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Dilatationally Invariant Quantum Electrodynamics of Electrons and Muons*
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The equation for a lepton propagator is studied in dilatationally invariant quantum electrodynamics and
the possibility of an electrodynamic calculation of the electron-muon mass ratio is discussed.

I. INTRODUCTION

'N a preceding paper' one of us (Th. M.) has given a
- ~ qualitative description of a model which could allow
an understanding of the fact that the electron and the
muon have almost identical interactions but vastly
different masses. "We want to report here some calcu-
lations which were made in order to study this model
quantitatively. We shall not repeat the general argu-
ments given in Ref. 1 in support of this approach but
merely restate the basic assumptions.

(i) Quantum electrodynamics as far as it deals with
leptons and photons only is considered as a dilatationally
invariant theory. In other words, the basic equations
shall not contain any parameter which has a dimension.
Starting from the customary formulation of quantum
electrodynamics this can be achieved in either one of
two ways. The first (realistic) way is to put the bare
masses of the electron and muon equal to zero. One
would then have to assume that the self-energy in-
tegrals are actually convergent which could be true if
the vertex functions I'(p, q) decrease suKciently strongly
for large ratios of the momenta p and q. According to
this picture, the masses of the electron and the muon
would be of purely electromagnetic origin but in such
a way that the scale of the geometry and hence also the
mass scale is left undetermined by the theory. The
second (idealistic) interpretation does not assume that
the self-energy integrals are finite but that they are
void of physical meaning. If that is the case, then the
basic equations of quantum electrodynamics should be
slightly restricted by omitting the one relation which
expresses the mass renormalization bm as the self-
energy integral. This can easily be done without a6ect-
ing any other part of the theory. In Dyson's approach,
the solution of the equations of electrodynamics is
essentially reduced to a determination of the three
basic functions Sg', Dp', and F for which one can give
a closed system of equations. ' The mass renormalization
appears only in one of these equations (the equation
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2 A diferent electrodynamic approach to the e-p, mass problem
has recently been studied by M. Baker and S. L. Glashow, Phys.
Rev. 128, 2462 (1962).

8 The equations for Sz' and Dz' are ordinary integral equations
whereas the equation for F contains an infinite sum of terms.

for the Fermion propagator) which reads

ZC

St ' '(p) = Zs(syrup"+erts)—
(2s )4

XP„Str'(q)I'4(P; q)Dt '(P q)d4q —(1)

Here S&', D&', and F are the renormalized quantities,
mo is the bare Fermion mass, c is related to the bare
charge eo and to the true charge e by

8 = 80 Z2 Z3= 8 Z1 (2)

The three constants Z&, Z2, Za are the customary re-
normalization constants referring, respectively, to the
vertex, the Fermion propagator, and the photon propa-
gator If no.w, instead of (1), one considers the equation
which results from it by the application of the operator

&= (6.i 'v.V~)p. —-

as the basic equation, then srtp (and incidentally also
Zs) are eliminated and one has the dilatationally in-
variant equation

SSp'—'= X)Z

with

If one approximates e'F~ by e'&~, then the quantity
SZ is 6nite whereas Z itself contains divergent parts.
In this approximation, Eq. (4) contains all the relevant
information of (1), the additional information of (1)
being useless because divergent. In the present paper
we shall only consider this approximation. Our calcu-
lations indicate, however, that without a "realistic"
interpretation, there is little hope of determining the
mass ratios. 4

(ii) Consider the three categories of particles: (a)
electrons, (b) muons, (c) strongly interacting particles.
Ignoring weak interactions, the physics of any one of

In this context, the results of M. Baker and K. Johnson
(private communication) are of great interest. These authors have
investigated the high-energy behavior of Eq. (1) using the same
approximation for the vertex Pour Eq. (6)g but the Landau gauge
for the photon propagator. They find that, for mo ——0 and a
special value of the coupling constant, they can obtain a /nits
self-energy integral,

Z(p) = — p„S '(q)I' (p; q)D '(p q)d'q. (5)—
(2x)4
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IL THE PROPAGATOR EQUATION FOR A LEPTON

