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Use of EBective Interactions in the Analysis of Deformed Nuclei*f
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Energy levels in O'7, F'8, F~, and Ne are calculated. The wave functions for the various states are gener-

ated from intrinsic deformed potential wave functions. The wave functions for which best agreement is

obtained are similar to those obtained by Redlich. No u priori assumptions are made on the form of the
two-body forces. These are adjusted to give best Gt with experiment. The agreement obtained between the
calculated and experimental energy levels is good.

1. INTRODUCTION

1.1 Intermediate Coupling Shell Model

for states with low-isospin T than for states with

maximum T. For low-isospin states, such as the T=O
states of F", it is not enough to mix various 1d5~2"2sj~2

(I+rrt= A —16) configurations, although these are the
lower configurations. 4 One has to admix also configura-

tions for which at least one nucleon is in the 1d3~2 sub-

shell. A possible reason for this is given in Appendix A.
To demonstrate this fact, it is sufficient to compare

the spectra of F"and AP' (Fig. 1). If it is assumed that

jj-coupling is valid in F" and Al", then their spectra
are simply related. The spectrum of the d5~2' configura-

tion in F" (one proton and one neutron) should be
identical with the spectrum of the d5~2

' configuration in
AP' (one proton hole and one neutron hole). Let us

see to what extent this is actually so. The 5+ levels are

probably pure d5~2' and d5~2
' levels, respectively. The

high spin of these levels restricts drastically the possibil-

ity of configuration mixing. These levels are therefore

matched in Fig. 1.We see immediately that the T= 1 0+

and 2+ levels are almost in the same position in both
nuclei. On the other hand, the T=O 1+ and 3+ levels

are strongly shifted downwards in F". The fact that
the second T=O 1+ level of F" lies lower than the

N a recent paper' it has been shown that the spectra
~ - of the oxygen isotopes 0' —0' are very well

described by pure jj-coupling shell model. These nuclei
are characterized by having only neutrons outside closed
shells. The addition of protons changes the situation radi-
cally. Results of Elliott and Flowers' and of Redlich'
indicate that the spectra of F", F" (or Ne") and Ne"
cannot be ascribed to pure jj-coupling configurations.
On the contrary, one can show that the effective forces
between protons and neutrons in the unfilled shells may
introduce quite large configuration mixing. This is true
even if the total number of nucleons outside the closed
shells is small. Indeed, simple considerations show that,
for any short-range attraction between nucleons, the

jj-coupling shell model is a much better approximation
for states with maximum isospin T, than for states with
lower T (see Appendix A).

One must therefore assume appreciable configuration
mixing in order to understand the structure of F",
F", or Ne".

Intermediate coupling calculations were carried out

by Elliott and Flowers' and by Redlich' for the nuclei
0" 0" F",F" and F" (or Ne"). They take aphenom-
enological two-body interaction and harmonic oscil-

lator wave functions to calculate the elements of the

energy matrices. These matrices are then diagonalized.
These authors use a very special kind of nuclear force
which has no tt priori justification. It is, therefore, not
surprising that their calculated energies are only in

rough agreement with the experimental data. One of
their results, however, is quite insensitive to the details
of the nuclear force. They Qnd that the mixing between
the different jj-coupling configurations is much bigger
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interaction (see Ref. 21).

2225



I SSACHAR UXNA

lowest T=O 1+ level in Al" indicates that at least
three jj-coupling states are strongly admixed in F'.
In other words, at least one of the T=O 1+ states of
F"has a big admixture of the d5/2ds/2 configuration.

In this work we shall show how it is possible to carry
out intermediate coupling calculations in this region
without restricting the two-body interactions to a
special form. In order to do it we shall use the method of
effective interactions to be described in the next section.

1.2 The Method of EÃective Interactions

The method of effective interactions was introduced
by Talmi for theoretical interpretation of nuclear
energies. ' According to this method the only assump-
tions which are made are of very general nature. It is
assumed that the forces are charge independent arid
that they are two-body forces only. It is also assumed
that the radial parts of the single-nucleon- wave func-
tions are the same for all the nucleons in a certain
subshell, independent of the number of nucleons in this
subshell.

The matrix elements of the nuclear interaction in
the two-body configurations, as well as the single-
nucleon energies are taken as free parameters ("effective
interactions") to be adjusted so as to fit best the experi-
mental data. The experimental energies of various
states in various nuclei can be expressed as linear
combinations of a small number of these parameters.
The form of these expressions depends on the model
which is used. The number of experimental data which
are expressed in that way by a certain set of parameters
is usually bigger than the number of parameters in this
set. Therefore, if a set of values for these parameters
can be found which reproduces to a good accuracy the
experimental data, the model is justified.

The method of effective interactions was first applied
to pure jj-coupling shell-model analysis. ' Later it was
shown' that the same procedure may sometimes be
used even in regions where interaction between jj-
coupling configurations is not negligible.

However, the number of such parameters rises

rapidly as complexity of the models increases. On the
other hand, the number of experimental data is limited.
For example, using this method to analyze the spectrum
of Ne", assuming the full intermediate coupling scheme,
of d5/2 s]/2 and d&/2 orbits, would require 66 parameters.
The number of experimental data which may be
conveniently applied in this analysis is about 20. It is,
therefore, impossible to use this procedure for inter-
mediate coupling shell-model analysis of Ne".

