the
secular equation for k lying along a l 111jdirection, in
which case the secular equation can be factored. It
seems unlikely that this simplification could introduce
significant errors into the calculation of the macroscopic
properties, because the thermodynamic functions do
not depend sensitiveIy on the exact details of the
frequency spectrum.

TAar.z I. The location of the magnetic ions in the
unit cell of the garnet lattice.

a sites

(I) 0, 0, 0
(2) 2, 2, o
(3) 0, —,', -',

(6)
(&) 4, 4, i
(8)
(9)

(10)
(11)
(12)

d sites

1 3
8

3 1
Sr Op 4
1 3
4r St 0

4s 8
1 3
8) 01 4

4) 8& 0
4y 8

7 1
Sp Op 4
1 7
4y Sp 0

3 5
47 8

5
4& 8& 0

c sites

o-'8
1 1
Sr 0& 4
1 1
4& &~ 0

3 3
Op 4& S
3 3
8& 0& 4
3 3
4, X, o

1 5
4& 8

Sy 07 4
1 5
—., 8 o

3 7
4& 8

7 3
8p Op 4
3 7
4) 8s 0

a The coordinates of the magnetic ions are given as fractions of the lattice
parameter which is 22.378 A for YIG and 12.465 A for GdIG (Ref. 1).
The additional sites in the unit cell are obtained by adding ($,$,$) to the
above sites. This table is compiled from Ref. 7.

'R. Wyckoff, Crystal Stree&res (Interscience Publishers, Inc. ,
New York, 1953), Vol. III, Chap. 12.

IL CALCU/ATION OF THE SPIN-WAVE SPECTRUM

A. Lattice Structure

Before calculating the excitation spectrum of spin
waves, it is necessary to discuss briefly the lattice
structure of the iron garnets. The crystal structure of
the iron garnets is cubic, the space group being

0&"—Iu3d. ' The most important symmetry property
of the crystal is that the L1117 direction is a threefold
axis. In Table I we give the positions of the magnetic
ions in the unit cell. Each unit cell contains four formula
units of iron garnet, SFe203.3&203, where M is
yttrium or any of the rare earths from samarium to
lutetium. Studies of the magnetic behavior of the
garnets' show that the iron ions on the u and d sub-
lattices are strongly coupled together antiferromag-
netically with a resulting Neel temperature of about
550'K. When rare-earth ions occupy the c sites, their
spin moments are coupled antiferromagnetically to the
resultant moment of the u and d sublattices. This
coupling, which is much weaker and hence does not
a8ect the Xeel temperature, produces anomalies in the
specific heat and magnetization below 30'K. The
magnetic ions are also subjected to a crystalline electric
field, which often produces an easy axis of magnetization
along a L111) direction. ' ' For ions which are in an S
state, e.g., for Fe'+ or Gd'+, the strength of this 6eld
corresponds to splittings of the order of 0.01 cm ' or
less' and hence can be neglected for the present
calculations.

where S, and g, are the spin and g value of the ion at r, P
is the Bohr magneton, and J„ is an interaction coeK-
cient. The ions of the three magnetic sublattices are
assumed to interact with one another only if they are
the closest pair in the sublattices in question. The
dipolar interactions correspond to energies which are
very much smaller than iron rare-earth exchange energy
and hence are taken into account only insofar as their
eBect is equivalent to that of a demagnetizing field
which can be included in H. Semiclassically one uses
the torque equation to determine the frequencies of the
normal modes

dS,/dt=7, (S,&& 8,)
ds, /dt= S,)& l (1/A) (P 2J„.S,.)+7,Hg,

(2a)

(2b)

where p, is the gyromagnetic ratio of the ion at r.
Quantum mechanically, the equations of motion are

(e I l 5(' 5 +3
I m) = "co(n I S +

I m) (3a)
and

(el le,s;jim)= —A(o(mls,
—

lm), (3b)
' G. P. Rodrigue, H. Meyer, and R. V. Jones, J. Appl. Phys.

31, 376S (1960).
9R. F. Pearson and R. W. Cooper, J. Phys. Soc. Japan 17,

Suppl. 31, 369 (1962).

B. The Equations of Motion of an Isotropic
Spin System

We now treat the case of an isotropic system of
interacting spins in an external magnetic Geld H for
which the Hamiltonian is,
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A (k) A~ {k)

A@ {k) -Add
T

FIG. 1. The form of the spin-wave matrix,
A;J, for YIG. The submatrices are given in
FIgs. 3—7.

These matrices are shown in Figs. 1 and 2, where the
sublattices are given in Figs. 3-7.The numbering of the
rows and columns of A;; correspond to the numbering
of the magnetic ions as given in Table I.

where S,+=S;&iS," O. ne finds, using Eq. (I) and the
commutation relations, S)&S=iS, that

LX,S,+)=g,Pes,+—2 P Z„(S,+S,. —S, S,.+) (4a)

PC,S, j= g.PBS—. +2 Z J "(S S"'—S 'S ' ) (4b)

if the magnetic field is oriented in the minus s direction.
In the random phase approximation (RPA)'s one
replaces the operator S„' by its thermal value, (S,')."
This corresponds exactly to linearizing the semiclassical
equations of motion.

In either case if one writes

S~ +—(2Q )—ils P S +eik ~ iR+r)
R

0 0 0

M) 0 M2

M2 hA) 0

0 M2 M

Ml hA) M

0 M2 0

0 0 M2

0 0

M) hA)

0 hA2

0 0

M2 0

0 0

hA2

0 hA2

0 0 0 0

M2 0

M) hA2

0 M

hA) M2

0 M)

M2

M2 0 M) 0

0 hA2 hA2 hA)

0 0 0 hA2

0 0 M) hA)

0 hA) 0 M2

M2 0 0 0

hAl hA2 M2 0

M2

hA)

M)

FIG. 4. The submatrix A s(k). Here 3JJ& = —5J s exp(sku/8)
and M~ ———SJ,s exp(3sku/8).