In the present section, we study the Eqs. (4), (5)
with the approximations

g2p Jtk —e2pylM (6)

these categories is influenced by the existence of the
others only through the electromagnetic field, i.e., by
means of a higher order electromagnetic effect. If one
neglects this coupling then each of the three worlds has
its own mass scale, i.e., the ratios between the masses
of an electron, a muon and a proton are entirely unde-
termined in this approximation while the mass ratios
of the strongly interacting particles among each other
are essentially Axed. Instead of saying that the mass
scales in the three worlds are unrelated, we can also

say that each of the three worlds is described by a
dilatationally invariant theory. It clearly is of no

physical consequence whether one says that the theory
of strong interactions contains a dimensional constant,
related by this theory to the proton mass but not to
lepton masses or whether one eliminates this constant,
thus arriving at a dilatationally invariant theory in
which the mass scale is left arbitrary. How such an
elimination can be actually performed was illustrated
for the case of the leptons under item (i).

(iii) We shall then refer to the approximation in which

the indirect electromagnetic coupling between the three
categories is neglected as "the unperturbed situation. "
It consists of three uncoupled theories each of which is
dilatationally invariant. For the electron and the muon
world the theory taken will be ordinary quantum elec-
trodynamics without bare masses. The theory of strong
interactions will be left unspeciled here. From this
point of view the "perturbation" i.e., the indirect elec-
tromagnetic interaction must determine the relation
between the scales in the three worlds in much the same

way as an asymmetric perturbation in quantum me-

chanics lifts the degeneracy inherent in a symmetric
unperturbed situation. In our case, the symmetry which
is destroyed by the coupling is the separate dilatational
invariance of the three "worlds. "

Unfortunately, we have not succeeded so far in
deriving a convincing criterion which determines the
mass ratios. In Sec. II, we discuss the "unperturbed
situation" for one lepton which is of some interest in
its own right. In Sec. III, the "perturbation" is treated
in as far as it can be described as a modification of the
photon propagator. It appears that if the "idealistic"
point of view is adopted, then the only condition which
can possibly result is a high-energy limit condition. A
study of such conditions is not attempted in this paper
since it would be a major enterprise by itself and since
it seems not very likely that these conditions could de-
termine mass ratios. Rather, they might be relevant for
a theory of the 6ne structure constant. Thus, the
problem of the mass ratio will, in all probability, force
us to adopt the "realistic" point of view.

and
Ds'(k) = (k' —is) (7)

P(s)=—
(2~)'

4A(')L. (p—p')' —'
& 'd'p', (10)

ie2
sQ()=-

(2m)4
2B(s') (pp') I:(p—p')' —~ex'd'p' (11)

A great simplification is achieved by means of the
formulas (A3), (A4) in the Appendix. Equations (10)
and (11) become (we take p time-like i.e., s negative)

P(s) =
4x'

A (s')ds' —s ' s'A (s')ds'
S

(12)

Q(s) = s B(s')ds' s' s"B(s')d—s' . (13)
16m'

We note now that the effectof the operator S LEq. (3)j
on the expressions is given by the formula

(dF dG
&I:(P(s)+PG(s)3=ksl +P I——

&ds ds)
(14)

Hence, (4) is equivalent to the two equations

d A dI' e'
s ' s'A (s')ds', (15)

ds A'+sB' ds 47r2

d B dQ e'
s ' s"B(s')ds'. (16)

ds A'+sB' ds Sn-'

5 See, for example, L. D. Landau in Niels Bohr and the Develop-
ment of Physics, (Pergamon Press Ltd. , London, 1955). Using our
notation of Eq. (9), the additional assumption made by Landau
is 8/(A'+sB') =1.

In other words, we ignore corrections to the vertex and
to the photon propagator. Equations (4), (5) together
constitute then a nonlinear integral equation for S&'.
It may be noted that the corresponding approximations
have been used with very good success in the theory of
electron-photon interactions in a crystal. For quantum
electrodynamics this equation has been studied before
by Landau and collaborators. However, these authors
linearized the equation by means of a further assump-
tion. ' The method used here will allow a rather complete
and simple discussion. It is also easy to adapt the
method to take corrections to the photon propagator
into account (see Sec. III). The vertex corrections are
more dificult to treat and we have refrained from
attacking them in this paper.