It is our purpose in this paper to show that the
method can still be used if one starts with diferent
wave functions. One could take wave functions which
are projected from Nilsson-like intrinsic deformed

A list of references is given in a review article, Ref. 6.
' I. Talmi and I. Unna, Ann. Rev. Nucl. Sci. 10, 353 (1960).
7 I. TalIni and I. Unna, Nucl. Phys. 19, 225 ('1960}.

potential wave functions. As we shall see, it happens
that wave functions thus obtained are good approxima-
tions to the intermediate coupling wave functions.
This is true at least in the region in which we are
interested here. Of course, the effective interaction
parameters will now have a different form. We shall

avoid in that way the necessity to make ad hoc assump-

tions on the form of the nuclear forces. We believe that
this is the reason why the agreement between experi-

mental energies and those calculated by us is much

better than the agreement which was obtained by
former investigators using either intermediate coupling'

or deformed potentiaP wave functions.

1.3 The Wave Functions

wrath and Picman' calculated wave functions for
various states in the first p shell by projection from

intrinsic deformed potential wave functions. These
intrinsic wave functions were obtained by just multiply-

ing (and antisymmetrizing) Nilsson's, s single-nucleon

orbitals. Kurath and Picman found that the wave

functions thus obtained are almost equal to those

obtained by intermediate coupling calculation, provided

that one chooses proper values for the deformation

parameters g in the first calculation and the spin-orbit

strength parameter y in the second calculation.
Redlich' used the same generating procedure to

calculate wave functions in the (1d, 2s) region. He did

not use the original Nilsson orbitals but adjusted them

to get better agreement between his wave functions

and those calculated in intermediate coupling calcula-

tions. The wave functions which he obtained. are almost

identical with those calculated by Flowers and Elliott'
in the intermediate coupling scheme.

We may conclude that the generating procedure

gives wave functions well approximating the inter-

mediate coupling wave functions.
Redlich used his wave functions and a phenomeno-

logical two-body interaction to calculate the energies of

the various states. The agreement with the experimental

energies was not very good. Similarly, the agreement of

the energies obtained in the intermediate coupling

calculation with the experimental energies was not
satisfactory. The question arises whether the models

assumed are not adequate or that only the choice of the

two-body forces is to be blamed. This question is

answered by our work. We show that an adjustment of
two-body forces is enough to remove the discrepancy
between theory and experiment. No charge of the model

has to be made.
We make the whole calculation with the generated

wave functions. As we have already pointed out it is

only in this scheme that we can avoid restrictive
assumptions on the form of the two-body forces or the

' D. Kurath and L. Picman, Nucl. Phys. 10, 313 (1959).
S. G. Nilsson, Kgl. Danslm Videnskab. Selskab, Mat. Fys.

Medd. 29, No. 16 (1956).
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radial parts of the single-nucleon wave functions. This
freedom is achieved at almost no cost because of the
above-mentioned near identity between these wave
functions and the intermediate coupling wave functions,

2. OUTLINE OF CALCULATION

2.1 The Wave Functions

The wave function of a single nucleon in the (1d, 2s)
shell (say, the last neutron in 0'r) is taken to be

1

J J=1, 2, 3, 4,
2

in I'""

in 0",

con6gurations":

~-,'J)J=-,') —,', —,
' in 0" (and F")

I
2J J=01 2 3 45, inI'",
1
2 (4)

where k is the component of j along the symmetry axis
of the nucleus. The functions $4 are the shell-model

single-nucleon wave functions. The coeKcients x&, y&,

and sA, depend on the form of the deformed potential
well.

The wave function of several nucleons in the (1d,
2s) shell is obtained by multiplication and antisym-
metrization of the wave functions (1) of the individual
particles. The wave function of a configuration of nz

neutrons and (tt —trt) protons is"

1 3 5 7 9 11 13
J J=—,—,—,—,—,—,—, in F" (and Ne")

2 2 2 2 2 2 2

I
J J=0, 2, 4, 6, 8,

2 2

in Ne"

One should remember that every state is degenerate
with the state obtained from it by inverting the signs
of all the k's. It is shown in Appendix B that all the
wave functions (4) are eigenfunctions of the isospin T.
The functions

~
~&J) and ~-', ——,

' J) for J=O, 2, 4, have
T=1. All the other functions have the lowest possible
isospin. Also, it will become clear from Appendix B that

(where M is the normalized antisynunetrization
operator). The quantum number E'=P;=4" k, is the
value of J„the component of the total angular momen-

tum J along the symmetry axis of the nucleus.
The functions (1) and (2) are still not eigenfunctions

of the total angular momentum J.One has, therefore, to
project out the part with a certain definite total angular
momentum J. This projection is equivalent to rotating
the whole function, i.e., taking a proper combination
over all directions. The proper state of m neutrons and
(rt —ttt) protons will, therefore, be

kg k ki k
PvJ J3f

tk~s k„k (3)

The operator I'~J projects out the part with the total
angular momentum J and steps E up or down to M.

Following the results of several papers' "we assume
that F", F", and Ne' have positive deformations (i.e.,
a cigar shape). The lowest states in these nuclei are
therefore obtained by first filling nucleons into the
k= &~ single-nucleon level. The single-nucleon states
k and —k are degenerate because of the axial syrrunetry
of the deformed potential. The lowest states of these
nuclei will therefore belong to the configurations (&~2}"
(where tt is the number of nucleons outside the closed
shells of 0"). The following states belong to these

' In our notation we follow Levinson, Ref. 18."D. M. Brink and A. K. Kerman, Nucl. Phys. 12, 314 (1959).

1 1

J=S —= J=5
2 '2

(5)

(where both functions are normalized). It was therefore
included only once in the list (4).

The wave functions
~ &J) and ~,*J) for 7=1, 3, are

nonorthogonal. Therefore, in these two cases one has
to diagonalize two by two matrices in order to obtain
energies and eigenfunctions.