Let us consider some general properties of this matrix
A;;. It can be transformed into the form,

()
where ~ denotes the position of an ion in the unit cell, &—C'T D)
R is a translation vector of the lattice (which we take to
be body-centered cubic), Q is a vector in the first where D and B are Hermitian submatrices, and the

A {k)

-A~ {k)
T

A,T(k)

A~ (k)

-Add(-k)

A d*(-k)

A *{k)

-A
d

(-k)
T

Fxe. 2. The form of the spin-
wave matrix, A;;, for GdIG. 1 is
the unit matrix and 6= —10',
+20J .. The submatrices are
given in Figs. 3-7.

+u, , (S,/S, ) S,'~,;(k), (S)

where the indices i and j label the ions in the unit cell,
and y;;=+; e'~ &"—'~'&, the sum being taken over
nearest neighboring ions in the jth sublattice. The
dimensionality of this matrix is equal to the number of
magnetic sublattices, i.e., 20 for YIG and 32 for GdIG.

Srillouin zone, and X„,is the number of unit cells, then
one 6ndss that for each value of k the allowed values
of Aa& are the eigenvalues of the matrix A, whose
components are

A"= Lg'&& —2 2 ~'~'S~'*v'~'(0) l4

D3 D) 0

0 D3 D2

D) 0 D2

D2 D2 0
4

0 D2 03

D2 0 D)

0 0 0

9 0 0 0 0 0 0

0 D 0 0 0 0 D)

0 0 D 0 0 0 D3

0 0 0 D 0 0 ~ 0

D2 D2

0 D2

D2 0

03
4

0 D2

D D2

0 0 0 0 0

0 0 0 0 0

0 Dl

D 0

0 00 0) D3 0 02

D3 0 0) 02 0

D) D3 0 02 02

0 02 02 0 D3

D2 0 D2 D) 0

D2 D2 0 03 Dl.

D2 D

D2 0 D 0 0 0 0

0 0 0 D 0 0 0

0 O 0 O 0

0 0 0 D 0

Dl 0

03 0

p 0 p 0 p p

Fio. 5. The submatrix Aqq(k) Here.
D = —20Jag+20 Jdg —4JcdSc&

DI = -54~,
Ds —— Sag exp( sk—u/)4,

DI = —Sos exp(iku/2).
o o o

0 A) 0 0

As A2 A2 A2

A2 A2 A3 A2

A3 A2 A2

A2

2 A3 A2 A2

A2 A2 A3 A2

A) 0 0 0

0 Al

0 0

O O O A

0 0 A) '0
A2 A2 A2 A3

0 0 0 A) A2 A3 A2 A2

FIG. 3. The submatrix
A„(k). Here A~ ———30J,q

+40Jaa+12JacSc,
10J, cos(ku/4), and A~=—10J,cos(3ku/4). Here
and in Figs. 4—9 we use the
notation k, =k„=k,=k.

superscript T represents the transpose. To diagonalize
A, we look for a matrix 0 such that

O'AO= Au,

where Au is diagonal, and where, due to the form of A,
0, and Ot satisfy the conditions

ll 12

!Oto= 1, 0=i
21 22IF. Englert, Phys. Rev. Letters 5, 3.02 (i960).

'The excitation energies calculated using the thermal value
of S,' are not exactly those one should use in the calculations of
the thermodynamic functions (see the Appendix).

/ Oii'
'&& —O s*' On*' &
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Fro. 6. The sub-
matrix Ae, (k). Here
Li ———2 (5S,/2) '"Je.

X exp(ika/8),
Le = —2 (5S,/2)'"J

X

exp�(3ika/8)

L2 L2 L2 0.

0 )) 0 L2

0 0 L) L)

L) 0

L2 L2 L2 0

0 )) 0 L)

0 0 L) .L2

L) 0 0 0

0 0

0 Ll

L2 0

L) L2

0 0

0 L2

L) 0

*

0 0 0 L2

L2 0 L) 0

L) L2 0 0

0 L) L2 L)

0 0 0 L2

L) 0 L2 0

L2 L) 0 0

0 L2L) Ll

L)' 0

0 Li

0 0

"2 L2

L) 0

0 L)

0 0
r

where p labels the branch of the spectrum and E" is
the ground-state energy. "

Let us now calculate p,)„ the change in the magnetic
moment when e» is increased by one, remembering
that the magnetic moment of a state is given by the
derivative with respect to the magnetic 6eld of the
energy of that state."Then

tt,x ——(d/dH) f(N, x+1) f
l'tee, t, [

—rt, t, ] hco, t, f j (10a)

= (djdH) i
f'toe, t, i

=~,(d/dB)h(o, g, (10b)

where O.„the polarization of the pth mode, is just the
sign of Ace». Using perturbation theory one 6nds

tt, t,——o{ OgtdA(k)/'dH10}„= oP( OG 0)„, (11)

where G is diagonal and G„ is the g value of the tttth

G* 0 0 0 0 0 G 0 0 0 0 0

0 G 0 0 0 0 0 Q 0 0 0 0

0 0 G 0 0 0 0 0 G 0 0 0

0 0 0 Q 0 0 0 0 0 Q" 0 0

0 0 0 0 Q 0 0 0 0 0 G 0

0 0 0 0 0 G 0 0 0 0 0 G

Q 0 0 0 0 0 G* 0 0 0 0 0

0 G 0 0 0 0 0 G*0 0 0 0

0 0 G 0 0 0 0 0 G 0 0 0

0 0 0 Q 0 0 0 0 0 6 .0 0

0 0 0 0 G 0 0 0 0 0 G 0

0 0 0 0 0 G* 0 0 0 0 0 6

Fro. 7. The submatrix A,e(k). Here
G = —2 (5S,/2) "sJ,e exp (ika/4)

