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The usual axioms of quantum 6eld theory are modi6ed to allow a uniform treatment of stable and unstable
particles without making explicit use of asymptotic conditions. A de6nition is proposed for the physical
state of a single, neutral, scalar (or pseudoscalar) boson. The consistency of this definition requires the
corresponding one-particle amplitude to satisfy an integral equation whose solutions depend on the mass

spectrum and the preparation mechanism of the particle. The unstable particle decay law is obtained from
the one-particle amplitude and at very long times appears likely to depend on the details of the preparation.
For stable particles, the formulation given in this paper is shown to coincide in an asymptotic sense with
the well-known Lehmann, Symanzik, and Zimmermann formulation. The generalizations to many-particle
states and to particles with spin, are indicated brieQy.

1. INTRODUCTION but these seem too dependent on rather artificial defini-
tions of the masses and lifetimes. A definition by Ida,
of an unstable particle state is unsatisfactory since it
appears to rely upon the assignment of a complex mass
to the unstable particle. Peebles, ~ has given a pre-
scription for uniformly representing stable and unstable
physical particle states, but the effect of observations is
not treated thoroughly enough, and the one-particle
amplitude is not considered at all. We prefer to set up a
somewhat different representation which explicitly ex-
hibits fundamental relationships between a one-particle
state, the corresponding one-particle amplitude, and the
general preparation mechanism. First, we must adjust
the usual statements of the basic postulates of quantum
field theory with a view to dealing with unstable par-
ticles, then we can define a physical one-particle state.
As a consequence of our definition, we deduce the
general structure of the one-particle amplitude and its
fundamental dependence on the preparation mechanism.
The unstable particle decay law is deduced from the one-
particle amplitude and its possible dependence on the
preparation mechanism at very long times is shown.
We also show how to construct many-particle states
from localized one-particle states and thence reduce
the scattering matrix for a collision process to vacuum
expectation values of operator products. Sections 2 to 7

deal only with neutral, scalar (or pseudoscalar) bosons,
but, in Sec. 9, we outline the extension to fermions with
spin ~~.

~'EW problems in the definition of particle states
have arisen from attempts to include a description

of decay processes in quantum field theory. In the first
axiomatic formulations of quantum field theory, ' ' it was
simpler to ignore the weaker interactions and to consider
only the collision processes of stable particles. These
formulations make use of some assumptions which are
incompatible with observed decay interactions. The
time-like asymptotic conditions on field operators are
clearly applicable to stable particles only. Since the
definition of particle states in the Lehmann, Symanzik,
and Zimmermann formulation, ' depends on the asymp-
totic conditions, the difficulty of defining unstable par-
ticle states is immediately evident. Also invariance
under improper Lorentz transformations is not permis-
sible, since violations may be possible among weak inter-
action phenomena.

Many of the more rigorous treatments of unstable
particles have aimed at consistent definitions of masses
and lifetimes. '—' We shall assume here the existence of
unambiguous definitions for the mean positions and
mean widths in the mass spectrums of fundamental
particles.

Matthews and Salam, 4 defined unstable particle states

2. POSTULATES

We shall use only those postulates of axiomatic field

theory, summarized below:

I. Quantum physics applies, and, in particular, the
states of the system correspond to the vectors of a
Hilbert space H with positive-definite metric.

II. There exists in H a set of Hermitian Heisenberg
field operators A (X) which describe a neutral, scalar (or

e M. Ida, Progr. Theoret. Phys. (Kyoto) 24, 1135 (1960).
s P. J. Peebles, Phys. Rev. 128, 1412 (1962).' R. Haag and B.Schroer, J. Math. Phys. 3, 248 (1962).' D. Ruelle, Helv. Phys. Acta 35, 147 (1961).
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pseudoscalar) boson field. The quantities A (x) are to be
interpreted in the sense of operator-valued tempered dis-
tributions such that the expression

A (X)= d4xA (x)X(x)

is an operator in H and gives definite results when
X(x)s S4."Also, these operators A (X) are defined on a
common linear manifold of vectors D dense in II such
that A (X)DCD and D may be obtained by applying
any polynomial in the operators A (X) to the vacuum.