~ We omit, hereafter, the quantum number 3f which is irrel-
evant to the discussion."I.Ajzenberg-Selove and T. Lauritsen in The XNclear Level
Schemes, Landolt Bornstein Tables (Springer-Verlag, Berlin,
1961).

"Nuclear Data Sheets, compiled by K. Way et at. (Printing and
Publishing OfBce, National Acadamy of Sciences-National
Research Council, Washington 25, D.C.) Ng, g gQ-I-gO, 61-1-22.

2.2 The Exyerimental Data

. I,et us now look for all the energy levels, belonging to
the states (4), which are known experimentally. " '4 In
0'r (and F'r) we have the a+ level at 0.87 MeV (and
0.50 MeV) above the e2+ ground state. The aa+ level
lies 5.08 MeV (and about 4.7 MeV) above the ground
state.

Out of the 10 levels which may belong to the con-
figurations (+—,'}' (in F" and 0"), 9 levels are known
experimentally. The ground state of F" and the level
at 1.70 MeV have the assignment 1+ T=O. They are
probably the eigenstates of the J= 1 two by two matrix.
Similarly, the two 3+ T'=0 states, at 0.94 MeV and at
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TABLE I. Energies of the states P f+-,'}".

Nucleus State J» T E

Total energy»
Calculated

Experi- (without
mental T= 1 states)

F 18

SFIO"

ioNeio~

0.87
5.08
g.s.

1.08
1.70
3.07
2.52
4.65b
1.13
g.S.

2.10
0.94

g.s.
1.56
0.20
2.79
g.s.
1.63
4.25

3.28

0+ 1 0 12.23
1+ 0 0 11.61
2+ 1 0 10.24
3+ 0 0 10.79
4+ 1 0 8.66
5+ 0 0 12.18
1+ 0 1 13 31
2+ 0 1 11.21
3+ 0 1 12.37

2+ ~ 4 23.73
+ ' -' 22.17

0+ 0 0 40.68
2+ 0 0 39.05
4+ 0 0 36.43

3.28—0.93
4.15

[13.55]
11.6i
[9.03]
10.79
[5.46]
12.18
13.31
11.21
12.37

23.76
22.57
23.51
20.74
40.48
39.13
36,45

a From these the binding energy of 0'6 was subtracted.
b The height of this level is calculated from O«s.

2.52 MeV" are probably the eigenstates of the J=3
matrix. These states are admixtures of the K=2 and
E=O states. The 2+ T=O level at 2.20 MeV" belongs
to the

~
««) configuration. The levels 0+ (1.08 MeV) and

2+ (2.07 MeV) with T= 1 belong to the
~

««) configura-
tion. The corresponding levels in 0" are the ground
state and the level at 1.98 MeV above it. The 4+7= 1
level is found only in 0" (at 3.55 MeV). Its position in
F" should be 4.65 MeV above the ground state.

As we have already mentioned, the configuration
assignment to the 5+T=O level (at 1.13 MeV) is
either

~
««) or ~««). Only one level of {+-,'}P levels has

not been. found experimentally. This is the 4+T=O
level. The reason is, very probably, that this level
should lie rather high above the ground state of
Fls

In F" we find 4 energy levels which are included in
our analysis. These are the following levels: sr+ (ground
state), —', + (at 0.20 MeV above ground state), s+ (at
1.56 MeV) and another level (at 2.79 MeV), the spin
of which is not sure. Experimentally, it may be a ~~ or a
-', (unknown parity) level. General considerations tell
us that for pure (shell model) d@ps configuration the s7

level should lie lower. Also, configuration interaction is
probably stronger for the 2 state than for the 2 state.
The same order should therefore remain also inthe
present model. Hence, we assume tentatively that the
2.79-MeV level has the assignment s7+.

Additional levels which belong to the configuration
~
«««) of F" (or Ne") are the 9/2+, 11/2+ and 13/2+

(2'= —,') levels. These levels should lie higher above the
ground state and have not been found experimentally.

"I,A. Kuehner, E. Almqvist, and D. A. Bromley, Phys. Rev.
122, 908 (1961).

Five energy levels, 0+, 2+, 4+, 6+ and 8+, with
T=O belong to the configuration

~ f ««) of Ne". Experi-
mentally, only the 0+ (ground state), 2+ (at 1.63
MeV) and 4+ (at 4.25 MeV) have been found. Recently,
some evidence has been obtained for a level at about
7.6 MeV above the ground state of Ne'0. This level may
be the 6+ level. "

The list of all the experimentally known levels which
were included in our analysis is given in Table I.

H= g Hp(r)+ g V(r,s).
r~l p', s ~1

r(s
(6)

Here, Hp(r) is the kinetic energy of the rth nucleon plus
its interaction with the closed shells. The second term
in (6) represents the residual effective interaction
between the outside nucleons. In order to obtain the
expression for the energy of a state (4), one has to take
the expectation value of H in this state.

Ke assume that the single-nucleon wave functions
(1) are the same in the nuclei 0'r up to Ne'p. In other
words, we neglect any changes in the deformed potential
well due to addition of a few nucleons. It is true that it
would be dificult to justify the assumption. It may,
however, be still a good approximation as long as the
number of extra nucleons is small. According to this
assumption, the parameters' x, y, and s, as well as the
shell-model wave functions f, of Eq. (1) are the same
for all the nuclei which are treated in this work.

I et us now consider the one-body and two-body
e6ective interaction parameters. First, we define the
single-nucleon energies

(7)

The two-body matrix elements are given by

1 1

J V J =—ug J=0, 2, 2, 3, 4, 5,
2 2

JU J =—bg J=2, 2, 3, 4,

JV J =—cg J=2, 3.

