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Renormalization of Long-Wavelength Magnons
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l'he renormalization of the spin-wave frequencies in a ferromagnet, due to the thermal population of other
spin waves, has been calculated taking explicit account of the effects of the dipolar coupling between the
spins. The results obtained by using the Green function decoupling approximation of Tyablikov differ
markedly from those obtained using the symmetric decoupling recently suggested by Callen. For purposes
of comparison, the renormalization of the mode of uniform precession speci6cally is examined in the low-
temperature limit, where it is found that the renormalization obtained using the Callen decoupling is identical
to that obtained from spin-wave theory. Experiments which measure the spin-wave renormalization are
discussed with regard to the theory.
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HE statistical mechanics of a Heisenberg ferro-
magnet have been analyzed by the method of

double-time temperature-dependent Green functions by
several authors. ' ' Such treatments provide, as inci-
dental results, the renormalization of spin-wave energies—that is, the shift in energy of a spin wave caused by
the occupation of other spin-wave modes. In these
calculations, the dipolar coupling between the spins is
not included. Pote added stt proof The a. uthor's atten-
tion has been called to the work of Meng Hsien-chen,
Fiz. Tver. Tela 4, 705 )translation: Soviet Phys. —Solid
State 4, 514 (1962)$ who has extended the Tyablikov
theory for spin ~ by including the effect of the dipolar
interaction. Since the Callen (Ref. 5) method of extend-
ing Green-function theory to higher spin is equally
applicable when the dipolar interaction is included in
the Hamiltonian, our results are valid for general spin
for both Tyablikov and Callen decoupling. The Hamil-
tonian consists only of the Zeeman energy of the spins
in the external magnetic 6eld and the isotropic Heisen-
berg exchange interaction.

For long-wavelength spin waves, the magnitude of the
dipolar interaction is of the order of, or exceeds, that of
the exchange interaction (the contribution of the ex-
change interaction to the spin-wave energy, of course,
vanishes as the wavelength approaches infinity). Thus,
the dipolar interaction is an important factor in de-
termining the energy and the renormalization of the
energy of long-wavelength spin waves. It is of interest
to find the effect of the dipolar interaction on the
renormalization of these long-wavelength excitations
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since the experiments of LeCraw and Walker, ' Weber
and Tannenwald, ' and Matcovich, Belson, Goldberg,
and Haas" are concerned specifically with the measure-
ment of the renormalization of just such excitations; in
addition, the characteristics of these long-wavelength
excitations are the subject of several other experiments
(e.g., ferromagnetic resonance, parallel-pumping, Suhl
instabilities).

In an attempt to include the dipolar interactions,
Tyablikov" has introduced the classical demagnetiza-
tion tensor into the Hamiltonian, thereby taking ac-
count of the demagnetizing effects of the surface of the
finite sample. However, the local demagnetizing fields
have not been included. These local demagnetizing fields

play an important role since they are responsible for the
removal of the spin-wave degeneracy, thus, producing
the familiar spin-wave band.

We have used the full dipolar Hamiltonian to calcu-
late the renormalization of the spin-wave energies. We
find that the results we obtain by using the Tyablikov
method' of decoupling (or the random-phase approxi-
mation) differ markedly from those we obtain using the
symmetric decoupling recently suggested by Callen. '
The results for the renormalization of the mode of
uniform precession are examined in the low-temperature
limit and compared with the results of spin-wave theory.
The results obtained from the Callen decoupling' are
identical to the spin-wave results, but extend these re-
sults through the entire temperature range. The LeCraw-
Walker experiment' is discussed in terms of our results
and we find that these measurements lead to a determi-
nation of a renormalization factor which is very nearly
the "universal" (i.e., independent of wave vector)
renormalization factor of the simple (dipolar interaction
not included) spin waves.

Finally, we note that for short-wavelength spin waves
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the strength of the exchange interaction is of the order
of 1000 times that of the dipolar interaction. Thus, the
dipolar interaction makes a negligible contribution to
the energy of short-wavelength spin waves. Since the
number of shorter wavelength spin waves far exceeds
the number of long-wavelength spin waves, the shorter
wavelength excitations dominate the temperature de-
pendence of the magnetization at all but very low tem-
peratures; in addition, they determine the Curie temper-
ature. Therefore, the previous calculations, which were
concerned mainly with these thermodynamic quantities,
were quite justified in ignoring the dipolar interaction.
However, we emphasize that the dipolar interaction
does make an important contribution to the renormali-
zation of the long-wavelength spin waves and, hence, to
experiments which probe the particular characteristics
of these modes rather than sensing thermodynamic
averages over all modes.