III. Unitary operators U(a,A) exist in II correspond-
ing to proper inhomogeneous Lorentz transformations,
where A is a homogeneous Lorentz transformation and
a is a translational transformation. The field operators
A (X) transform under a Lorentz transformation accord-
ing to

U (a,A)A (X)U—'(a,A) =A (Xi,z i),

XI.,g I (x)=X(Ax+a) .
where

In particular, we have U(a, 1)= exp ( iP„a")—where the
I'„are infinitesimal generators of the translation opera-
tor. Also, the mass operator is M= (—Ps)'i' where

P2 P 2 P2

IV. The structure of the energy-momentum spectrum
is such that the eigenvalue p„of P„satisfies

—p'= pp' —y'~& 0 and pp) 0

and a unique vacuum state ~0) exists where

U(A, u) ~0)= ~0) and P„~O)=0.

V. LA (x),A (y)g = 0 if (x—y)'= (x—y)' —(x,—ys)s)0.
Note that we do not assume any asymptotic condi-

tions nor invariance under separate parity', charge con-
jugation C, and time-reversal T transformations so that
our formulation will be valid for weak interaction proc-
esses. However, we may still have invariance under the
(PCT) transformation. " Note further that the above
postulates are sufhcient to imply'the existence of free in-
going and free out-going time-like asymptotic states for
stable particles, if 8;(x;)t~0) belongs to a discrete ir-
reducible representation F;with mass m; of the covering
group of the inhomogeneous proper Lorentz group and

where
a;(x,) io)=O,

8;(x,)= U(x;,1)A;(X,)U(x;, 1)—'.
"R.Jost, Helv. Phys. Acta 30, 409 (1957); S. S. Schweber, An

Introdgction to' Relativistic QNuntlm Field Theory (Row, Peterson
8z Company, Kvanston, Illinois, 1961),p. 731.

There are one or more discrete eigenvalues m~, m2 ~ of
the mass operator corresponding to states of single
stable particles and a continuum of mass values above
2m& in which there may be one or more ranges of mass
values corresponding to states of single unstable
particles.

It is yet to be shown that field operators for unstable
particle Gelds exist and satisfy the postulates. The pos-
sible construction of such Geld operators provides an-
other interesting problem which has been examined to
some extent by Hama and Tanaka. "

= —i lim
+~00

00

—X(s)
T

00 8
d „(x)A(x) f (x) ~0) (1)

8$p
x~=o~(e)

where the field A (x) describes particles of mass m and

8 BA Bf
A f= f A———

8$ t9$ Bx

To have a normalizable state a discrete set of positive
energy "wave-packet" solutions, (f (x)} of the Klein-
Gordon equation have been used so that

f (x)= d4ke(ks)b(k'+tis')e'" f (k) (2)

and the f (x) form a linear vector space which becomes
a Hilbert space on defining a scalar product of the form"

(f fp) = 8
d~. (x)f-*(*) fp(*)= &«p, (3)

8$p

which implies the restriction

f *(k)fp(k)=8 p
2 (k'+ m') "'

n M. Bama and S. Tanaka, Progr. Theoret. Phys. (Kyotol 26,
829 (196i).

~ The operation of complex conjugation will be indicated by the
superscript *and the operation of Hermitian conjugation by super-
script t.

3. ONE-PARTICLE STATES

We aim to construct not an ideal free one-particle
state but a state which will be physically observable as
a one-particle state representing either a stable or an
unstable particle. Even in a field theory of unstable
particles we may be able to coiistruct a complete
orthonormal system of basic vectors spanning the Hilbert
space in the Heisenberg representation from the asymp-
totic fields of stable particles applied to the vacuum. Un-
stable particle states can only appear as a result of the
dynamics of some production or scattering process
beginning and ending with stable particles. Let us,
therefore, recall the usual expression for a one-particle
state, ' using the asymptotic field of a stable particle. "
We have

~n, in)=A;. t)0)
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on the otherwise arbitrary function f(k). Also, do„(x) is
a space-like surface element with normal in the time-like
direction of x„. The quantity X(s) is a test-function
possessing derivatives of all orders and vanishing faster
than any power of s ' outside a region —2T&~s&~ —T
and is approximately unity inside this region.

It may be meaningless to ask for the asymptotic
properties of unstable particle fields since, in the infinite
time-like limits, an unstable particle does not exist
physically. We are therefore prevented from interpreting
an unstable particle field in terms of a speci6c particle in
the usual way. If one-particle states are to be defined
without using time-like asymptotic limits, we must con-
sider particles created by an external source in a region
of space-time V(x) given by

t T~&x—o&&t+T )

r, R,—&~x, &~r,+R;, i=1, 2, 3.