~ In the Appendix we show that the temperature dependence
of the frequencies of the normal modes does not aGect the zero
point energy."J.H. Van Vieck, Theory of Etectric anct Magstetic SNscePti
bilities (Oxford University Press, New York, 1932).

where the 0;; are suitable submatrices. Since A is not
Hermitian, the roots need not be real, but, as indicated
by Douglass, ' this would imply an unstable ground
coniguration. In terms of the occupation numbers
n», the energy levels of the spin system are
approximately

E=E"+Q ster )
ttttoeg (,

ion in the unit cell. When all the g values are the same,
as for YIG and GdIG, one has the simple result that

teems= o'oPg

%e now consider some properties of the solution to
this eigenvalue problem taking account of the symlnetry
of the garnet lattice. For k= 0, the symmetry is sufhcient
to permit a factorization of the secular determinant
and thence a complete analytic determination when k
lies along a $1111 direction, which we assume to be
the case in the following discussion. We denote by R
the operator which rotates the crystal about the L1111
direction by ax..We note that since R commutes with A,

A) 0 A3 A4

0 A) A4 Ag

A3 A4 A) 0

A4 A5 0 A)

0 -M4 -M3 -M2

0 M3 M3

M4 M2 M2

M3 0 0

M2 M4 M4

-D 0 D4

0 L3 0

M4 L) L4

M3 L3 0

M2 L) L4

D5 -G 0

0 L3

L4 L)

0 L3

L4 L)

-6 0

-M3 -M2

«M3 -M2

0 -M4

0 «M4

0 -M4 -M3 -M2

0 -D D)

D4 Dg -D

Dg D4 0

D4 0 -6

0 -6* 0

0 -6

-G 0

-D 0 -G 0 -G*

) 3 l

0 ).4 0 L4

0 L4 0 L4

3 L) 3 l

6* '0 6 0 gk 0 0 0

0 G 0 G* 0 A 0 0

G 0 G 0 0 0 g 0

0 G* 0 G 0 0 0 4

FIG. 8. The transformed spin-wave matrix of Eq. (13), A (k, 1).
For GdIG the entire matrix is solved. For YIG one solves the
SXS matrix obtained by deleting the right-hand four columns
and the bottom four rows. The symbols not de6ned in the captions
of previous figures are A4 ——V3A2, A5 ——2A2+A3 M3 —V33f],p

3II4——M1*+3E2, I3
——V3L2, L4 ——L1*+L2, D4= —D1 —D3, and

Ds = —2D2.

the eigenvectors of A are also eigenvectors of R. Since
R'=1, the eigenvalues of R are just the cube roots of
unity, 1, )i, and )i', where 'A=exp(2m-i/3). The secular
equation may then be written in the form,

Det
~
A(k, 1)—t'tool, t)(A(k, &)

—i'toe„x)(A(k, )ws) —i'tee/ xs~ =0
y (13)

where the eigenvectors of A(k, r) are associated with the
eigenvalue r of R. These matrices are given in Figs. g and

9, and in Table II we give the linear combinations of
rows and columns of A which correspond to the rows and
columns of A(k, r). Using Fig. 9, one verifies that

P-'A(k, )i)P=A( —k, )i) =A*(k,)is)

where P is a unitary transformation which interchanges
rows and columns as follows: 3~~6, 4~~5, 7~+—10,
8~~9. Since the frequencies are assumed to be real,
A(k, )i) and A(k, ) ') have the same eigenvalues.

Although the secular equation factors, analytic
solutions are obtainable only at the center or extreme
corner of the Brillouin zone. '4 However, since the
magnetic properties at the lowest temperatures depend
only on the behavior of the low-energy part of the



A BROOKS HARRlS2402

96Jsa'
(18)(128 J..+16J.a)+

8J, —6J,g-

A A M M M6 M7 L5
A1 6 5 6

L
A6 ) 6 8

*
A M M M9 M6 5 8

*
0

M -M. -D 6
* '

~ 0 . P D -G 0 -G
5 6

*
8

M* -M p -G Q -G

G* 0 -G 0-M6-M9 D6

* 0 D p G Q G
-M7 -M6 D2 7

* ' 0 G 0 6 0 . 0 0
L5 L5

'
G

* G 0 G* 0 6 0 0
L6 L8 0

0- G* 0 0 0 6 0G 0-

G 0 G 0 0 0
L5 0 G

9 The transformed spin-wave matrix of q. ,of E . (13), A(k, ),).IG, o
For GdIG the entire matrix is solved. For YIG

deletin the right-hand four columns an t e
he s mbols not e ne in e

previous figures are As ——X(As —
Ass, M~ —

MI

LQ ——LI*+XL2, and D7= —XD3—X D1.

—6S,D'
+

6(—5+6S,) 12 288(—5+6S,)
—160J.,+95J a

5 (48J.,—25J~a+12Jaa)'—60Jaa+ J (19)

30

500

Ii are somewhatFor eGdIG the expressions for E an Ii are s
unwieldy and hence it may be more revealing gto ive

approximate expressions:

s ectrum it may be useful to expand the energy of the
acoustic branch in powers o.f k. Due to the cubic
symmetry this expansion takes the form

A(c= gPE+Du'k2+Eccsks

+Fu4(k, 'k„'+k,'k,2+k„'k,s)+ ~ . (15)

By perturbation methods one finds

200Jaa —125Jaa+75 Jag 20Jd—cSc+50JssSc
(16)

16(—5+6S,)
For YIG (S,=O) one also finds

5
(32J„—19J,a+ 12Jaa)

12 288

20-

~ W

I I

1.00 0.5 1.5
ka /~g

)+=
1+-

1
= ——

I

2.0

—400

E
500—

- 100

2.5

(48J, —25J,a+12Jaa)'

TABLE II. The transformation which reduces
the spin-wave matrix.

(17)
FrG. 10. The spin-wave spectrum for YI y gfor k l ing along a

di h follo i fi
tdb lthe polarization of the mode is indicate y a p

corresponding to the eigenvalues ) and X2 are degenerate.