Putting
SF'(p) =A (s) ~pB(s),—s= p';

we get

~(P)=P(s)+~PQ(s), SF' '= +~P; (9)
A'+sB' A'+sB'

with
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It is seen that (15) and (16) are invariant under the
dilatation transformation

3 ~'A 'A; 8 —+X '8; s —+)'s (17)

and that only integrals over a finite range remain so
that there are no ultraviolet divergences in these
equations.

By a further differentiation, (15) and (16) are trans-
formed into the differential equations

(=cie—(*12)+c2

( I2)

(24')

(25')

geneous equations with the solutions

—'($+g) =cie '*"'+ci'e "*"'
—', (&

—rl) =c2+c2'e—".
The boundary conditions (24), (25) then demand that
c&'= c2'= 0. We see further, that the asymptotic solution
for x(QO

d d( A ) e'
s2 sA,

ds ds(A'+sB') 47r'

d d B ) e'
$3 s'B.

ds ds A'+sB') 8m'

(18)

(19)

will be a good approximation until either $ or g becomes
small of the order e', i.e., up to some neighborhood of
the position of the singularity of the propagator. The
physical meaning of the constants c& and c2 is easily seen
if one expresses (24'), (25') in terms of A and B:

The two additional integration constants which are in-
troduced into the solution by this manipulation can
easily be disposed of by the boundary conditions at
s= 0 which follow from (15), (16).It is convenient now
to introduce, instead of A and 8, the two dimensionless
quantities

$= [(—s)'"A+sB] '; g= [( s)'"A sBj —'(20)— —

A =ci/(ci +scg ); B=c2/(ci +sc2 ) .

This is the propagator of a free Dirac particle if we put

C2= ~ j Cy=SZ.

The constant c2 may be regarded as a normalization
constant which is customarily chosen so that the pole
at s= —m' has unit residue. Since the Eqs. (22), (23)
are invariant under the transformation

and to use g —+ Xg e' —+ X'e' (26)

x= ln( —s) (21)

as an independent variable. Equations (18), (19) then
can be written

d'$ dt e'
+2 +l (5+—n) = (V+3n ')

dx' dx 16~'
(22)

CPg
+2 +l (k+n)—=

dx dx
(3++.-)

16m-'
(23)

We are interested in those solutions of (15), (16) for
which A and 8 have a singularity at a 6nite value of

(—s)'~'. The position of that singularity will be the
mass of the lepton. We exclude singularities in 2 and 8
at s=0. This latter condition means that for x~ —
(s=0) the quantities $ and g have to become infinite
so that

lim e*"-'($+g)=ci, (24)

lim —,'(P—g) =c2, (25)

where c& and c2 are two 6nite constants. These boundary
conditions specify the solution of (22), (23) completely.
They imply that, for very large negative x, both $ and

p have to be very large so that the interaction term on
the right-hand side becomes negligible. If we omit the
interaction term then (22), (23) are two linear, homo-

this normalization convention may be regarded as a
definition of the physical charge. Starting from an
arbitrary value of e' and picking a solution of (22),
(23) to arbitrarily chosen value of ci and c2, we can
always apply the transformation (26) to get a solution
with the conventional normalization but a different
value of e'. For our purpose it will be sufficiently
accurate to take the combination

c2 ——1; (e'/4m) =n = (1/137) (27)

(d'q/dx') = (0./4m. )g-'. (28)

It is easily seen then that the interaction term pre-
vents the function g from crossing the axis. This is
one aspect of a serious difhculty with Eqs. (22), (23).
For physical reasons A and B (and hence g,g) should
be real for (—s)'i'(m and acquire an imaginary part

for the solution which is wanted. This leaves then c~

as the only free parameter and the choice here is indeed
irrelevant as long as we consider a single lepton since
it only fixes the mass scale. Let us, for the moment, also
choose c&=1 which means that, judging from the ap-
proximate solution (25'), g will pass through zero at
x= 0 which means, in turn, that the mass of the particle
is chosen to be equal to unity.