It is easy to show (see Appendix B) that the energies
of all the states (4), belonging to the configurations
{+pi}",can be expressed in terms of the three single-

"A. E. I itherland, J. A. Kuehner, H. E. Gove, M. A. Clark,
and E. Almqvist, Phys. Rev. Letters 7, 98 (1961)."Since we are dealing only with the k= &-,' wave functions, we
omit the index k.

2.3 The Calculation

The Hamiltonian of e nucleons outside closed shells
of 0'6 l.s given by
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particle parameters (7) and the twelve two-particle
parameters (8).

The coeKcients of the parameters in these expressions
are functions of the deformation parameters xs, y', and
z' LEq. (1)j. Since the wave functions have to be
properly normalized, they are, in fact, only functions of
the ratios between the parameters. We can therefore
normalize to x'= 1. The energy expressions, thus
obtained, are equated to the corresponding experimental
energies. For each pair of values y' and z' we have a
different set of equations. Each set may be solved to
obtain "best values" of the effective interaction param-
eters —Az, aJ, bJ and cJ—by a least-squares calculation.
These values are then inserted into the theoretical
expressions to obtain the calculated energies which are
to be compared with the experimental energies.

In preliminary calculations we neglected the overlap
between the X=1 and E=0 (J='1, 3) states in Ps.
We also assumed the nondiagonal elements of the
Hamiltonian between these states to be negligible. Thus,
the set of equations to be solved for the best values of
the interaction parameters became linear. We made a
least-squares fit between these linear equations and the
experimental energies for different values of the
deformation parameters y' and z'. y' and z' were changed
stepwise from 0.1 to 1.0, the size of the step being 0.01
in the region of best agreement and 0.1 in all other
regions. We found that the best agreement between
calculated and experimental energies was obtained for

y'= 0.32, z'= 0.27.

The dependence of the agreement between calculated
and experimental energies on the deformation param-
eters (y', z') is plotted in Fig. 2.

Redlich' used a different procedure to 6nd the best
values for y' and z'. He adjusted the values of y' and z'

so that his wave functions should be as similar as
possible to the intermediate coupling wave functions
calculated by Elliott and Flowers. ' The values he
obtained are very near to our values, namely,

y'=0.25, z'=0.30.

Other investigators" also found the deformation
parameters to be of about the same values. We therefore
conclude that the values of these parameters are quite
insensitive to the detailed form of the effective two
body interactions. In the final calculation we take the
values of the deformation parameters to be

y'= z'= 0.3.

It was also found in the preliminary calculation that
the "best" value for the parameter b4 is very poorly
determined from the existing experimental data. This
parameter may attain a wide range of values without
affecting the results significantly. We, therefore, assume

' C. A. Levinson (private communication).

Z2

0.27

0,52 2
V

I'zG. 2. Dependence of the agreement between theory and
experiment on the deformation parameters y2 and sm in the (id, 2s)
shell. The numbers near the graphs are the sums of squares of
deviations between calculated and experimental energies. The
dashed line describes the values of y' and z' as calculated by
Nilsson (see Ref. 9).

tentatively
54 85) (12)

(the bars denoting normalized parameters). This is a
reasonable assumption since the wave functions ~&~4)

and
~

&i5) are very similar. The first is the shell-model
wave function f(d5/sds/QJ=4 2'=0) and the second is
P(ds/ss/=5 T=0). A transformation to LS coupling
scheme shows that both are "G states. A large variety of
effective two-body forces will therefore satisfy Eq. (12).

Using Eqs. (11)and (12), we are now able to fix the
values of most of the interaction parameters, (7), (8),
from the experimental energies in 0" and F".The only
ambiguities which remain are in determining the values
of ag, bg, cJ for J=1, 3. For each J, only two levels
exist to determine the values of three parameters.
Fortunately, it is found, by diagonalizing the two by
two matrices (see Appendix 8), that the ambiguities
are rather small. It is found that

1.48& c~&3.16 MeV,

1.76&c3&3.29 MeV.

(The bars denote normalized quantities. ) Once the c's
have been determined, the a's and 5's can be determined
from the energy levels in F' .

As we have already pointed out in the Introduction,
it is plausible that the deformations are much smaller
for states with maximum T than for other states. Ke
therefore prefer not to determine the values of ao, a2, a4
from the T= 1 levels of P' (and 0")

The best values for the parameters 0] c3 Go 82 84
are found by a least-squares fit to the seven existing
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energy levels in F" and Ne". It is found that best
agreement with experimental data is obtained if c~

takes its minimum value and c3 takes it maximum value.
The values which we obtained for the interaction

parameters are" (in MeV)

A&/2—=3.28,

A3/2= —0.93,
A5/2 —44 15 j

up= 6.55,
ag ——8.48,
a2= 2.67,
u3= 6.17,
u4=0.46,
a5= 3.88;

bz ——6.22,
b2= 6.53,
b3=5.21,
b4= 3.88;
ci= 1.48,
c3=3.29.

(14)

1.70

3+ 0.94

2.52

1 1

0.601 1 +0.581 1
1 1
2 2

1 1

0.550 3 0.513 3
2 2

1 1

1.463 3 —1.474 3) .
4

3. DISCUSSION'

The model which is used in this work to calculate the
low-lying energies in the beginning of (2s,1d) shell is
the same model which has been used by Redlich. ' The
wave functions of various states are obtained by
projection of the part with proper angular momentum
out of intrinsic deformed potential wave functions. We
assume that the low-lying states in O', P', F", and
Ne~ belong to the intrinsic configurations f &—',}".
Most of the wave functions are entirely determined by
this assumption. However, the T=O (7=1,3) states in
F" can be obtained by projecting out of the intrinsic
E=O as well as K=1 state. The wave functions ob-
tained in these two ways are nonorthogonal. It is
therefore necessary to diagonalize the Hamiltonian
between the two states after the wave functions have
been properly orthogonalized.