For A(ir, 1)

(1) GI

(2) (1/v3) (as+as+as)
(3) Gg

(4) (1/v3) (as+as+as)
(S) (&//VS) (d'&+a'2+ d3)

(6) (1/~) (d4+ds+ds)
(7) (1/V3) (ds+ds+ds)
(g) (1/v3) (dso+du+d»)
(9) (1/v3) (cs+cs+cs)

(10) (1/v3') (c4+cs+cs)
(11) (1/v3') (cs+cs+cs)
(12) (1/v3') (c»+csi+c»)

For A(lr, X)b

(1) (1/v3) (as+Xas+Xsa4)

(2) (1/v3) (as+7 as+Xsas)
(3) (1/VS) (ds+Xds+Xsds)
(4) (1/V3) (d4+1 ds+1'ds)
(6) (1/v3) (ds+~ds+~ ds)

(6) (1/v3) (dsp+Xdsr+X'd, s)

(7) (1/V3) (Cs+&Cs+1 Cs)

(8) (1/V3) (C4+Xcs+Xscs)
(9) (1/v3) (cz+Xcs+Xsc )

(10) (1/v3) (cso+Xcss+Vcss)

A ~k 1~ and A(k ) ) are labeled byThe rows and columns of the matr1ces
numbers. The rows and columns os of the original matr1x are a e

d a number. The letter tells the su att1ce an

~) fo db b i i )~fo Xb The linear combinations for A(&,MJ are oun y s
everywhere.

p=
12 288 ( 5+6Sc)—

—640J,—80J,

240J g'

3J.g-4J.. (20)

= —10Ja,+20J, which is the energy-level
splitting of the rare-earth ion in the W appr

. For GdIG the term in Eq. (15) involving F ismation. or
which canmuch less important than that involving, w ic

usually be adequately approximated by the 6rst term

'ons shouldSeveral observations about these expansions s ou
be made. One sees that the first anisotropic term is that

J =J~~=O. En any
event, one sees that ratio F/E is small for reasonable

with our assumption that the energy surfaces in k space
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are nearly spherical. One also notes that E has the
opposite sign from D since all the exchange integrals
are taken to be negative, with J,g by far the largest.
It is interesting to note the role by the spin of the rare-
earth ions, S,. It enters all the expressions in the
denominator via a factor (—5+6S.), thus profoundly

affecting D and hence the low-temperature proper-
ties. The condition for antiferromagnetism is just—5+6S,=O, in which case our expressions are no
longer valid.

In order to discuss the magnetic properties at higher
temperature, it is necessary to solve for the normal
modes numerically, which necessitated the use of an
electronic computer, considering the size of the matrices
involved. We used a method of successive approxi-
mations: we eliminated the largest oA-diagonal element
A „by performing successive two-dimensional rotations,
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FIG. 12. The spin-wave spectrum for YIG for k lying along a
[111$ direction, and for J«/J, q Jdq/=J~q=0 2, or . J,q 31 8=.
cm ' and J~=Jqq=6.35 cm '.
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would expect using the WMF model. Here one would
have eight iron ions on a sites in an effective field

H, where
gPB', = —30J,g+40J, (22a)

and 12 iron ions on d sites in an e8ective Geld, H~, where

IO— gpHg ———20J,d+ 20Jd g. (22b)
~ W

+

I+

—200

—IOO

From the graphs one sees that on the whole the fre-
quancies lie somewhat below those of the WMF model
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FIG. 11.The spin-wave spectrum for YIG for k lying along a
[111j direction, and for «J/J«=0 2attd Jzd/J~q=0, or J,s
=26.2 cm ', J~=5.24 cm ', and Jqd=0. 30-

AVE

i.e., by performing transformations with a matrix 0
obeying Eq. (10) and of the form,

0;;=8;; ice, m joe m (21a)

0;=0 jAn, tn 0;=0 jNn, tn. (21b)

The numerical errors incurred in these calculations
were negligible, as was verified by comparing the trace
of the original matrix with the sum of the eigenvalues.
ln addition, for k=0, we found agreement between our
numerical results and the analytic expressions of
Dreyfus. 4

The results of calculations for various values of the
ratios J /J ~ and J~~/J. ~ for the case of YIG are
given in Figs. 10, 11, and 12. In Sec. IV we discuss the
determination of J ~ for given values of these ratios.
The most striking feature of the spectrum is that the
frequency of most of the modes does not depend strongly
on k. We can compare the frequencies with those one

E~20—

C9
K
ILI
K
UJ-
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I

0 1,5
'I
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FIG. 13. The low-frequency art of the spin-wave spectrum of
GdIG for it lying along a [111 direction, and for J,&=31.8 cm '
J«=Jag=6.35 cm ', and J«/Jq&=0 25, or Jq, =.7 00 cm ' and.
J~,=1.75 cm '. See the text for a discussion of the O'MF and
average frequencies.
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2p-

WMF

AVE

significantly less than the WMF splitting which is
given by

gPH, = —10Jg,+20J„. (23)

These results agree with the analytic expressions found
by Dreyfus' for k= 0, which show that the spread in the
low optical modes is roughly proportional to JRE'S,
where Jap is an iron-rare-earth exchange integral.

X~—

)+ ~~
14 )$}+ melee

/ l+

J'

0 G5 2.0IP
ka. /~y

L5

FIG. 14. The low-frequency part of the spin-wave spectrum of
GdIG for k lying along L111]direction, and for J~&=31.8 cm ',
J«——Jss=6.35 cm ', and J~,/Js, =0.0833, or Js,=3.66 cm ' and
Jfg, =0.305 cm ~. For this choice of parameters it happened that
one mode was highly degenerate corresponding to eigenvalues of
the rotation operator indicated in the legend.

and hence the values of the exchange integrals as
deduced from comparison of experimental data with
the WMF theory are expected to be less than those we
find. This discrepancy is the most serious at the lowest
temperatures, just where precise magnetiza, tion data
is available.

