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This paper contains the Hamiltonian theory of a classical particle displaying all the features of the Dirac
electron (spin, Zitterbewegung, etc.) except, of course, for the superposition principle. The particle is de-
scribed by eight internal canonical variables, of which three are the spin angular momentum vector. The Gve
other variables have no simple physical meaning, but are nevertheless necessary for a consistent theory. The
equations of motion are not manifestly covariant, and the Lorentz invariance of the theory is proved by
constructing the ten generators of the inhomogeneous Lorentz group.

I. INTRODUCTION AND NOTATIONS

~ VER since the brilliant success of Dirac's electron
theory, numerous attempts have been made to

construct classical models of spinning particles. ' "Most
of these models were based on the introduction of a few
internal degrees of freedom, such as an antisymmetric
spin tensor S t', possibly subject to some constraints
such as S &Up=0. None of these attempts, however, was
really satisfactory, because each model could reproduce
faithfully only part of the features of the Dirac electron.

In the present paper, we show that a satisfactory
classical model for spinning particles requires the intro-
duction of eight internal independent dynamical vari-
ables. Three of them are the components of the spin
angular momentum. The 6ve other variables have no
simple physical meaning, but are nevertheless necessary
for a consistent theory.

Our method is so straightforward as to be almost
foolproof. Ke simply "dequantize" the Dirac equation
by replacing Hermitian operators by real classical
variables, and their commutators by Poisson brackets:

N78 Z ~ Nq8

This is done explicitly in Sec. 2. The classical equations
of motion are derived in Sec. 3, and their Lorentz

2. THE DYNAMICAL VARIABLES

The Dirac Hamiltonian is

II= n (y —eA)+pm+ey, (2)

where P and A are functions of the time t and the
coordinates q;, whose Poisson brackets with the mo-
menta p; are

(q, ,p;) =3;;,
as is well known.

The n and P are internal dynamical variables. In
quantum theory, these are Hermitian operators, whose
commutators can be written as

invariance is proved in Sec. 4. Finally, an Appendix is
devoted to an alternative set of equations of motion. The
latter are manifestly covariant (the proper time appears
explicitly) but they are not a faithful model for the
Dirac electron. The difFiculty seems to be inherent in the
manifest covariance itself.

Throughout this paper, lower case latin indices run
from 1 to 3, Greek indices run from 0 to 3, and capital
latin indices run from 1 to X (the number of canonical
variables). A comma denotes partial differentiation.
Natural units (k=c=1) and the Einstein summation
convention are used throughout.
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„n, jn/i =4e„„„S„,

[n,pj/i=4T„,

(4)
and

(5)

where e „,. is the Levi-Civita alternating symbol, and
where a factor 4 has been added for convenience. Here,
S and T are also Hermitian operators, linearly inde-
pendent from n and P. However, any further commu-
tator between n, p, S, and T again leads to one of these
operators (n, p, S, and T form a I.ie algebra) so that one
does not need any further dynamical variables to
describe the Dirac electron.

In the classical theory, we have, instead of (4) and (5),

(nm&no) =4emo, rSr,

(n.,p) =4r„.
We likewise obtain, by analogy with the quantum
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commutation relations,

(S,S )=8„„,S„
(T,T„)=e „,S„
(rrmP n) = &too&r ~

(S„,T„)=B„„,T„
(T.. .)=B..J8,

(P,S-)=0,

(P,T-)=~-

(8)

(9)

(10)

(»)
(12)

(13)

(14)

yA yA (&M) (21)

Poisson brackets remain invariant under such trans-
formations provided that

because we already know that the quantum variables
e, P, S, and T form a Lie algebra. ""

The elementary definition of Poisson brackets is
recovered in the special case where eAB=&1 if A=8
&-,'S7 and otherwise eAB=O. The present definition is
much more general, since it allows arbitrary "coordi-
nate" transformations in phase space

BAB BBA—(yA y—B) (16)

Finally, we note that e, P, S, and T have vanishing
Poisson brackets with q and p.

An important property of Eqs. (6)—(14) is that the
corresponding commutation relations hold for any value
of the spin whatever" and not only for spin- —,'particles. "
To specify the spin, in quantum theory, we further need
artticommmtation relations such as n rr +n, rr =28 „,or
the DufBn-Kerrnner relations, etc., which have no
classical analog within the frame of the present theory
where e, P, S, and T are c numbers. Indeed, it is quite
natural that, in a classical theory, the intrinsic angular
momentum may take any real value. It thus appears
that there is only a single classical analog to all the
various quantum representations of the Lorentz group,
corresponding to spins 0, -„1, . ~ . It is discussed in
Sec. 4.