The wave functions depend on two deformation
parameters y', s'. These were determined by us in a
preliminary calculation so that they will give best
agreement of calculated energies with the experimental
energies. Their values are given in Eq. (9). Redlich

'9%'e give here the values of the normalized parameters {see
Appendix B) since these are easier to interpret. In actual calcula-
tions it is simpler to work with the unnormalized parameters as
deii33ed i33 Eqs. (7), (8).

The energies calculated with these parameters should
be compared with the experimental energies, see Table I.

The wave functions obtained for the T=O states in
F'8 are

1 1
2 2F" 1+ g.s. —0.927 1 +0.934 1

I

2

obtained very similar values LEq. (10)j by adjusting
these parameters so that the wave functions should
agree with intermediate coupling wave functions.
Similar values of the deformation parameters were
also obtained by other investigators. However, these
values do not correspond to any specific Nilsson
deformation g. This may be seen from Fig. 2 where the
dependence of y' on s' as calculated by Nilsson is
plotted. There is no deformation g for which the point
y'(7i), s'(7)) lies near the point (9). This is not surprising
since Nilsson restricts himself to the deformed harmonic-
oscillator potential without referring to actual experi-
mental data.

To calculate the energies of various states we do not
make any specific assumptions on the form of the
effective two-nucleon interactions. Similarly, no as-
sumptions are made on the radial form of the single-
particle wave functions. It is only assumed that the
single-nucleon wave functions, as well as the deforma-
tion parameters, are the same for all the nuclei treated.
In the present analysis we take the matrix elements of
the Hamiltonian in the two-nucleon configurations to
be free parameters which are adjusted so as to Gt best
the experimental data. Most of these interaction
parameters were determined from the energy levels in0" and F".However, we did not use the T=1 levels
of F" (and 0") to determine the corresponding param-
eters. There is reason to believe that these levels are of
diQerent nature and should not be included in the
analysis. Indeed, including these levels in the analysis
makes the agreement between calculated and experi-
mental energies of F" and Ne" much worse. The re-
maining parameters which cannot be determined
from the O', F" data were adjusted so as to give best
agreement with the energy levels in F" and Ne".

The good agreement, which we obtain, between
calculated and experimental data is displayed in Table
I. It is much better than the agreement obtained by
Redlich. This is so although our wave functions are
very similar to Redlich's wave functions.

One may conclude that the model is satisfactory.
The unsatisfactory results, which were obtained with
this model by other investigators are only due to the
restrictive assumptions on the form of the effective
two-body interaction. One has to bear in mind that
calculations can be done to check the validity of this
model without using any speci6c phenomenological
two-body interaction.

Using the parameters (11) and (14) we are able to
predict positions of other energy levels in this region.
The 4+T=O level in F" is predicted to lie at about
6.2 MeV above the ground state. In F" a 2+ level
should lie at about 4 MeV. In Ne" the 6+ level should
be found around 8.4 Mev above the ground state.

We should, however, point out that the experimental
data, which are included in our analysis, are barely
enough to make the interaction parameters reliable.
Any prediction based on these parameters might
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therefore be subject to changes when more experimental d' with T= 1
data will be gathered. It is desirable that more energy
levels should be measured in this region (together with
their spin-parity assignments) so that we may arrive
at a reliable picture for the structure of these nuclei.

J=O
d5/2

d3/2

d5/2

3.66
2.99

d3/2

2.99
2.44
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J=2
d5/2

d5/2d8/2

d3/2

d5/2

1.61
—1.05

1.50

d5/2d8/2

—1.05
0.58

—0.49

d8/2

1.50
—0.49, (A2)

0.31

J—4

d5/2

d5/2d3/2

d5/2

—0.22
—1.56

d5/2d3/2

—1.56
2.12

The matrices of V for the states of d' with T=O are

APPENDIX A: DEPENDENCE OF THE
COUPLING SCHEME ON T

We shall demonstrate here' that for any short-range
attraction between nucleons the jj-coupling wave
functions are much better approximations for states
with maximum isospin, T, than for states with lower T.

A short-range attraction is always strongest in the
S (L=o) state of two nucleons in the el shell. It becomes
weaker attractive for even values of L as L becomes
bigger. It is much weaker for states with odd L. If the
force has an exchange mixture it may even be somewhat
repulsive.

Let us take as an example the d shell. The two-nucleon
interaction may be taken tentatively to have the
following matrix elements in the LS coupling scheme:

(d'S~ V)d'S)=6.1,
(dsZ( V[ dsZ) =0,
(dsD ) V( dsD) =3.5,
(dv [v[dv')= —1.o,
(dsG

( V[ dsG)= 2.9.

(A1)

~The results summarized in this Appendix were obtained in
collaboration with Professor I. Talmi; I. Talmi, Rev. Mod.
Phys. 34, 704 (1962)."I.Unna, thesis, Hebrew University, 1962 (unpubhshed).

6. Racah, Physics, 16, 651 (1950).

It is assumed tentatively that the interaction is spin
independent. It is also tentatively assumed that the
(I.S coupling) nondiagonal matrix elements are small
enough to be neglected. The interaction defined by (A1)
was obtained in a rough calculation" using the spectrum
of 0's (known to be a jj-coupling spectrum') and the
LS~ jj-transformation matrices. "Although this inter-
action is at most a very rough approximation, it
possesses the important features, mentioned above, of
any reasonable nuclear interaction.