In Fig. 13 and 14 we show the low-frequency part
of the spectrum for GdIG for k lying along a L111)
direction. These low optical modes correspond in the
WMF picture to the reversal of a Gd'+ spin in the
eGective magnetic field of the iron ions. The high-
frequency part of the spectrum is not very different
from that of PIG." We have selected values of J„
and J&, such that the average" frequency of the low
optical modes is that determined calorimetrically. '
Figures 13 and 14 therefore show the effect on the
spectrum of varying the ratio J.,/Jq, keeping the
average of the low optical frequencies constant. For a
given value of this average frequency varying the
iron-iron exchange integrals has relatively little effect
on the low-frequency part of the spectrum. In contrast,
as the ratio J,./Jq. is increased, the low optical modes
are split apart and the average frequency becomes

"For small values of k the acoustic branch of the spectra of
YIG and GdIG may be thought of as corresponding to one another.
The additional 12 normal modes for GdIG are the other 1j. low
optical modes shown and also another low optical mode for which
M=(—5+6S,)n/5=166/5. For large values of k the frequency
of this latter mode approaches that of the acoustic mode of YIG,
whereas the frequency of the acoustic mode of GdIG approaches
that of the other 11 low optical modes. This is an example of the
principle of noncrossing of eigenvalues.

» Calorimetrically one determines a weighted average of the
low optical frequencies according to Eq. (27) which, however, is
not very diBerent above, say, 10'K from the arithmetic average
of these frequencies.

M(T) =M(o) — Z ~. (k)
n

X dk, (24)
1—exp| —x„(k))

where the sum is taken over the normal modes n, the
integration over the Brillouin zone, p„(k) is given by
Eq. (11) and x„(k)=tuo„(k)/k&T, where kz is the
Holtzmann constant. In order to calculate M'(T) from
the spectrum as determined for k lying along a t 111)
direction, we assumed spherical energy surfaces and inte-
grate over a sphere of radius k such that 4n.k s/3
=2(27r/a)' since there are two ions per unit cell.
Therefore

&max

M(T) =M(0)—
8~3 n

X 4n k'dk. (25)
1—exp[—x„(k))

For YIG and GdIG where all the ions have the same g
value, one can calculate the magnetization at low
temperature when the expansion of Eq. (15) is valid:

M(0) (kaT)"
AM=M(0) —M(T)=

St„g (4rrD)

3 5 k T(5E+E)
X fl-I—{- —

I f, (26)(2)4 2D&D/
where S&,& is the total spin per unit cell, i.e., St,,&=20
for YIG, and St,&=32 for GdIG. In an analogous way,
one finds the specific heat to be

C=kn
8m

&max

Lx.(k))

exp —x„(k)
4m.k'dk, (27)

{1—exp( —x„(k))}'
' J. Van Kranendonk and J. H. Van Vleck, Rev. Mod. Phys.

30, 1 (1958).

III. CALCULATION OF THE MACROSCOPIC
PROPERTIES

Once the spin-wave spectrum has been found, the
magnetization and the specific heat are easily calcu-
lated. "For instance, for the magnetization one has
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Expansions for the case when there is an applied field
have been given by Robinson" assuming a quadratic
dispersion relation. From his graphs one can see the
relatively large e8ect of a magnetic field on the
magnetization.

It is interesting to consider the range of validity of
the expressions (26) and (28). Taking d/ J,q ——1,J,/J, q=0.2, and Jsq/J, q 0.3, in——rough accord with
experimental data, one 6nds using Eqs. (16), (17), and
(19) that E/D=0. 31 for GdIG and 0.12 for YIG.
Using Eq. (27) we find a 10'Po deviation from Pure Ts"
behavior for the specific heat when kiiT=D/8 for YIG
and kirT=0. 04D for GdIG. Since D/klan is 45'K for
YIG and 15'K for GdIG, one sees that whereas YIG
exhibits T'" behavior below say O'K, GdIG may never
really obey a T' law since below 1'K anisotropy and
dipolar perturbations will inQuence the thermal
properties. "

We now estimate the effect of the temperature
dependence on our calculations. In the Appendix we
show that at low temperatures one should use the
average frequencies, Ace, to calculate the thermodynamic
functions where

Ato(T) = Puo(0)+Are(T) j/2. (29)

To calculate A~(T) one simply replaces S by its
thermal value; however, for the iron ions below, say,
50'K the thermal value does not differ appreciably
from the value at T=O'K. In Table III we compare
the frequencies of the normal modes, K, calculated for

TABLE III. Temperature dependence of the frequencies of
the normal modes of GdIG. '

T=O'K

(1) 19.733
(2) 9.012
(3} —3.307
(4) —15.083
(5) 0.000
(6) 1.056
(7) 13.561
(8) 11.687
(9) —12.957

(10) —18.741
(11) 0.759
(12) 1.101

T=20'K

19.811
9.054—3.164—14.978
0.000
1.057

13.634
11.767—12.845—18.646
0.769
1.101

T=O'K

19.733
13.561—18.741—21.083—12.957—16.202
1.101
0.759
0.720
1.056

T=20'K

19.811
13.634—18.645—20.978—12.845—16.607
1.101
0.769
0.731
1.057

a These frequencies for k=0, which are given in units of (Jg'dj, are
calculated according to Eq. (29). r is the rotation eigenvalue. The modes
with rotation eigenvalue X are degenerate with those with eigenvalue )~
tsee Eq. (13)g.
"J. E. Robinson, Phys. Rev. 83, 6'78 (1951).
's C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951).

where V is the volume. Again in zero applied field one
can calculate the specific heat when the expansion of
Eq. (15) is valid:

Vkli 15(kiiT)"' (5) 7 (7 k~T(5E+F)
os 32(Drr 1 k2/ 4 k2 D 'i D

T=O'K with those calculated for 7=20'K. The small
temperature variation of those frequencies is not
experimentally detectible at present. It is interesting
to note the increase in the frequencies of the low optical
modes as the temperature is raised and the RPA and
the WMF become equivalent. This eGect results from
the change in the effective 6eld acting on the iron ions
due to the slight temperature dependence of the rare-
earth magnetization below 20'K, and is not to be
confused with the effect of rare-earth-rare-earth inter-
actions, or with the effect of the temperature dependence
of the iron sublattice magnetization both of which we
have neglected.