II. THE GREEN FUNCTION EQUATION

We consider the Hamiltonian

X= IJHsg S,'——Q S, Sf

+2 Df fS Sr—3(«, Sr)(ej', .S,)), ( )

where p5 is the magnetic moment per ion; Ho is the
applied magnetic Geld which we assume to be in the
negative s direction; 5, is the spin operator for the ion
on site g; J(g f) is th—e exchange integral between ions

at sites g and f; Df, p'/——2
~
r, r ~' for a classical electro-

magnetic dipolar interaction; rf, is the distance between
the sites f and g; nf, is the unit vector from site f to
site g. In order to simplify the calculation, we consider a,

sample which is an ellipsoid of revolution, coaxial with
the applied magnetic field (in the s direction). In addi-

tion, we assume the crystal structure to be simple, body-
centered, or face-centered cubic, with one of the cubic
axes oriented along the s direction.

The formalism we present follows closely that of
Callen. ' Consequently, we consider the Green function

where 5+=5 &i5".
The Fourier transform (with respect to the time) of

the Green function G, + (g,l) is denoted by

G.' (,~)=(&S' '"S )) (3)

where the square brackets denote a commutator and the
single angular brackets denote an average with respect
to the canonical density matrix at temperature T'.

The substitution into Eq. (4) of the expression ob-

tained for the commutator of 5,+ with the Hamiltonian
yields"

where F.=ha&. The equation of motion for Gs + (g, l) is

then
1

FG.' (g,i)=—(LS', "'« I)
2r

+(&LS+ w] e"'*Sr))R, (&)

I':Gs "+ (g,l) =—O(a)og, (+pHeG0'+ —
(g, l) —2 Q f (g f)«(5, 'Sf+ —.Vr'5„+); e""—*Sj))r,

2~ f

+2 2 Df.L(& 5«'~—rg )(«.*Sr'; "'*S
~ ))e—(&—3~f'q')&(Sq St: "'*-«)"

f
', n , r((+S—,*—S, ;e"""S)——))p;], (.~)

where

Since Eq. (5) for Gz'+ (g,l) involves higher order
Green functions, it is necessary to choose a decoupling
approximation. Tyablikov' has chosen a method of
decoupling which ignores fluctuations in 5,'; he there-
fore replaces 5,' by its average value, and

))~ (S.*)&(Sr+; ))e

Callen' has recently suggested a symmetric method of
decoupling which does take account of fluctuations in
5,'. He proposes then that

((S,'S+; )) &S,')(&S+;
f~g

—(S. S+)((S.+; ))
—~(S.+S+)((S.— ))s (g)

Note that while the third term on the right side of (8)
vanishes' in the absence of the dipolar interaction, this
is not the case when the dipolar interacti. on is included.

On the basis of physical requirements arising from the
behavior of (S*), Callen chooses the decoupling parame-
ter n as

I (S)
25 5

With the inclusion of the dipolar interaction, the
maximum value of (S*)deviates" slightly from S. LSee

"The additional sums

2 Z Dfg(20ffg+Off zS Sfz O,f +~f zSg+Sf nfl nfg So+Sf+j

which should appear on the right side of Eq. (5) have been omitted
since they vanish under the symmetry assumptions we have made
above."T.Holstein and H. Primakoff, Phys. Rev. SS, 1098 (1940).
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Sec. III, Eq. (41)j. It is, therefore, plausible in this
case to choose A as

1 (5')
Q= (10)

2(5')-- (5')--
We shall decouple the Green function equations ac-

cording to the approximation given in Eq. (8) and carry

the quantity 0. explicitly throughout the calculation.
The substitution of m=0 will then give the result as
obtained by Tyablikov decoupling while the substitu-
tion of n as given by Eq. (10) will give the Callen
decoupling results.