A straightforward calculation gives the matrices of
V in the jj-coupling scheme. We And for the states of

J=i
d5/2

d5/2d8/2

d3/2

J—3

d5/2

d5/2d3/2

d3/2

d5/2

2.27
1.84

—1.96

d5/2

1.87
1.91

—1.00

d5/2d8/2

1.84
4.88
0.01

d5/2d3/2

1.91
1.25
1.03

d8/2

—1.96
0.01
2.45

d3/2

—1.00
1.03
2.29

(A3)

» G. Racah, in Rend. Scuola Intern. Fis. Enrico Fermi, 1S,
(1960), p. 10.

~ It seems, however, that the jj-coupling configuration mixing
is important in the 4+2 = f state. Here, the G component of the
$5/2/3/2 configuration is much bigger than the F component.
More evidence to this fact is given in Ref. i.

In order to obtain the full energy matrices one has
to add the single-particle energies to the diagonal
elements. The nondiagonal elements which connect the
configurations d5/2' and d3/2 can be neglected for two
reasons. First, because of the big energy necessary to
excite a d5/2 nucleon into the d8/2 subshell, the difference
between the diagonal elements of the two con6gurations
is about 10 MeU. Thus, the inQuence of the correspond-
ing nondiagonal element is rather small. Second, it
can be shown that interactions between con6gurations
which di6er by the excitation of a pair of particles are
automatically absorbed into the effective interaction
parameters of the pure configurations. "

It remains, therefore, to look for matrix elements
connecting con6gurations which diKer by the excitation
of one particle only. We see immediately in the matrices
(A2), (A3) that the elements which connect the two
lower configurations, d5/2' and d5/2d3/2 are bigger in the
T=0 states than in the T=1 states. The reason can
be better understood if we decompose the jj-coupling
wave functions into their LS coupling components. We
see that the wave functions for the d5/2d3/2 configuration
with T=O have big components of S and D states. On
the other hand, no 5 state can be contained in the
d5/2d3/2 T—1 states. The D component in the d5/2d8/2
2+T=1 state is small"
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Our arguments can be generalized to the case of more
than two particles in the 1 shell. The two lowest con-
figurations for e particles in the l shell are j" andj" 'j' where j=l+p and j'=E ip. —The nondiagonal
matrix element between these configurations can be
expressed in terms of the nondiagonal elements in the
two-particle configurations »p= (—1)/—i/'» p. (AS)

From Eqs. (A5), (A'I), and (AS), we obtain for the
wave function of two particles in the

i 1) (K=O)
configuration

shown by Redlich' that this projection operation is
equivalent to rotating the system i.e., taking a combina-
tion over all directions which is an eigenstate of J.

It is easy to show that for any shell with even /, due
to the degeneracy of k and —k

Z~i& & (T J', TJ)&i'TpJpl Vijj 'ToJo& (A4)
TP JO i' 0 PM 'pl/2 pp—I/2 PM gj»' 1) fl/2 p 1/0—

The coefficients a are proportional to products of
fractional parentage coe%cients and Racah coeKcients.
When T has its maximum value, namely T=-',e, only
terms with To——1 will appear in the summation on the
right-hand side of (A4). When T is smaller than its
maximum value, also terms with To——0 will appear in
the sum. We have already seen that the matrix elements

(j' To=1 Joi Vijj' To=1 Jo) are in general smaller
than the elements (j' To=0 Jpi V!jj' Tp=O Jp). There-
fore, the nondiagonal elements between many-particle
configurations (A4) are smaller for states with maximum
T than for states with lower T.

%e conclude that the jj-coupling scheme may be a
good approximation for states with maximum T. On the
other hand, one may have to use the intermediate
coupling scheme (or an approximation to it) to describe
states with low isospin T.

jj'J
11 1

(A10)

In this sum only symmetric (T=O) functions appear.
Let

(A9)
——-01—2

We shall omit, subsequently, the subscript k, re-
membering that we shall always have k= —', . It is easy
to see that QMp~ is an eigenfunction of the isospin T.
For even J only antisymmetric (T=1) wave functions
appear in (A9). For odd J only the symmetric (T=O)
functions appear.

For ip) (K=1) we have

APPENDIX 3: DETAILS OF THE CALCULATION K=Qk, K„= Q'k, K +K„=K. (A11)
i=m+l i=1

(A5) Ji J2 J Ji J2 J
JM

~m+1' ' ~z ~&~& -Ep E& E m&m2 m~ m2 M
k is the magnetic quantum number in the direction of
the symmetry axis of the nucleus. The projection
operation P~~ has been de6ned in Sec. 2.1.

It is trivial that

XP,~'iki k )P„,~ ik~, k„) (A12)

[where we have used the identity (3)).
(A6) The overlap of two wave functions is given byPm'Fp= &~4'~''

The wave function" of a single nucleon in the (1d,2s)
shell in an axially symmetric deformed potential well is A simple genersli ation f (A6) (A7) d (A9)

The normalized wave function of a single particle is

just P„'.
It is easy to calculate PM~go'if'"

PM pp'p/ "

(k, k„k,' k ')

kk„+i. k„k~i' k„')

JM JM . A13

4 O' E m m' E
The expressions which will appear hereafter are

,z )
independent of M. We shall; therefore, omit it from now

M on. In order to normalize the wave function (A12)
it has to be divided by

where [ g is a Clebsch-Gordan coefFicient. It has been

2~ In our calculations we follow closely the methods of Levinson,
Ref. 18.