The Poisson bracket of any two functions I and v is
now de6ned as'~"

(N, v) = (BN/By")B~B(Bv/ByB),

where y" stands for any of the basic variables q, p, e, P,
S, and T, and where

AB gMNzA MzB,M,N 7 (22)

i.e., eA must transform as an antisymmetric contra-
variant tensor in phase space. (In the elementary
formulation, only canonical transformations were al-
lowed, namely, those which did not alter the values &1,
0 of e"B.) For instance, one can choose as basic variables
the gauge-invariant P= p —eA, with Poisson brackets

(P,P„)=eF „, (23)

which satisfy (20) provided that the Maxwell equation
divB= 0 holds. "

(Note added irt Proof. Finally, we note that in the
present classical theory, only eight of the internal vari-
ables n, P, S, and T should be considered as dynami-
cally independent, because the combinations n'+P'
y4S'y4T' and. L(n x T)+PS7'+ (n. S)'y4(S T)' have
vanishing Poisson brackets with all the dynamical vari-
ables. These expressions should therefore be considered
here as mere numerical coefficients, like m or e. There are
no further independent combinations of this kind, be-
cause the e"Bmatrix is of rank eight. (These results are
due to Micha Hofri, to whom we are very much indebted
for kindly carrying out these tedious calculations. )7

(N, v) = —(v,tt),

(I+v, w) = (N,w)+(v, w),

(ttv, w) = (N,w)v+N(v, w).

(17)

It is readily shown that Poisson brackets, as de6ned by
(15), satisfy the usual identities"

3. EQUATIONS OF MOTION

The equations of motion are given by'~

(dg/dt) = (BN/Bt)+ (N,II),
where, in our case,

H=n P+Pm+ep.

(24)

(25)

However, the Jacobi identity further requires that'r

~A [B~CD] 0 (2o)

where brackets denote, as usual, total antisymmetriza-
tion. In our case, it is not even necessary to check that
our e"B,as given by Eqs. (6) to (14), indeed satisfy (20),

dP/dt=e(E+ n x B),
de/dt= —4(S x P)+4mT,

(26)

(27)

(»)

With the help of Eqs. (6) to (14) and Eq. (23), we
readily obtain
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dp/dr= —4T P

d S//dt= —(n x P),
dT/dh=PP —mn.

(29)

(30)

(31)

and K Fortunately, this difhculty is only apparent and
it is removed in the next section.

4. LORENTZ INVARIANCE

n= (H/E')p+ Z,

p= (mH/E') —(Z p/m),

S= So+ (p x Z'),

T= (So x p/m) —)mZ'+ (Z' p) (p/m)),

where Z is the Zitterbewegung vector

(32)

(33)

(34)

(35)

In the case of a free particle (E=B=O), we have
p=const, and Eqs. (28) to (31) are easily integrated:

(P,Pe) =0,
(M-e,Pv) =g-vPe gevP-—

(44)

(M e»vo)=g vMeo gevM o+g oMve geoMv (46)

The equations of motion (26) to (31) are manifestly
invariant under spatial rotations, but not under Lorentz
transformations. In order to prove their invariance, we
now try to construct the generators P and Mp-, of the
inhomogeneous Lorentz group, satisfying"

and
Z= Ct sin2Et+Cs cos2Et,

Z'= (—Ct cos2Et+ Cs sin2El)/2E.

(36)

(37)

Pp—=H.

For the other generators, we guess"

(47)

Here, So, C&, Cs, and H are ten arbitrary constants, and
E is defined by

E= (p'+m')'". (38)

(X„,X„)=0,
(X,p„)=b .,

(40)

(41)

(X,H)= p H/E'. (42)

From the last equation, it follows that the square of
the velocity

(dX/«)'= (p'/E') (H'/E') (43)

tends towards (H/E)' when p'/m' —+ ~ .Now, in Dirac's
original theory, we have II'—=E', so that the velocity of
the particle approaches the velocity of light, as expected.
However, in our case, nothing seems to prevent us from
giving different values to the constants of motion H

o' L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).

Note that L+S and S p are constants of the motion
for a free particle. Note also that there are no limitations
on Ct and Cs, in contradistinction with the situation in
quantum mechanics. In the classical theory, both can be
zero (no Zitterbewegung) or can be made such that

~
dq/dt

~

is larger than the velocity of light. This implies
that q cannot be considered as the position of the
particle.