IV. THE DETERMINATION OF THE EXCHANGE
INTEGRALS FOR EXPERIMENTAL DATA

i. YIG

Yttrium iron garnet has been the object of several
experimental studies from which information about the
exchange integrals could be obtained. Using a molecular
field analysis, Pauthenet' was able to determine values
of the exchange integrals which were later apparently
con6rmed by high-temperature susceptibility measure-
ments. "However, the values of the exchange integrals
so determined give a value of 15 cm ' for D (see Eq.
(15)) which is in disagreement with several subsequent
determinations of this quantity. For instance, by
comparing the experimentally determined low-tempera-
ture specific heat"~" with the results of the spin-wave
calculation, one was able to deduce that D=27 cm '.
This value of D has been corroborated by observations
of the microwave instability in YIG."'4 Since the
determination of D using a spin-wave theory is the
more unambiguous both from a theoretical and an
experimental standpoint, we assume it to be the more
reliable. However, 6xing the value of D to be 27 cm '
does not serve to determine the exchange integrals
uniquely since from Eq. (15) we have:

D=~sg(8J„5J,s+3Jgs) . — (30)

The problem we consider is to determine values for
J „Jgg, and J g consistent with the known value of D
and which best reproduce the detailed behavior of YIG.

Recently, Wojtowicz" has suggested that by takingJ,=J«= 0, one might be able to fit the susceptibility
data above the Weel point using a linked cluster
expansion rather than a molecular field approximation.
He was able to interpret the experimental data in this
way, but using a value of J,q which corresponds to

"R.Aleonard, J. Phys. Chem. Solids 15, 167 (1960).
~D. Edmonds and R. Petersen, Phys. Rev. Letters 2, 499

(1959)."J.E. Kunzler, L. R. Walker, and J. R. Gait, Phys. Rev. 119,
1609 (1960).

ss S. S. Shinozaki, Phys. Rev. 122, 388 (1961)."E.H. Turner, Phys. Rev. Letters 5, 100 (1960).
R. C. LeCraw and L. R. Walker, J. Appl. Phys. 32, 167S

(1961)."P.J. Wojtowicz, J. Appl. Phys. 33, 1257S (1962).
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where y is the Gruneisen constant and ~ the compressi-
bility, so that the volume change is responsible for only
1'//~ of the observed decrease in the magnetization at
50'K. (The lattice specific heat was estimated from
the data of Harris and Meyer'). It is also known that
the temperature dependence of the exchange integrals
due to the change in the lattice constant in this tem-
perature range is negligible. "

However, the application of an external field of even
4000 G a6ects the magnetization signihcantly at this
temperatures, as we have mentioned previously. The
magnetization was measured by measuring the fields
for resonant excitation of the (210) and (220) magneto-
static modes at a frequency of 9092 Mc/sec. The
resonance conditions are"

Hsie= ce/7+ (g7r/15)M (H»e) ~

HsI——&e/y —(4x/15) M (Hsso),

(32a)

(32b)

where M(H) is the magnetization M in a field H and
Ht „ is the field for resonance of the (Lmn) rnagneto-
static mode. The magnetization found by subtracting

"I.H. Solt, Jr. , J. Appl. Phys. 33, 1189S (1962); L H. Solt, Jr.
(private communication).

z' C. Kittel, Introduction to Solid State I'hysics (John Wiley @
Sons, Inc. New York, 1956), 2nd ed."I.P. Kaminow and R. V. Jones, Scienti6c Report No. 5
(Series 2) Gordon McKay Laboratory of Applied Science, 1960
(unpublished)."I. P. Kaminow and R. V. Jones, Phys. Rev. 123, 1122 (1961).

D=38 cm '. It is quite possible, however, that one could
also ht the data using nonzero values of J„and J~~,
although the analysis would be formidable. In any
event, exact agreement between determinations of D
over widely separated temperature intervals is not to
be expected, due to the sensitive dependence of the
exchange integrals on the lattice constant. Also, the
variation of D with temperature, as determined by
microwave instability measurements, does not seem
to be consistent with J,= J~~=O, at least according
to the RPA. '4

Recently, Solt" has made accurate measurements of
the magnetization of YIG in a magnetic field of 4000 G
for temperatures between 5 and 50'K using the proper-
ties of magnetostatic modes. Since in this temperature
range the magnetization varies by only 0.4%, one should
check that volume changes do not inQuence the magneti-
zation appreciably. In fact, using the Gruneisen
relation' and taking the compressibility to be roughly
that at room temperature as measured by Kaminow, 2S

one Ands the change in the magnetization due to the
explicit volume dependence to be

am sv ~.
CLatticed~

M V V 0

(3)(7 X 10—"cm'/dyn)
(360 J)=2.5X10 ', (31)

300 cm'

the second equation from the 6rst corresponds to an
average 6eld H for which

Hsso+2Hsio =—+—M.
3 y 15

(34)

Anderson and Suhl3' have found a dispersion relation
for the acoustic mode taking account of dipolar inter-
action, which for a sphere can be written,

(Pun)
s = (Du'k'+ gPPI (47r/3—)M])

X{Dgks+gp/H (47r/3)—M+47rM Sill Ok]) . (35)

where et, is the angle between k and the magnetic field,
H. Since 4irM/3H 0.2 one finds

itttd= Da' k+ Pg( H—(4sr/3)M+27rM sin'Ha) (36)