( ki k„
&m, n—ea

k„+i k„

ki k„)~ ~

~

k~i . k„f
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An identity which is useful in calculating the overlap integrals is

(k& . k„k,' k

Ek~y ~ ~ k„k~x' ~ k~'l»&a K„E~E E„'E~' E'

X(4 .k~Jzlks' km'&r)(k~x k~joI k~&' k~'J,). (A14)

Jg J2 J-'
$J& $J& ) J even&'o.o'(o —

o I o
—o) =~ = 2 Z 1 1—

2 0

The following overlap integrals are used in the present work:

%,o'(o
I o) =&'i o'(—

o I

—o) =xz',

=0 ) J odd

0
SJg SJ2 )

2 2

f o o—o —ol

1 1'1 li
2 2 2g J

Jl
J1J2

0

J1J& 0

J2 J-'
2 2XJ1 XJ2 )

2 1-

J2 J- J1J2J-
xg 'xg. '(—1)»—'*

] )

J2 J-'
XJQ d Jg )1 1

2 2-

J2 J-'
d J&ZJ&.

0 0

(A15)

The single-particle energies in the state (3) are calculated with the help of Eq. (A12) and similar identities

~ ~ ~ ~ ~ ~k1 ~ k k1' ~ k '
J Q Ho(r) J

t 0 ~ k )—1 k

J1 J2 J J1 J2

k; E—k, E k, 'E' —k,''E'
JaJ),

( kg k„gk+, . k„
cV

(km+1

k g' k,' ~'k;+~'

~ ~ ~ k„i
k k1'( kg ~ ~ ~ ~ ~ ~ k„'l

! (k;~, laolk, '~,). (A16)
kk~g k, gk,~g . k„k~g' k; ~'k,'+~'. k„')

The single-particle energies of the states which are dealt with in this work LEq. (4)g are

(P la, l-,'I)=—~,
-J1 J2J'

(o' —Vl~aol l —r'j)=4K, x»o~» J even
J&J2 1 1 0

=0 )

1 1

J'ZHp J =2
2 2 JyJg

1

J ZBp J =2
2 2 Zy Jg

XJg AJg)—10

J2J '
xJ, AJ„

J odd

1

J &Ho
2

1 ~J
J)=2+

2 Jy Jg

J2 J JZJ2J
x»'( —1)~~ &AJ, , J odd—20 J even
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1 1 1 1

J &Ho J &p.p" (-' —p l 2
—2)+&i,i"l

+Q
1

Ji JpJ ' —,'-', ) JiJ2J Ji JpJ
,l~si —2 Z

— 0—1 1 1 1

1 1

Xi i~' (—1)s' &Ag,
1 1
2 2

J» J9 JJ ZHp J =8+ (A17)

Again, with the same methods it is possible to calculate the matrix elements of the interaction between the
nucleons in various states.

(
kl k k»' k '

J g V(rs) J
~ ~ ~ k ' ~ k '

J Jl
( 1)&1+&2 il a2

zijs k. ,,+k;, E—k, ,—k,, E k,, '+k, , 'E,,
—kg, E

kl ' ' 'kiy' —1 ki1'+1 ' ' ' ki2' —1 ki2'+1 ' 'ktn

~ ~ ~ k„'k„k~»'
kl ' ' 'kig —»key+»' ' 'kig —lki2+1' ' 'km

x ~. ..." ~ ~ ~ ~ ~ ~ ~ ~

k m+»

k kl'k l ~ ~ ~ ~ ~ ~ k„'~
+&m, n-m —p

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~km+i' ' 'keg —lkg+1' ' 'ki2 lki2+1—' ' ' km km+i ' ' ' kiv i kix'+—1 ' ' 'ki2' —1 kin'+1 ' ' ' km. ~

X(k,,k,,Jil Vl k;, 'k, 'Ji)+ 2 (—1)"+" "
$1$111$IJ,1J2-, k,jg+kjp E key kjp E keg~ +kj2~ E keg~ kjm~ E

k» .ki, lk +» k
JgX&m-», n—~—1

k„+1 .k;, lk;,+1~ k.

ki' k;, i'k;, ~i' km') k, , k, , '

Ji V Ji
k +i' .k;, i'k, , ~i'. k ') k,, k,, ' (A18)

(In the first term i 2, iq'&m. In the second term ii, ii') rN. In the third term ii, ii'(m and ip, i2') m).
For the states with which we are dealing in the present work, the interaction energies are

(-', —-', Jl Vl-',——,'J)—=2aq, J even,

=—0, J odd)

J V,
' J =up,

'J V'J -=b.
~2l

!

~

~
2
1

2 2

1 1
2 2J V J =—cg, Jodd,
1 1
2 ' 2+-

=—0, J even,

( ~1 V ~J)=E J»J2 J '
xj $2+( 1) ]Gj + Q xs

2 2
1 1
2 2-

J»Jg J J» J2 J—2 Q xs '(—1)~2 &cJ,
0 —,

'
—,
' 1 —

2 -,'
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-Jt J, J-'
J P J =4+ Et, t»( )L2+(—1)»]ay,+4+ Et, t '( )b»

»» 0 00 k——', ——,') »~, 1 —10

=0,
~cq, , J even, (A19)

z»2 0 00 1 —10 J odd.

In Eqs. (A16) to (A19), the energies of the e-particle systems are expressed in terms of the energies in the
single-particle and two-particle systems. This is done vrith the aid of a sort of generalized coeScients of frac-
tional parentage, recently dered by Kurath. "

One has to remember that the energy expressions (A16) to (A19) are still not normalized. To get the normalized
expressions (as well as the definitions of the normalized parameters) one has to divide each expression by the
corresponding overlap integral LEq. (A15)g.