The next question concerns the behavior of the solu-
tion of (22), (23) in the neighborhood of x=0 where the
interaction term becomes crucial. Since, in this region,
g

' and (d'g/dx') become large compared to all other
terms in (23) we can simplify (23) there to



2328 R. HAAG AND TH. A. J. MARIS

for (—s)'I') tn so that (—s)'"=m should be a branch
point. However, the Eqs. (22), (23) do not allow such
a singularity on the real axis. Indeed a solution of these
equations which is strictly real to the left of x=0 be-
comes physically completely unacceptable for x&0. The
function never crosses the axis but oscillates so that it
approaches close to zero again and again. To obtain a
satisfactory solution one must allow p to have a very
small (but finite) imaginary part to the left of @=0.
The order of magnitude of the necessary imaginary
part is e "'.It may be assumed that this artifice would
become unnecessary if the vertex corrections were
included since these will introduce integrals over x into
Eqs. (22) and (23).

The behavior of iI in a neighborhood
~
x~ ((n/4m)of.

the origin is described by a solution of (28). The general
solution can be written in parametric form

Thus, for negative x near the joining point

Imp =a2u' ImF (u) = ie( n/2) '~'e &~ "~& .
For positive x we can again take the solution (29) up
to about x= (n/4~) and from then on continue with a
solution of the free equation. The values for the real
parts at this joining point are

x= (n/4n. ); it= —(n/8ir); (dg/dh) = ——,'; u= (ir/2n)'".

The change of sign in g for the same real part of u is now
due to the passage into the second Riemann sheet. The
imaginary part of I is given approximately by

2u' u"=~ i.e., u"= Pm.n)'i'

Thus, at the positive joining point

Im(de/dx) = —-', n.

g= ae",

dq / n q'i'
I

dx &2~)

(n )'~2x
F(u)= —

(

—
)

-+b,
E8~) a

where a and b are integration constants and

(29)

Summarizing this discussion we note that the propa-
gator equation (4) with the approximations (6), (7) has
solutions which are physically acceptable. They agree
up to terms of order n and apart from a small interval
around —P'=m' with the propagator of a free field

Ss '——iy+m,

where m is arbitrary. For —p'(m' one has to allow an
imaginary part of order e '~i'~& (which probably has no
physical significance); for —p') m' the imaginary part
is of order n, as it should be.

F(u) = e"dv. (30)
III. THE MUTUAL INFLUENCE OF

CHARGED PARTICLES
The analytic function F(u) has a branch cut along the
imaginary axis with a gap between +-,6/n. . If both in-
tegration constants were chosen real then as x changes
from —( /n4 )porto +(n/4ir) the trajectory of F would
pass through that gap, i.e., F would stay in the same
Riemann sheet. This would mean that (de/dx) changes
sign while p keeps the same sign. This is a physically
unreasonable solution as discussed above. If, however,
we take b=iP and P)-,'ger, then the trajectory of F
will pass into the second Riemann sheet at x=0. This
gives the type of solution wanted, in which the real part
of (di1/dx) does not change sign and the real part
of g passes through zero. If we want to join the solu-
tion (29) to the approximate exterior solution at
x=—(n/4ir), where iI = (n/8ir) and (diI/dx) = —~~,

u= (m/2n)'t',
we get

a=(n/8m)e —
& ii ~.

The imaginary part of u and p at this point is very
small. Putting u=-u'+iu" we can approximate (since
u'))1))u")

F(u) = (e"'/2u) = (cos2u'u"+i sin2u'u") e"' /2u' .

The imaginary part of the last equation (29) then gives

e"'u"= -'x'~'.

d dQ n—s = ——s 8+$R2(s) .
d$ dS 2'

(32)

Then Eqs. (22), (23) are replaced by

d'$ d$ n
+2—+e (&+it)——(g'+3'—') =Ri+R2, (33)

dx dx 4m

Q
+2—+s($+iI)—(3Q'+iI ')=Ri—R2. (34)

dx dx 4x

If we consider the propagator equation (4) for one
lepton, say the muon, then the existence of other
charged particles will manifest itself through the photon
propagator D~' and the vertex F. We shall be interested
in those correction terms to (6) and (7) which involve
the masses of other particles. For the photon propagator
there is a term of this kind of order n which corresponds
to diagrams of form (1a). For the (proper) vertex the
lowest-order correction of this kind has relative order
n' and corresponds to Fig. 1(b). In these diagrams
I' stands for any charged particle different from p.