Insertion of the decoupling approximation LEq. (8)J
into Eq. (3) yields

o(~)
I'G~ + (a ~)= t' &+vfIIoG~ + (a ~) —2(5')Z ~(g f)L(&—5'f+ e "*S'& ))e (&5'g+; e—""5& ))ej

2~ f

+2n P J(g f)$(5—0 Sf+)((S~+; e'e'5& ))z—(Sr Sg+)((Sr+; e'e'*5& ))z]
f

+2n Z ~(a f)HS—g+Sr+)&&5 e'"'S~ ))~—&S.+5~+)((Sr ~
e'"*5& ))ej

f

+2(5*)Z Dr..t:(1—5nr.'«. )(&Sr+' ""*5~ ))e—(1—3(nr *)')

&&(&S.'; "'*5 )) —-' "((5; ""5 ))-)
—2n Z Dr..E(1—lnr. 'nr. )&S. Sr")«5" e "*Si ))~—(1—3(nag*)')

f
)(( '" r))~j

—2n g Dr, ((1 ~nf, +n& , )(5,—+Sf+)((S,. ; e' '5&, ))&;—(1—3 (nr, ')')

X&50"Sf')((Sr ""S~ ))~—-'nr "& . 5~ )((5'; "'5 ))~j (11)

Since there is translational invariance we consider the Fourier transforms

G&; + (k) = g e '~ « '&G&. '+ ( l)
g—1

J(k) = Z e '" " "~(C—~), (13)

P +(k a) = P e-'« —'& '(e'""*5 5 +)
g—1

(14)

where (g—1) .k denotes the vector product r, ~ k.
From (11), (12), (13), and (14), we And

2''
&—v».—

2&5 )P (0)—~(k)3—Z P(k') —~(k' —k))4-'(k', »
PT

20!—2(5')LQ Dr„(1 ~nr, +nr, )e'«—&'~—Q Dr, (1 3(nf, ')')+—P—g Dr, [(1 2nr, +nf, )e'« —f&'~'P +(k', 0)
f f gr

—(1—3(n ')')e'« " &"' ~&P—+(k'0) —-' +' '« "~'P —(k'0)$ G +—
(k)

2(x

Z LJ(k ) J (k' k) jg++(k', 0)—3(5*)Z Dr„nag+'e"
gP a f

2Q—2 2 Dr L(1—-'nr+n )e'" " "7+'(k'0) —(1—3(n ')')e'" "'"' '4"(k'o)
S ~'

0~ (g)——; „+2e*«-r»'y-+(k', 0)$ G —(k)=, (15)
2~
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where
P++(k,a) = P e-'« '-& "(e s'*$1+S,+),

g—1

Ge —(k)= g e '«». "Ge —
(g,l),

g—1

G-.—(g ~) =((S;(~); '"S-))-
By beginning with the equation of motion for the Green function Ge (g,l) and proceeding in the manner

outlined above we obtain the following equation which, like Eq. (15), relates Ge' (k) and Ge + (k).

2A
E+yAHO+2(S')LJ(0) —J(k)]+—p LJ(k') —J(k' —k)]p +(k', 0)

2A
+2(S')LZ Drg(1 l~rg—'~r )e'" "'—2 Drg(1 3(~r—')')—2 2 DrgL(1 k~rg—'~r. )e'" " "'4 +(k',0)

f f

—(1—3(n *)')e"«—'& 1"''—+P—+(k' 0) 30',—'e'« —'& 'P—++(k',0)] G,—~(k)

261

+ —p LJ(k') —J(k' —k)]p—(k', 0)—3(S')p DfgBjg 'e'1
g f

2(i——2 2 Dr.l(1—k~rg+~&. )e'" " '4 (k', 0)—(1—3(~rg')')e'« "'"' "4 (k', o)
Ã ~'

—2e~1K—
&& &'P—+(k' 0)] G&&+—

(k) =0 (19)

In order to obtain explicit results we consider two
particular cases: first, that of k&0 spin waves and
secondly, that of the mode of uniform precession
(k=0 mode).

III. RESULTS FOR 0&0 SPIN WAVES

The dipolar sums which appear in (15) and (19) are
readily evaluated if it is assumed that the sums are
independent of the position r, of the gth ion. This is a
valid assumption for ions such that the distance to the
sample surface is large compared to the excitation
wavelength. For wavelengths small compared to the
sample dimensions, this condition is satisfied for the
large majority of the ions. Then for the case of the
classical electromagnetic dipolar interaction

Z Drg(1 —3(~~g')')e" " "
f

= (yh)'»(4m/3) (1——,
' sin'8&, ), (20)

ZD. (1—i ~ . ) '""
f

= —(yh)'1V(2m/3) (1—-,'sin't&&, ), (21)

3RD,(,')' "'"-"
f

= —(yh)'»27r sin'0 e+"4'&, (22)

where S is the number of spins per unit volume, 8~ is the
polar angle of the 4th spin wave with respect to the 2'

direction, and p&, is the azimuthal angle of the kth spin
wave.