One has also to remember the degeneracy with respect to reflection at the (xy) plane (the z axis is the symmetry
axis of the nucleus). Thus, for example

(A20)

As an example let us write down the energy expression for the 13/2+ (T=—,') level in F" (not yet found
experimentally)

1 1 1 1

13 2 H 13 2
2 I 2

(100y z )As/s+ (200y z +50+ )As/s (150y z +25+ )a4+ (50y +4)54+ (100ys+4+25& )as
(A21)

100y'x'+50/3xs

where the bars denote normalized quantities.
After normalizing to x'=1 (see Sec. 2.3) and using the unnormalized energy parameters Eq. (A21) takes the form

1 1

l328
1002s/s+ (200y'+ 50)A s/s+ 175a,+140/3b4+ (252y'+ 63)as

13/2
100y'+ 50/3

(A22)

It can be easily shown that the wave function for this state is

1 gl/2~

13/2 f(ds/ss13/2)+ $(ds/ss(5)ds/s13/2),
(1+6ys)1/2 (1+6y2)1/2

(A23)

where f(ds/ss 13/2) and f(ds/ss(5)ds/s 13/2) are antisymmetric functions.
The states

~ iV) and
~
i&J) J=1, 3 are nonorthogonal. One has, therefore, to diagonalize the Hamiltonian in an

orthogonal scheme. Let us choose the orthogonal wave functions to be,

where,

1 1 12- 2 2J and (1—ag') '" J —rrg J
1 1 1
2 2 2

ng=— J J
"D. Kurath, Argonne National Laboratory Report ANL-6312, 1961 (unpublished),
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(The bar denotes normalized functions. ) The energy matrix to be diagonalized will then have the form

1 1 1
)

1
2 2 2 2

(1—nz') '~' J II J —rrg J' H J
1 1 1 1
2 2 2 2

1 1 1 1 1 1 1 1
2 2 2 2 2- 2- 2 2

(1—rr~~)&is J + J' —nJ J + J (1 QIJ) j + J 2rrj J Q J
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

1 1

+nz'( J B J)
2 2

The various matrix elements appearing in this matrix can be expressed in terms of the parameters (7), (8) by
means of Eqs. (A17), (A19).
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Measurement of the Triple Scattering Parameter R' in Proton-Proton
Scattering at 137-', MeV*

STANLEY HEE AND RICHARD WILSON

Cyclotron Laboratory, IIcreurd University, Cambridge, M ussachusetts

(Received 24 July 1963)

The proton-proton triple scattering parameter R' has been measured at a laboratory energy of 137~ MeV
over a range of scattering angles em. The following values were obtained: e&(laboratory) =20'50', 0.562
~0.052; 25'26', 0.4/2&0. 054; 30'8', 0.375&0.068; 35'16', 0.238&0.084; 39'55', 0.251&0.121.The stated
errors include a 5% error in R' which is systematic from angle to angle. This has been combined quadratically
with the other errors.

INTRODUCTION

'HIS experiment continues the program of measur-
ing the %olfenstein triple-scattering parameters'

in p-p scattering near 140 MeU. The depolarization
parameter' D, rotation parameter' E, and the A param-
eter have previously been measured. This article
describes a measurement of the Wolfenstein parameter
R' for p-p scattering at 137rs MeU over the range of
laboratory scattering angles 20 to 40'. The parameter
E.' relates the initial polarization in the plane of the
second scattering and perpendicular to the incident
direction of the component of polarization after scatter-
ing which is along the direction of the outgoing
motion.

The experimental arrangement for the p-p measure-
ment is shown in Fig. 1. A proton beam having its
pola, rization vertical passes through a solenoid magnet.
The polarization precesses 90' about the direction of
motion, so that on leaving the solenoid the beam has a

*Supported by the joint program of the U. S. OfI1ce of Naval
Research and the U. S. Atomic Energy Commission.' L. Wolfenstein, Ann. Rev. Nucl. Sci. 6, 43 (1956).

~ C. F. Hwang, T. R. Ophel, E. H. Thorndike, and Richard
Wilson, Phys. Rev. 119,352 (1960).'E. H. Thorndike, J. Lefrangois, and Richard Wilson, .Phys.
Rev. 120, 1819 (1960).

4 Stanley Hee and E. H. Thorndike, Phys. Rev. (to be
published).

polarization in the horizontal plane and perpendicular
to the direction of motion. (The sign of the incident
polarization I'1 can be reversed by reversing the
solenoid current. ) The beam leaving the solenoid strikes
the hydrogen target. Particles scattered through an
angle 02 in the horizontal plane pass through a sector
magnet which rotates the polarization through an angle
near 90', thereby changing a longitudinal component
into a transverse component. This beam, defined by
counters A, M, 8, then strikes the analyzing sca,tterer.
Particles scattered through an angle 03 in the vertical
plane are detected by the counter telescopes CD and
EF. The angles 03 of these telescopes can be reversed in
sign (up or down).

The asymmetry e3, is measured for the two senses of
telescope counter position and for the two signs of
incident polarization. E' is then related to the measured
asymmetry by

es, =PiPs(R cosx+R' sing),

where I'3 is the analyzing power and x is the angle of
spin rotation. (es, is defined as in Refs. 3 and 4.)

The apparatus and techniques used in this experiment
are, with a few modifications, identical to those used for
measuring E and A, and greater detail on various
points may be found in Refs. 3 and 4.