We now choose

Xr(x) =Xr(xp)Xg(x)

to be a test-function with region V as its support such
thatXre S4."We will replace X(s) in Eq. (1)byXr(x) to
take into account the fact that the preparation or
detection of a single particle cannot be accomplished
instantaneously or at a geometrical point in space. Call
Xr(x) the preparation function, since its explicit form
depends on the details of the preparation of the particle.

No particle can be observed with perfect accuracy, so
a physical one-particle state need not describe an exact
eigenstate of the displacement operator P„.Therefore,
a one-particle state may not be observed as an exact
eigenstate of P„due to one or both of the reasons:
(a) The state of the system will be unavoidably per-
turbed by any measurement performed on the system.
(b) A fundamental property of the state may be that it
is not an exact eigenstate of P„.

Clearly, it may not be necessary to define a one-
particle state to be an exact eigenstate of P„.The form
of the wave-packet f (x) in Eq. (2) is inadequate, for,
although it already allows for an arbitrary momentum
spread, it chooses a precise mass value m for the
one-particle state in Eq. (1). However, note that in
Lehmann, Symanzik, and Zimmermann theory, ' we can
write

Therefore, instead of a wave-packet f (x) with a de6nite
mass, we can use (0 ( A (x) ~

n, in) which we hope to calcu-
late from the representation of the one-particle state
itself.

We propose to restrict a one-particle, neutral, scalar,

'3L. Garding and J. L. Lions, Suppl. Nuovo Cimento 14, 9
(1959).

(or pseudoscalar) boson state by

2T —00
xtt=|Ttt (a)

4. PARTICLE CONDITIONS

It is to be expected that the concept of a particle is
mainly qualitative and arises from the appearance of
peaks in the mass spectrum. Of course it is still an open
question as to how much of the mass spectrum can be de-
duced and how much can be assumed as "elementary. "
We hope to show that this problem can be reduced to
finding elementary fields.

To be certain that we are preparing or detecting a one-
particle state of mean mass m, our measurements must
be sufFiciently accurate to distinguish the peak in the
energy spectrum near the energy value (p'+no')'/',
where y is the average momentum of the particle, from
the other contributions to the spectrum. As Ida pointed
out, ' the uncertainty principle then gives a restriction
on the time required to prepare a one-particle state. We
state Ida's particle conditions in a form slightly altered
to suit our purposes:

(i) For a stable particle, we must distinguish between
the discrete contribution at mass m and the continuum
in the spectrum. If the average momentum is y, then
the indeterminacy of our energy measurements AE must
satisfy ~l(Ag(( (p2+ ~ 2)1/2 (p2+ ~2)1/2 (7)

where m~h is the lowest mass value of the continuous
mass spectrum. To eliminate negative energies we must
also have

T—1(Ag(((p2+rg2)1/2

(ii) For an unstable particle, the analogous relations
are

~1(Ag(((p2+~ 2)1/2 (p2+rN2)1/2

~1(gg(( (p2+ g~2) 1/2 (p2+ rr/ 2)1/2

(9)

(10)

where m~& m is the lowest mass of the continuous mass
spectrum contributed by interactions which do not
cause the decay of the particle. In addition, we must;

8
X A(x) (O~A(x)

~ p,n, V) )0). (6)
8$tt

In Sec. 4 and 5, we will use Eq. (6) and postulate IV
to deduce a general form for the one-particle amplitude
(0

~

A (x)
~ p,n, V) in terms of the Lehmann spectral func-

tion and the preparation function. If this general form
for (0

~

A (x)
~ p,n, V) is put back in Eq. (6) then it will be

clear that Eq. (6) can be a representation of a one-parti-
cle state with average mass m, average momentum y,
and prepared near a point r in space around a time t.
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have the observation time less than the lifetime to be
sure of observing the particle before it decays

,where r is the half-life.
From Eqs. (10) and (11),we find the condition for a

narrow energy peak to imply the existence of a particle

y« T—1«(ps+ m2)1/2 (ps+. m 2)1/2 ( (p2+ m2)1/2 (12)

Thus, if T ' is of one order less than (p'+m')"', then y
is of two orders less than (p'+m')'". For the well-

established particles y/m 10 ", but it is dificult to
examine resonance scattering experimentally due to the
weakness of the decay interactions. However, the new
meson and baryon resonances have large widths with

y/m 10 ', and their decay interactions are strong,
although it is hard to establish the existence of associ-
ated particles. Hence, it may be possible to study the
"decay of these new short-lived particles in greater detail
than the weak decay particles.

According to conditions (i) and (ii) above, no single
stable particle can exist if we allow electromagnetic
interactions, for then m&z= m and 0& T '(&0. Similarly,
for the case of an unstable particle, m~= m and

R,—'«hp, , t =1, 2, 3.