The dipalar sums for jr=0 can be directly related to

the demagnetization factors, so that

2 Drg(1 3~r ) = —(v@)'2~»(—3 ».), —
f

(23)

)1».+»„
Q Dr, (1——,'n&,+up,

—
) = —(yh)'2~»i ——,(24)

f 3 2

3 P Dr, (or,+)'= —(yA)'2m»(». —1V„).
f

(25)

(8+A&,)G~ (k)+B&,e "—»Ge + (k) =0 (24)

Since we are considering the case of an ellipsoid of
revolution, »,=»„=»1 and the su—m in (25) is zero.

The above expressions for the dipolar sums can be
substituted into Eqs. (15) and (19) and the solutions
obtained. However, it is convenient before formally
obtaining the solutions to recognize the p1, dependence

f P +(k,0), P++(k,0), and P (k,0). As will be corrobo-
rated later Lsee Eqs. (31) and (32)], P +(k,0) is inde-
pendent of P&, while P++(k,0) and P (k,0) vary as
e+"» and e "», respectively. This p1, dependence 1s 'to

be expected since P +(k,O) measures the average of the
correlation of the transverse magnetization while
P++(k,0) and P

—
(k,O) measure the ellipticity of the

correlation of the transverse magnetization. Some of the
summations over k' which occur in (15) and (19) contain
factors of e+"4'&'. These summations vanish because of
the assumed symmetry. Thus, (15) and (19) can be
rewritten in the form

0(a)
(E—A &,)Ge'+—(k) —B&,e"&&Ge' (k)=, (23)

2~
'
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where
20!

=1 ),= yAHo+. 2(5')[J(0)—J(k)]+—P [J(k')—J(k' —k) jig +(k',0)+ (yk)'1V(5*) (2or sin'8), —4oriV, )

—2o. (pA)' P (or s)n'8), +2' sm'8), ~ ),—2')P +(k', 0)—n(yA)' P 2or sin'8o e"»'P (k' 0) (25)
k' kl

1),= (yh)'1V(5')2m sin'8), . (26)

G8 —-(k) =—
where

0 (a)
Bke '~k ——— (28)

471 Ek E, I':), E+—E),

(29)

Solving (23) and (24) for G8 + (k) and G8 (k)
yields

0(a) &~+~~
G8 "+ (k) = — —-+- (27)

4~E, r. E, I'.—+I:, 'I
'

(36)

where to lowest order in temperature the quantities A k

and Ek appearing in C are those for 0 K.
Therefore,

materials with Curie temperatures of the order of
hundreds of degrees Kelvin, such excitations are a very
small fraction of the total number. Then from (33), at
very low temperatures,

(5')=5—C,

.4),——yAHo+2(5*)„,„„[J(0)—J(k)j
+y&Mo(2m sin'8), —4vr1V.), (37)

The quantities f +(k,a) and P (k,a) [Note that
P++(k,a)=P (k,a)*j can be obtained from the ex-
pression

P(k, a) = limi

Ek &&{Ho—47rMolV +2(S')„, [1(0)—J(k)]}))'
X {Ho—4~Mo1V, +2(5'),„[J(0)—J(k)]

+4m.Mo sin'8o}'~', (39)

Thus,
Ak 1 1 Ak

0 'o,~) = K~) —— -+- —)) (~')
Ek e~k"~—1 2 Ek where

clnd
M o=y&1V(5'),.... (40)0~(a)Bye o

p
—

(k, a) =- —-
1 1

+ . (32) Thus,
~Ek/ Iel'Ek

Ak 1 =ik 1
&5 )=5— Z —1 —E —, (41)2' k Ek

Finally, Callen' has shown that

o2~ sin'~k „" Ge+, , (k) —Ge;, '(k)
-doo. (30)

~E/ 187'

From. (6), we see that

o(0)= 2&S'). (35)

Thus, Eq. (29) for the energy, Eqs. (31) and (32) for
the correlation functions, and Eq. (33) relating (5') and
C must be solved self-consistently for (5*) in order to
obtain the temperature dependence of the various
pertinent quantities (e.g. , E), and (5')) for each of the
two decoupling schemes.