Let us now, in the notation of Eq. (9), define R; by

dp 0.—s' = ——sA+ (—s)'I'Ri(s), (31)
dS dS
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(a)

possibly develop, namely x~ —oo and x —++ oo. In
the first case, the question is whether a solution of the
approximate form (24'), (25') is at all compatible with
the expression for R; near x= —~. Using the method of
"variation of constants" one finds the conditions

lim Rs(x)=0 or lim Rs(s) =0,
s-+0 (36)

lim e*"R (x) =0 or lim (—s)'"Rt(s)=0.
s-+0 (37)

(b)

Fro. 1(a) Lowest order correction to photon propagator.
(b) Lowest order correction to vertex.

The right-hand sides may be split into two parts

R,=R +R;", (35)

where R,' results from all diagrams which do not in-
clude lines of charged particles other than the muon
and R,"results from the remaining diagrams of which
the lowest order examples are given in Fig. 1. The
dilatational invariance is destroyed through the terms
R;".In our logarithmic mass scale, this means that R;"
will depend explicitly on x. The question is then
whether the presence of such functions R;" in (33),
(34) will reduce the number of free parameters in the
solution from two to one. In other words, taking (33),
(34) together with the boundary conditions (24'), (25')
at x —+ —m one might hope that the ratio cr/cs can no
longer be chosen arbitrarily since the equations are no
longer invariant under dilations (x —+ x+a). We shall
still adhere to the normalization condition c2——1 so
that we have to discuss only whether c& remains
arbitrary or whether it becomes fixed.

If one considers R,"as a small perturbation one may
calculate it with the help of Feynman diagrams using
as the muon propagator a solution of (22), (23). The
results will depend on the choice of the integration
constant c& and we indicate this dependence by writing
R,"=R,"(cr, x). I.et us imagine that these functions
have been calculated. Equations (33), (34) are then in-
homogeneous differential equations which we want to
integrate subject to the boundary conditions (24'),
(25') and we can admit the result as a solution only if
it does not differ radically from the solutions of the
homogeneous equations (22), (23). This requirement
may introduce a consistency condition which can be
used to determine c~. It is clear, however, that there are
only two regions in which a radical difference between
the solution of (22), (23) and that of (33), (34) can

lim (t+ri) =0, lim ($—rI) =a,

and lead to the conditions

lim Rt(s)=0, (38)

A
lim —(tI

'—P')+Ra ——0.—g —+oo 4
(39)

A sensible analysis of these or similar high-energy
limit conditions cannot be made without a drastic
modification of the vertex at high energies. ' This is
outside the scope of the present paper. On the basis
of very crude estimates it does not appear to be very
likely that a condition of this sort can give a determina-
tion of the mass ratio, but rather, it might fix the fine
structure constant. The mass values ordinarily do not
enter into the leading term at high energies. If this
expectation can be substantiated, then the problem of
the mass ratios could not be solved within the frame
of the "idealistic" interpretation described in the
introduction but we would be forced to adopt the
"realistic" point of view.

APPENDIX

We want to indicate here the derivation of some
formulas which are very convenient for the purpose of

~ See, however, Ref. 4.

We checked these conditions for an arbitrary modifica-
tion of the photon propagator, keeping the vertex
still of the form (6) and we found that (36), (37)
are identically satisfied and do not give a determina-
tion of c~.

This leaves then only the high-energy region to be
discussed. Since we do not have much intuition about
the behavior of the relevant functions in the high-
energy limit, this discussion will remain rather vague
here. Very strong conditions are obtained if one
assumes that the propagator should behave asymp-
totically for —s —+ ~ like the free propagator i.e., if
one requires that A and 8 should decrease like s '.
This would mean
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