For a given value of
~ k~ this dispersion relation intro-

duces a breadth of 2~rgPM into the spectrum, but leaves
the average frequency unchanged. Accordingly, the
demagnetizing field can be neglected in the 6rst
approximation. In addition we have assumed that the
effects of anisotropy can be taken account of by the
usual anisotropy field, " 4E/3M, whe—re E is the
first-order anisotropy constant. Taking 4srM/5 =487 G
and E/M = —130 G', we find the total field to be

4E
gPHt ~= gPH

4 4Z=~+—gPM — =0.309 cm—'. (37)
15 3'

In order to determine AM(T)=M(0) —M(T) it
necessary to extrapolate M(T) to T=O, which, how-
ever, can not be done without introducing a signi6cant
error. In the low-temperature limit M (T) depends only
on Ht, t and D, which are known so that M(0) could be
determined by comparing the values of hM for tem-
peratures below 10'K with the calculated values.
The uncertainty in this procedure did not affect our
determinations of the exchange integrals. We calculated
the magnetization for various values of the ratios
J, /J, e and Jee/J, e the value of J,d being determined
to give the known value of D. By comparing the family
of curves so obtained with the experimental data it
was then hoped to determine J„and Jgq. It happened,
however, that the magnetization was not sensitive to
variations of the ratio Jdd/J e On the other. hand, the
value of J,/J, e did influence the calculated magneti-

~ P. W. Anderson and H. Suhl, Phys. Rev. 100, 1/88 (1955)."J.Smit and H. P. J. Wijn, Ferretes (John Wiley 8z Sons, Inc. ,
New York, 1959).

H210 H220 (gs/15)M (Hsm)+ (4s/15)M(Hase)
= (12m/15)M(H) . (33)

Expanding M(Hsio) and M(Hsso) about H, one finds
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ALE IV. Possible values of the exchange
integrals in YIG and GdIG. ~ I,O-

Jaa/Jad Jdd/Jad Jad

0.2 0.2 31.8
0.2 0.3 35.6
0.2 0.4 40.5

6.35
7.12
8.09

6.35
10.68
16.18

Jde Ja.
7.00 1.75
7.12 1.78
not calculated

0,8-

a Values of the exchange integrals are given in cm '.

2. GdIG

As we have mentioned previously, the details of the
low-frequency part of the spectrum for GdIG are not
very sensitive to the exact values of the iron-iron

2

0
20 30

TEMPERATURE (' K)

40

Fn. 15. The magnetization of YIG below 50'K. The dots are
the experimental values of Solt (Ref. 22). The curves were calcu-
lated for the values of the ratios Jaa/Jad and Jdd/Jad indicated by
the numbers in parentheses; the corresponding values of Jfgd are,
(0,0): J~g=17.8 cm ', {0.3,0.1): J~d=38.0 cm ', and (0.2,0.2):
Jad =31.8 cm '. The effective magnetic field is given by Eq. (37).

zation curves, as can be seen in Fig. 15. We were thus
able to deduce J„/J,d=0.2, in contrast to the approxi-
mate analysis of Wojtowicz. "Considering the geometry
of the garnet lattice, it would be surprising if the
exchange coupling between neighboring d ions were
weaker than that between neighboring u ions, since the
latter are further apart than the former, so that we
assume Jq~&J„.Since there is an optical modes whose
frequency for k=0 is 20J d —40J«we were able to
establish the upper bound Jg~&0.4J ~. In Table IV we

give the corresponding sets of exchange integ rais
together with those of GdIG whose determination is
discussed below. It is hoped in the future to estimate
the ratio Jdd/J, d from the known' value of the Noel
temperature.

LIJ

C)

0,6-

C)

~4
UJ

0.4-
CD

U

CD
tdJ
CL
CA

0,2-

0)
I

3

TEMPERATURE ('K)

FIG. 16. The magnetic contribution to the specific heat of
GdIG. The dots are the experimental values and the curves are
calculated taking J,q ——31.8 cm ' and J =Jqq ——6.35 cm '. The
values of J~, and Jq, corresponding to the indicated values of
J«/Jd, are, J„/Jd, =0 25: Jd, =. 7.00 cm ' and J„=1.75 cm ',
and J« /Jd= 016 67: Jd, =4.74 cm ' and J,.=0.79 cm '.

exchange integrals (assuming D to be known). We
therefore, somewhat arbitrarily, made calculations
taking J,/J, d ——0.2 and Jdd/J', d=0.2 in the first case
and Jdd/J, d=0.3 in the other. The object of such
calculations was to determine J, and J&, separately by
fitting the experimental results. Dreyfus4 has previously
determined values of J„and J&, using the frequencies
for k=0 for a particular value of the ratio J«/Jda.
Although this procedure does not cause a great error
in the determination of the exchange integrals, we
thought it worthwhile to attempt such a determination
taking account of the k dependence of the low optical
modes and also seeing to what extent varying the ratioJ,/Jd, influenced the specific heat. Above 10'K the
specific heat (per unit cell) is well approximated by 24
Einstein functions appropriate to the average frequency
for large values of k, since the factor k'dk in the density
of states weights the large values of k the most. This
average frequency is known accurately from calorimetric
measurements' and for a given value of J,,/J~, fixes the
values of these exchange integrals. We then compared
the experimental and theoretical values of the specific
heat below 5'K for the various values of J„/Jd, . The
results of such a procedure are shown in Fig. 16. It was
found that J„/Jd, =0.25 gave the best fit to the data
for both sets of values of the iron-iron exchange integrals
considered. The corresponding values of J, and J~,
which depend slightly on the choice of the values of the
iron-iron exchange integrals are given in Table IV
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0.06

0.05

0.04

0.02

measured by Pauthenet' and by Wolf and Bozorth, 32

but due to experimental difhculties these measurements
are not suKciently refined to be suitable for comparison
with spin-wave theory in this temperature range. No
information could be obtained from the absorption
spectrum of GdIG as measured by Sievers and
Tinkham, 33 since the single ion transitions are forbidden
in GdIG. '

APPENDIX

Calculation of the Zero-Point Energy

To calculate the zero-point energy we use the
Holstein-PrimakoB'4 expansions

0 4 8 12

TEMPERATUREI'K)

QOI

20

S =S;—u+u;,

S,+= (2S;)'a,-".