5. ONE-PARTICLE AMPLITUDES

(13)

The mass and momentum distributions of the
one-particle state Ip,n, v), used in Eq. (6), are con-
tained in the structure of the one-particle amplitude

(0l A (x) I p,o.,V). This is clear from the operation of I'„
on Ip,cr, v) which gives

0&T '«0 with the possible exception of an electro-
magnetic decay. It may be possible to prepare some-
thing closely resembling a one-particle state, but it can-
not be freed from the electromagnetic phenomenon of a
"soft photon cloud. "Since we no longer have a particle
in the usual sense, the name infra-particle has been
given to such a particle with a "soft photon cloud. ""
The question of how to describe infra-particles seems
rather separate from that of how to obtain a uniform
description of stable and unstable particles. Hence, we
shall ignore this particular electromagnetic effect and
presume that this will not affect our physical conclusions.

Lastly, we should require the uncertainty in the
momentum Ay or the momentum spread of our one-
particle state be small and therefore that R be large ac-
cording to

I'.
I p,~, v)=

2T
o~(s) =@~

d~„(x)X~(x) LZ„A(x)j (Ol A(*) IP,~, V) IO)
BXp

2T
o~(s) =up

—c/A(x)- 8
d „(*)x,(*) s (0IA(x)lp, ~,v) Io)

t9X t9Xp,

2T —Qc

o fi(s) =xfs

8 8
do„(x)xi (x) A(x) (OIA(x)lp, n, v) lo)

8Xltf, BX

dsd~„(x)
8 8

Xi (x) A(x) (0I A(x) I p, rr, V) I0),
BX BXp

(14)

where the other term, appearing from an integration by parts, vanishes since Xv (x) vanishes outside the finite region

V. Therefore, we can write

Z„l p,~,V)= ds
2T

o~(s) =ay

8
d~„(x) X,(x) A(x) (OIA(x)~„lp, ~,V)

BXp,

8 t9

X,(x) A(*) (OI A(*) I p,n, V) IO), (15)
BX BXp

which shows that the operation of P„on Ip,n, v) is undetermined until we can obtain an expression for

'4 B. Schroer, in Proceedings of the Mid-West Conference on Theoretical Physics, Argonne, 1962 (unpublished), p. 162.
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OO
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) Io) &oIA(y) IP»,.„,)X.(y) &'IA(*)&OIA(~) IP»
22

&o I
A (*)A (y) I o)= i

dS
00

h ch are valid f
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«2)6(+&(X—y; «

stable particle 6el s

P K

0

(16)

ostulates I to IV and

p( —k')0( —k' o
—— 0IA(0)l

ex
' — = —5(—~(y —x; «').«') exp[ik(x —y)]=-d4k8(kp) b(k' «ex

(OIA(y)lp, n, V) .dKP K — K') 5(+&(x—y;«'d, (y)Xv(y)(OIA(x) I p,n, V)=
—00

0'~ (s)=yp

If we use q.E . (19) and put

'
envalue „,and n refers

6(+&(x—y; «' =

cl elis'tates 0 p cllvRluc p~ei e f F with eigenvalueto the comp
. I '

1 f'f th
)The state, o. ,

uantum num eer relevant qua

(20

(6
X

then Eq. (20) becomes

h. (k) = d'xe '" (0IA(x)
I p,n, V), (21)

h. (k) =X d'k'0(k, )e(—k ) p —' .2 k2). k'h (k')i(k -k)y] (k„+k„d~„(y) Xv(y) expLi — k

—k ')F2(k —k')(ko+ p'kp')h. (k'),o
—' —k') Fi (ko—kpd4k'S(k, )S(—k )p(-, -k (22)

k =k0 and Putc
'

Lorentz frameh e chosen the particular owhere we have c

Fi(kp —ko') = ) expl i(kp —k, )y, ,XT Y0 'ex
2T

(23)

F,(k—k') = y g ik' —k) y].d'yXg(y) expl 2 (24)

filter sinceas an energy eF (kp —kp'), defined bn Iij hou ht ofy Eq. (23), can be thoug

—k ') .]=Cxpl i(ko — ''
k —kp')i].Cxpli(kp o yo =

t—T 2T

of IFi(ko —ko')I

(25)

on h mogeneous Fr
ctf

'on 22) is a omo Fr

brid e ni ress, Neer York,i ress, 1958).