At very low temperatures, C is very small. The tem-
perature-dependent term is small because of the charac-
ter of the Bose factor at low temperatures. The
temperature-independent term is always small since the
factor (AI,/E), —1) rapidly approaches zero with in-

creasing k; only excitations with energies less than that
corresponding to a temperature of a few degrees Kelvin
make any appreci@bl|: contributions to the sum and, for

(5 4)) (1+4))28+1+(5+1+4))@28+1
(5')=- (33)

(1++)28+) @28+).

where in our case

0'(a) 1
Gz'+ —

(0)=—
2% E E(}

where

I'-'o =y@[Ho+y@IV(5')4~ (IV g IV,)—
+nyA4~ Q (1——,

' sin'8), )P
—+(k,0)

k

(42)

—o.yA2~ g sin'8), e"o) }t
— (k,0)J. (43)

Equation (41) with the values of 2), and E), given by
(37) and (39) is identical to the result of Holstein ancl
Primakoff. " As discussed above, the quantity (1/21V)
XP), (A),/E), —1) is quite small so that the deviation of
(S*), from 5 is usually negligible. "

IV. RESULTS FOR THE MODE OF
UNIFORM PRECESSION

The dipolar sums (23)—(25) appropria, te for the uni-
form precession mode can be substituted into the Green
function equations (15) and (19) and the Green func-
tions obtained. The solutions take a particularly simple
form for an ellipsoid of revolution since G8 (0)=0
and
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Equation (43) is, therefore, an expression for the
renormalized temperature-dependent energy (or fre-
quen. cy) of the &=0 mode where (S'), P +(k,O), and

(k,O) are obtained from the self-consistent solution
discussed in the previous section.

We consider the low-temperature behavior of Eo in
order to compare the results of the two decoupling
methods with those obtained from a spin-wave calcula-
tion. As can be seen from Eq. (41), at very low tem-

peratures,

Ak
yf'sN(S') = Mp —yk Q —iig, (44)

'gk
~Rk/kT

(43)

The substitution of (31), (32), and (44) into (43) yields

Bk
&p=y&L&p+4prMp(N& —iV )]+nO~(0)(yA)'2pr p (1—ss sin'ek)~ —1 +sin'8a

22k

Ak
+ (y&)'4s. P (N, —Ni) +nO(0) (1——', sin'ea) +o.O (0) sin'Op

+~k

~k
(46)

2~k-

where A ~, Bp, and Ea have their O'K values as given in (32), (38), and (39).
We now consider the cases of Tyablikov and Callen decoupling. In both cases we will consider the shift AJi of I'0

from p&t IIp+47rM p(N, —N„)].For Tyablikov decoupling, o.=0 and

AET bi;i, = (yh)s4~(1V Ni)Q— (47)

For Callen decoupling, at very low temperatures, n 0'(0) = 1 and

AFo, i&,„=(yb)'2pr P (1——,
' sin'0~) ——1 ~+sin'ep

Fp ) 2jk

Z1 k

+ (ph)'47r Q (1V-,—N&+1 —
p sin'eq) +sin-"eq iraq. (48)

2F~k—

The first term on the right side of (48) results in a shift in
the energy from the familiar pA/Hp+47r3f p(1Vz —Ng)]
even at O'K. The shift apparently arises from the local
demagnetizing fields induced by the zero-point oscilla-
tion. However, as discussed in the previous section, the
term is very small and is usually negligible; only for a
material with a Curie point of a few degrees Kelvin
would this term be measurable. The second term on the
right-hand side of (48) contains the Tyablikov result
plus additional terms.

The spin-wave derivation of the shift of the mode of
uniform precession due to the presence of other spin
waves has received considerable attention. " "The spin-
wave result is obtained by retaining terms in the
Hamiltonian fourth order in the spin-wave variables.
The second-order terms in the Hamiltonian are di-
agonalized by the usual Holstein-Primakoff transforma-
tion;" these transformed coordinates are then substi-
tuted into the fourth-order terms and the expectation

"E. Schlomann, Tech. Rept. R-48, Research Division, Ray-
theon Company, Waltham, Massachusetts, 1959."E.Schlomann, Phys. Rev. 116, 828 (1959).