S;—= (2S)~a,+ ~

(A1a)

(A1b)

(A1c)

FIG. 17. The magnetization of GdIG below 20 K taking
J~d=31.8 cm 'p Jaa= Jdd=6. 35 cm—

1~ Jdc=7.00 cm—x and Jec
=1.75 cm 1

and are about 25% larger than one would expect using
the WMF approximation. The reason for this can be
seen from Figs. 13 and 14 where we indicate both the
frequency corresponding to the WMF acting on a
rare-earth ion as given by Eq. (23) and the average
frequency of all the low optical modes. Equating the
frequency of the single ion splitting as determined
calorimetrically with the WMF frequency clearly leads
to smaller values of the exchange integrals than we
6nd. One can also compare the values of J, and Jg, we
6nd with those found by Dreyfus: J,=0.49 cm ' and
Jd.=4.17 cm '. The surprising discrepancy between
his values and ours is mostly due to a numerical error
in his calculation of the lowest optical mode which
unfortunately affects the determination of the exchange
integrals rather critically.

It should be noted that we were unable to obtain a
good Gt to the specific heat data for temperatures
below 3'K. The reason for this discrepancy is not clear
at present and will be investigated experimentally in
the near future. We did not attempt to obtain a better
6t by altering the value of D as we did previously'
which accounts for most of the diff'erence between the
calculations presented here and those given previously.
Above 10'K the calculated and experimental values of
the specific heat are in close agreement. As we show
in the Appendix, one does not expect that the small
temperature dependence of the frequencies of the
normal modes will inQu ence the specific heat
significantly.

In Fig. 17 we show the magnetization of GdIG below
20'K as calculated for one of the sets of exchange
integrals given in Table IV. The curve calculated for
the other set of exchange integrals is indistinguishable
from that shown. The magnetization of GdIG has been

for spins oriented in the plus s direction, and

S,*=—S+a+a-
S;+= (2S;) '*a~+

S =(2S)'*a

(A2a)

(A2b)

(A2c)

+s Z ~;~*ar ar, (A3)

where E is the expectation value of the energy in the
Neel state, and T;;=T;;* and U;;= U;;. A more
symmetric form for K is

Be=Ep+-', Q T;;(a;+a; +a, a,+)+-', Q— Lr;;a,+a,+

+-,' Q U;,*a; a; ——,
' P T;;. (A4)

Thus, in this approximation the ground-state energy
is different from that in the Weel state by an amount

AEp= —-', Q T,;+-,' p IAo&„I, (A5)

which for a ferromagnet is zero, of course.
In the RPA one calculates the frequency spectrum

at finite temperatures by substituting for S the thermal
value of S,. We now show that at low temperatures this
excitation energy is not exactly what one should use
in the calculation of the free energy, and that using the
correct frequency one no longer need consider explicitly
the zero-point energy.

3' W. P. Wolf and R. M. Sozorth, Phys. Rev. 124, 449 {1961)."A. J. Sievers, III, and M. Tinkham, Phys. Rev. 129, 1995
(1963)."T.Holstein and H. PrimakoG, Phys. Rev. 58, 1098 (1940l.

for spins oriented in the minus s direction, where
La,+,a; ]=—1. The Hanultonian can be expanded as

X=Ep+p p T;,a;+a; +-,' Q U;; a~+a;+
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+,' Q BpjBp g Vpg, p g. . (A6)

This formula can be made to agree with the first
RPA' or with Dyson's" results with the proper choices
of the coe%cient, V,i, , ~. From this equation one
deduces an excitation energy

ACltpg (Br):AMpg+ P Bp g Vpg p

pl+i
(A7)

where n„stands for the totality of occupation numbers
other than Bps. Using brackets, ( ), to represent thermal
averages, one has

fur pi, (T) =hesper+ P Vpg, p s (B, g.), (AS)
pl/I

where we distinguish between Seep~ which is fitep~(T=O)
and Arepz(T). By expanding the partition function,

Z= exp/ —P(E+AE )j P exp( PL+ B kore k

+s Z Vp& p'&"Bp&Bp'&'' ' ' j) (A9)

one can write the free energy as

F=E'+DE'+F(fuu, t)+ ', Q Vps, p g (B-pg)(Bp g.), (A10)

where FPuopr, ) is the free energy calculated using the
zero-temperature frequencies. Since

= kggT
Nk0 pQ BAG) pQ

&(in/1 —exp (—Are pq/k~ T)$= (Bps), (A11)

yys F. J. Dyson, Phys. Rev. 102, 1217 (1956).

We start by assuming that the temperature is low
enough so that we may write,

E=E+~E+g B„~r „(
F=E'+DE'+F (A(a pQ)

+', Q V,i, , g (B,g) (8F/Ries;g. ), (A12)

or using Eq. (AS)

F=E'+DEs+F(Puu„s)+ ;P LAN-p g (T)
pl+I

Arap g (0))(r)F/ah(ap g ), (A13)
so that finally

F=E'+DE'+F(Picdpi+Aosps(T)]/2). (A14')

Thus we see that, whereas Atop~(T) is the excitation
energy one might observe in a resonance experiment,
the macroscopic properties are to be calculated using the
frequency Puopz+Arepl, (T)7/2. ss These considerations
are only valid as long as (A6) is a good approximation,
in which case we do not expect to be able to detect
the thermal variation of frequency'of modes which are
not excited, since the zero-point energy need not be
considered explicitly. In contrast, the zero-point energy
would have to be considered in cases where the external
parameters upon which it depends, e.g. , the magnetic
field, are variable.
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