Equation

Nuovo 342Cimento 11, 342"H. Lehmann, 2
~' See, for encampm le,

The functio

—k' =

d
'

v in Eq. (25), when

Fi(kp —
o

a l' momentum
value—k, 'l&)E; ', '=

1' 'ble compare w'

) g'g''
o~s

'
I' dependmalnlyon "of t ep

0

1 i 1
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the kernel
K(k,k') = 8(ko)8(—k') p(—k')Fi(ko —ko')Fo(k —k') (ko+k, ') .

For a nontrivial solution to exist the Fredholm determinant D(li) must vanish for some value of g, where

(26)

Also,

satisfies

( y)n
X(k,k'; X) =lIE(k,k')+X Q

E(k,k')

d,„K(q,k)

E(q„,k')

~ . E(k q„)

~ E(q„q„)

~ . . E(q„,q )

K(qi qi) " K(qi, q-)
g

0 ~ ~ {pg
K(q ,qi) E(q ,q )

(28)

E(k,k', X) =AD(X)E(k, k')+X K(k,q)N(q, k', X)d4q, (29)

so E is a solution of Eq. (22) for any k' when D(X)=0. We choose k'= p= (p, (p'+m')'") in order to have an
eigenfunction with a momentum spread around y and a mass spread around m. To show this we note that E has
the following form:

where

1V(k,P; X)= 8(ko)8(—k') p( —k')g (k,P; li), (3o)

- (—x)-
g.(k,p; X)=l K(k,p)+X p

g, ~

K(k,p)K(k, q,) ~ . K(k,q„)

d'q, " d'q„K(qi, P)K(qi, qi) " K(qi, q.),
K(q-,P)K(q-, qi) ". K(q-, q-)

and
E (k,q) = (ko+qo)ti(ko qo)t2(k —q) ~ (32)

It is clear from Eqs. (25), (7), (8), (9), and (10) that
F,(k,—(p'+ni')'@) is negligibly small unless ko has a
value close enough to (p'+m')'~' to distinguish a peak in
p( —k') near —k'= nlo from the rest of the contributions
to p( —k'). The first term on the right-hand side of
Eq. (31) will project out the resonance p„,(—k') from

p(—k') near —k'=I'. The other terms on the right-
hand side of Eq. (31) should be negligible unless
—4'=m, since any term in the expansion of

K(k,p)K(k, qi) ~ K(k, q )

E'(qi,p)E (qi, qi) - E(qi, q.)

K(q,p)K(q, qi) E(q, q )
is negligible unless ko= (y'+m2)'~'. This follows since all
the terms in the expansion of the above determinant are
of the form

K(q.,p)K(qo, q.) K(q„q;)K(q, ,q„) ~

XE(q. ,qo )K(k,q;)
which allows us to deduce successively

large n in Eq. (31), but the series converges uniformly
so the terms with large m are negligible in any case.
Hence, it may be a good approximation for suKciently
large v and T to regard g as an energy-momentum filter
so that we can write

X(k,p; X)=8(ko)8(—k')p...(—k')g (k p X) (34)

The most general form for k(k) is, however,

k (k)=cX(k,p; X)=c8(k )8(—k')p( —k')g (k,p; X), (35)

where {,is a constant to be determined by the normaliza-
tion of the one-particle amplitude

g (x,p; X) = (0
~
A (x)

~ p,n, V)

d'ke'"'8(ko) 8(—k') p(—k')

~ cg (k,p; X). (36)

For a stable particle g will project out from p(—k-") the
term 8(k'+ni') so that g (x,p; X) closely resembles f (x)
defined in Eq. (2). It is convenient to choose an ortho-
normal set of solutions of Eq. (22) so that

P=o( )q=o( )qo=o"=(q.)o=(q")o (2~)o[c(o
=(q')o= "=(q")o=ko (33)

The approximation ko= po= (p'+m')"' breaks down for

d'k8(ko)8( —k') p( —k')

Xg.'(k,p; X)g, (k,p'; X) =8,,,8,. (37)
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and this will also reduce to the usual Lehmann,
Symanzik, and Zimmermann results if we let

t;= —2T, ; i=1, 2, 3, 4.