'P T. Oguchi and A. Honma, J. Phys. Soc. Japan 16, 79 (1961).
~7 C. W. Haas, Doctoral dissertation, Graduate School of the

University of Pennsylvania, 1962 (unpublished).

value of these terms calculated in order to find the shift
in the k=O energy. The results are found to be identical
to those of Eq. (48) including the very small tempera-
ture-independent shift. This agreement further cor-
roborates' the validity of the Callen decoupling in
treating magnetic systems.

V. THE LECRAW-WALKER EXPERIMENT

We now consider the results of the IeCraw and
Walker' parallel-pumping experiment in terms of our
results, the conclusions being equally applicable to the
Weber and Tannenwald thin-film spin-resonance ex-
periment. '

For reasons which will become evident we consider
the diagram of Fig. 1. Here we have shown the 0~ ———,'m

magnon branch at two temperatures T~ and T2. We
focus our attention on a particular 2m. magnon with
vector k. The difference in the resonance frequencies at
the two temperatures, cvj,'—coI,', is a direct measure of
the renormalization of this magnon. If we are interested
in the change in the curvature of the spectrum rather
than in the actual renormalization of a single mode, we
measure the variation in the difference ~1,—coI, 0 as a
function of temperature. The monitoring of the fre-
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FREQUENCY

+/2 MAGNON BRANCH
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k~0
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FIG. 1. Illustrative
plot showing the ~~a

magnon branch at
two temperatures TI
and T2 and the re-
normalization of a
particular k magnon.

NAVE: VECTOR ,l97- }

' E. Schlomann, J. J. Green, and U, Milano, J. Appl. Phys. Bl,
386S (1960),"F.R. Morgenthaler, J. Appl. Phys. 31, 95S (1960)."E H. Turner, Ph. ys. Rev. Letters 5, 100 (1960).

quency of a particular k magnon as a function of
temperature has not as yet been achieved in practice.
Thus, the renormalization of a particular k magnon
has not been measured; however, the experiment of
LeCraw and Walker does provide a method for meas-
uring the change in the curvature of the magnon
spectrum, or the "curvature renormalization. "

LeCraw and Walker have observed the onset of
instability in a parallel pumping experiment. """Be-
fore discussing their results with respect to renormaliza-
tion theory, we briefly recall that the parallel-pump
method consists of applying a microwave field parallel
to the dc magnetic field. A coupling occurs between this
longitudinal microwave Geld and the spin waves because
the spin waves precess on elliptical rather than on
circular cones, and hence, create components of the
longitudinal magnetization which vary with twice the
spin-wave frequency. In particular, the spin waves
which propagate perpendicular to the dc field (8A=-,'s-)
are most elliptical in their precession (because of the
local demagnetization fields); hence —,'Tr spin waves of
half the pump frequency are most strongly coupled to
the microwave field. The threshold for instability occurs
when the rate at which energy is fed into these spin
waves equals the rate at which energy is lost by these
spin waves. When the microwave field exceeds the
critical value, pairs of spin waves of equal and opposite
wave vectors, and with frequencies equal to one-half the
pump frequency, are excited. Since the critical Geld is
dependent upon the rate at which energy is lost by the
spin waves, the critical field shows a sharp maximum at
that frequency which corresponds to the crossing of the
2+ magnon branch and the phonon spectrum. ' "This
magnon-phonon crossing frequency shifts with re-
normalization of the magnon spectrum and conse-
quently the parallel pumping instability experiment
affords a measurement of the curvature renormalization.

More specifically, consider the diagram of lig. 2.
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Fio. 2. Plot showing the crossing of the phonon spectrum with
the —,'7r magnon branch at temperatures TI and T2. Also indicated
are the frequencies at which the peaks in the critical field occur.

Here we have shown the —,'7I- magnon branch at tempera-
tures Tj and T2 as well as a phonon branch which we
assume to be temperature-independent (if the phonon
velocity is temperature dependent this effect must be
included). The sharp peak in the critical field occurs at
a frequency cv& for temperature T& and at a frequency co2

for temperature T2. The frequency difference —,'co&——,'co2

is not simply the magnon renormalization since the two
frequencies correspond to magnons of different wave
vector. However, since the phonon frequency, velocity,
and dispersion relation are known, the wave vectors k~
and k~ can be calculated, and, in principle, the frequency
difIerence ran be related to the renormalization of the
two magnons as given through Eq. (29); the relationship
is not simple.