Indeed, we know from the work of Foldy and
Wouthuysen" that the position operator of a free Dirac
electron is given by

X=q —(S x p/E(E+m) I+ (T/E)
—I:(T.u)p/E'(E+m) j (39)

(The classical analog of the Foldy-Wouthuysen trans-
formation simply is a phase space transformation, like
Eq. (21), such that y'=p, P'= (n p+P )m/ Eetc.,
whence H'= H =P'E.j In the present theory, X becomes
a classical variable, with Poisson brackets

P =

Mp„=HX„—tP„,

3f„,=P'„X,—P,X„,

(48)

(49)

(50)

where p and X are actually —p and —X, because of
the use, in this section, of the Minkowski metric gpp= 1
and other g q= —8 p.

Straightforward calculations, making use of Eqs. (18),
(19), (40), (41), and (42) readily show that P and M„,
have correct Poisson brackets with all the generators,
but that

and

(Mo.,Po) =P.(H'/E'),

(Mor, Moa) = Mra (Hs/E') .

(51)

Again we find the redundant factor H'/E', which is
identically one in quantum mechanics, but not in the
present classical theory. We are therefore led to the
conclusion that not all the solutions of the dynamical
equation (Z4) are Lorenls inoariant, but only those for
which the constants of the motion H' and E' are equaL
This removes the difhculty mentioned at the end of the
previous section, and proves the consistency of the
theory.

(du/ds) = (u,H),

where H is a relativistic scalar, e.g.,

(53)
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u A. Peres and N. Rosen, Nuovo Cimento 18, 664 (1960).

APPENDIX

The reader may perhaps wonder why we have not
started from a manifestly covariant generalization of
(24), such as'4
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The internal dynamical variables would be y and 5 t', related to the proper time d8 by
with (dt)/ds)'= v v-. (62)

(v,vP) =4S',

(S p,y')=g 'yp —gp'y (56)

(SaP S'ys) —garSPs gP/Sat gasSPr+gPsSav (57)

The equations of motion would be

dx /ds=y, (58)

dP /ds= eF.pyP,

dy /ds=4$ PPp,

dS P/ds=P yP PPy . —

(59)

(60)

(61)

We see from (58) that ds is an invariant parameter

Note that there are no constraints in this theory.
It is not dificult to solve these equations explicitly in

the case of a free particle, and it is found that the
Zitterbewegung is not of the same type as in the original
Dirac particle. Namely, not only q, but also t oscillates
periodically as a function of s, so that (dq/dt) is not a
sinusoidal function. It follows that this manifestly
covariant system of equations is not a faithful model of
the Dirac electron.

One may still ask whether the correct equations of
motion (26) to (31) can be recast into a manifestly
covariant form, with the proper time as an evolution
parameter. In our opinion, this should not be possible,
because Eqs. (26)—(31) have spurious solutions which
are not Lorentz-invariant, and it is difFicult to see how
this could happen if they were equivalent to manifestly
covariant equations.
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The general form of the electromagnetic interaction in the octet version of the proposed "higher sym-
metry" scheme based on the group SU3 is derived. The result, which is applicable to an arbitrary multiplet,
is expressed in an especially simple form by introducing the notion of U spin. Relations among electro-
magnetic form factors, mass splittings, decay amplitudes, and scattering amplitudes, previously obtained
by various authors in the case of octets, are shown to follow immediately, as well as their generalizations to
arbitrary multiplets. Where possible, comparisons are made with experiment.

I. INTRODUCTION
' 'F the octet version' of the higher symmetry scheme
~ - based on the group SU3 were exact, the known
particles and resonances would form degenerate multi-
plets. ' This degeneracy is not present in nature. How-
ever, it has been supposed that the deviations from the
exact symmetry are due to some symmetry-breaking
interactions which can be regarded as perturbations.
Although no deep understanding of the symmetry-
breaking interactions has beeri advanced, some results
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Ofhce of Scientific Research Grant AF—AFOSR—62—452.
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have been obtained which follow simply from the
postulated transformation properties of the symmetry-
breaking interactions. For example, Okubo' has ob-
tained a "mass formula" by assuming the mass split-
tings transform like the hypercharge component of an
octet. Similarly, the symmetry-breaking effects of the
electromagnetic current have been considered by
various authors4 for the eight-dimensional multiplets.

In the present work we derive a concise expression
for the most general form of the electromagnetic
interaction in any representation of SU3. The results
derived previously for octets and their generalizations
to arbitrary multiplets follow immediately from our
formula. These results consist of relations between
various electromagnetic form factors, mass splittings,

' S. Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1962); and
Phys. Rev. Letters 4, 14 (1963).

4 S. Coleman and S. Glashow, Phys. Rev. Letters 6, 423 (1961),
N. Cabibbo and R. Gatto, Nuovo Cimento 21, 872 (1961); and
S. Okubo, Ref. 3.