21' 22~ ~
y 2sp T4~+~ ~

8. CONCLUSIONS

We have given a prescription for defining a single,
neutral, scalar boson state in Eqs. (6), (36), (31), and
(32), (23), and (24). In order to have a uniform de-
scription of stable and unstable particles, we have
formed a very close relationship between a one-particle
state and the corresponding one-particle amplitude. The
structure of the one-particle amplitude follows from the
consistency of the one-particle state definition. The de-
tailed properties of the one-particle amplitude depend
mainly on the details of the preparation of the particle.
We assumed only very general properties for the prepa-
ration function, but we found that it is the more detailed
properties which are likely to determine the decay law
of an unstable particle after a very long time. This
problem of how to introduce new parameters to describe
the preparation mechanism more accurately and to find
their effect on the decay law has already been discussed
by Khalfin. "It is to be hoped that the new very short-
lived particles will yield significant experimental data
and give some guide towards the solution of this
problem.

For the case of stable particles our formulation will
coincide asymptotically with the Lehmann, Symanzik,
and Zimmermann formulation, ' and there is little
difhculty in generalizing to charged bosons and to
fermions of spin 2.

It has proved unnecessary to solve the problem of
finding elementary fields. We have shown that it is
possible to construct unstable as well as stable particle
states without requiring any, special properties of the
field operators other than those imposed by the usual
postulates of field theory.

9. FERMIONS

where Pt(x)=g, t(x)(y4)„b also ft(x) is a Heisenberg
spinor field operator describing a spin--, fermion field,
and we are using a set of Hermitian Dirac matrices y~,
'ys~ 'ys~ 'y4 with ('yp, r„)= 28s„.

The manipulation of the integral equation for the one-
particle amplitude is different in detail from the boson
case. We have

&olA(x) I p, —:,~, v&

d "(y)& (y)&01~It( )~It (y) I o&
00

0la(S) =yp

x (v.),.„&014',(y) I p, -'„~,v). (5s)

The following results due to Lehmann, "are valid if we
avoid Lehmann's use of separate P, C, and T trans-
formation invariance

(o
I ~I,( )p ( ) I o&

+~«ps(~')+s(Vs)«" ps(~')

where y5=yjyg 3yo and

—(2~) s z„&0IA(0) I e,~&(u,~ lyt. (0) I o)
=D'~.~ ( W") -"-( ~)+~ "-(

+t (Vs)t p ps( —&')+s(VsV.&")«'p4( —&')

+s( "") & & p (—&')le(—&') (6o)

but o.f'"=yf"y"—y"yf' and so 0&"k„k„=0.It is possible to
show that the p;(—k'), j= 1, 2, 3, 4, are real, and from
postulate V or the (PCT) theorem, s' we find

= —(~,),„&oly,.(0)p„(x)lo)(~,)„, (62)

The extension of our formulation to particles with
spin —,

' is different in some details. We indicate briefly, in ( )»( ~ ) ~ I (p'( ~ ) ( ~ ) pt( ~ ))
this section, how this extension can be carried out. +("(-&'))'+(p (-&')) j &' (61)

For a single fermion state with spin s the restriction &olfe(x)4'» (0) Io)
analogous to Eq. (6) is

I p, —,', rr, V&= ds
2T

d "(xQ~(x)A(x)(v,)t,

x&olp„(x) lp, —,', , v)I0) (57)

Using Eq. (59) and taking the Fourier transform

t(k) = d'xe '" &OIpt(x)Ip, —', , , V) (63)
(2s)'

'9L. A. Khalfin, Dokl. Akad. Nauk SSSR 141, 599 (1961)
(translation: Soviet Phys. —Dokl. 6, 1010 (1962)j.

20L. Lovitch and Y. Tomozawa, Nuovo Cimento 24, 1147
(1962).
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then Eq. (58) can be written as follows:

44»(k) =
(2n.)4

d4g~—ikx

-2T
a~(s)=

& "(x)&~(x) V. —~
I p~(")+~»» p2(")+4(V4)»» p4(~')

8x, )»»

8q
+I vsv, [ p4(~')

Bx„»» (2m)'
d'k'8(k ')8(k"+/4')e'"'&' »—(v )». . d4k

"e'~"&a) (k")

~"L('v. k"- ) p (")+8 (")+ (v,),(")+ (, ,k)„. .(. )) 8(k.)8(k+. )

d4k" d "(r)X~(3')e""""" . (v)» ~.(k") (64)
(2~)' „2T

»rp(s) =@~

If we introduce positive energy spinors uj and u2 such which can be solved in the same way as in the boson
that case, since Lp2( —k') —2(—k')'/'p~( —k')) has the same

I iv k+(—k')'/') u;=0, u,u;=1; j=1, 2 (65) properties as p(—k').

and note the following results:
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(66)
u, (iv,)u;=u, (iv,v k)u;=0; j=1, 2,

then we find

(u»44»(k)) =)
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