Actually, LeCraw and Walker have done the experi-
ment by holding the pump frequency fixed and varying
the dc field. This method provides a direct measure of
the temperature variation of the curvature of the ~~
branch. The different dc fields result in ~7I- spin waves of
different k being excited. As discussed above, there is a
sharp increase in the critical field when the dc field is
adjusted so that the unstable spin waves are degenerate
with phonons of the same or and k. The peak in the
critical Geld and the corresponding dc field are observed
as a function of temperature. Since the phonon dis-
persion relation is ~=~A, the unstable —,'x spin waves
which are degenerate with the phonons always have a
frequency of half the pump frequency cv„and a corre-
sponding k=&U„/2e. As the temperature is changed, the
dc Geld is adjusted so that this same spin wave of wave
vector k has a resonance frequency of —,'co~; therefore, it
is the dc field required to maintain a constant resonance
frequency of a spin wave of known k which is being
observed. In addition, the critical field as a function of
dc field exhibits a discontinuity"" at 0=0; thus Bl, o,

the dc field for resonance of a ~x spin wave with wave
vector k —+0 and with resonance frequency EU„/2, is
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easily determined. LeCraw and Walker have measured
the difference in the fields for resonance Bg, 0

—Hg, as a
function of temperature.

From Eqs. (25) and (26), we see that the values of A &

and BI, for two OI, = ~~w modes with wave vectors k and
k ~0 are related as

4. i= c4 i, 0
—pkHp o+pAHy+2(S )[J(0) J(k)7

(S')
+ P [J(k')—J(k' —k)]P—+(k', 0) (49)

jQ $2 kl

(50)

where we have introduced the Callen value for o. and
neglected the very slight difference between (S'),„
and 5.

Since the experiment was done in such a way that the
frequencies of the two modes are identical (i.e., half the
pump frequency) we find from (29), (49), and (50) that

2(S*) (S')
H i„() H(,, [J—(0)———J(k)]+

yA. yM~5'

&(P [J(k') —J (k' —k)]P—+(k', 0) . (51)

H& o
—Hi, ——2SE[J(0)—J(k)], (54)

where the renormalization factor R is given by the
expression

(S')
1+- P J(k')g(k')

S lVS'J(0) ~'

(S')

Here
J (k) =JP e"", (56)

The right side of (53) is identical in form to the
renormalization of the simple spin waves, (i.e., spin
waves in the absence of the dipolar interaction) found
by Callen. ' However, the E~ and (S*) which appear in
(53) are those obtained by including the effects of the
dipolar interaction. Actually, there is little difference in
evaluation of the expression in (53) for the two types of
spin waves over most of the temperature range and the
measurement of the difference in fields for resonance is
very nearly a measure of the renormalization of the
simple spin waves.

In addition, for simple lattices with only nearest
neighbor exchange interactions, it has been shown" '
that (53) can be rewritten in the form

Substituting Eq. (31) for f +(k',0) yields

2(S*)
H, „—H„=- [J(O)—J(k)]

vA

(S')
+ ——P [J(k') —J(k' —k)]gg

5"V

(S)
P [J(k')—J(k' —k)]

g2 $

~k' —1 gk —', . 52

The third term on the right side of (52) is usually
negligible compared to the first two terms. Thus, the
difference in the 6elds for resonance is

2(S')
Hg 0 HI, = [J(—0)—J(k)]

7A

(S')
g [J(k')—J(k' —k)]~, (53)

where 6 is summed over all s nearest neighbors and
J(0)= sJ is the k =0 Fourier component of the exchange
interaction. Therefore, all the simple spin waves are
renormalized by the same renormalization factor inde-
pendent of the k of the spin wave. This is the renormal-
ization factor which can be obtained from the measure-
ment of the difference in fields for resonance. It is
independent of the wave vector of the particular spin
wave being measured and is dependent only on the
temperature.

Finally, we note that the above discussion is valid for
a ferromagnet with a simple lattice. LeCraw and
Walker's measurements were done on ferrimagnetic
yttrium iron garnet. The detailed analysis of their data
therefore must await the extension of the theory to this
case.
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