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Variational Shell-Model Methods for Deformed Orbitals*
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A single-particle representation of deformed orbitals in the s-d shell is obtained by using variational self-
consistent methods. The two-body Rosenfeld potential is taken as the effective interaction. The dependence
of the single-particle Hamiltonian on the force parameters, as well as its dependence on the number of
nucleons, is investigated. The results are compared with the deformed harmonic-oscillator model, discussed
by Mottelson and Nilsson.

INTRODUCTION

'HE existence of strongly deformed nuclei has long
been established. ' The use of the spherical j-j

coupling single-particle representation, does not seem
proper for these nuclei. ' When the nucleus retains its
strong deformation not only for the ground state but
for low excited states as well, one expects a single-
particle representation of deformed orbitals to be
applicable. The single-particle Hamiltonian, is taken
to be spheroidal, with each orbit fourfold degenerate—
populated by two protons and two neutrons with spins
up and down. Nilsson' chooses the deformed harmonic
oscillator, as a Hamiltonian having these properties.
This choice has the great advantage of being simple
and easily diagonalizable. In fact, neglecting interaction
between major shells, one has its eigenvalues and eigen-
functions as a function of the deformation, -and the
strength of the single-particle lz and l. s forces. The
particular choice of these parameters, remains to be
made for each individual problem. That is generally
done by seeking those values for which the expectation
value of the total Hamiltonian in the ground state is
minimal. 4

Since the exact solution of the nuclear many-body
problem is impossible, the choice of a proper representa-
tion is not merely a matter of mathematical con-
venience. That is, the quality of the results of approxi-
mate calculations and methods, in various nuclear
models, depends on the single-particle representation
that is being used. This is especially true for models,
which essentially assign general nuclear properties, to
individual nucleons, e.g., the magnetic moment of odd-
even nuclei. It is, therefore, of interest to investigate
what representation one would get, assuming spheroi-
dicity (but without restricting oneself to a deformed
harmonic oscillator) and using a more general varia-
tional principle. The use of these variational methods
introduces two main changes: The representation is
dependent directly, in a self-consistent way, on the
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single- and two-body parts of the total Hamiltonian;
the mathematical procedure becomes more complicated,
than in the straightforward Nilsson analysis. In this
paper we shall deal only with the s-d shell. This shell
has the advantage of having enough particles to make
the problem nontrivial, yet not too many particles to
make it too complicated. Moreover, the nuclei in the
6rst half of the s-d shell display clearly rotational
properties, closely related to the deformed shape of
the nucleus.

THE VARIATIONAI METHOD

The actual physical Hamiltonian of the nuclear
system, is assumed to have the standard second
quantized form

a, P

The single-body part, E, in the Hamiltonian is a sum
of the harmonic-oscillator (h.o.) energy and lz and l.s
forces,

Z =Eg o +Qt, el' s+txtr~l

The two-body interaction is taken, throughout this
paper, to be the Rosenfeld mixture, ' used by Elliott and
Flowers 6:

J sS(~t'~z)(O 3+O ~trt'trs)L(e "')l(rltt)3 (3)

and

The sum over states in (1), is tt priori restricted to
the s-d major shell. %hatever extra shell eBects there
may be are either neglected, or assumed to be partially
included in the single-body force. The harmonic-
oscillator energy, Eh.o., is therefore an additive con-
stant, while Vo, ni., and o;12 are adjustable parameters.

The Hartree-Pock method consists of finding the
single-particle determinantal trial wave function po,

z L. Rosenfeld, Nuclear Forces (North-Holland Publishing
Company, Amsterdam, 1948), p. 233.

J. P. Elliott and B. H. Flowers, Proc. Roy. Soc. (London)
A229, 536 (1955).
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minimizing the expectation value Q0l EI
I go),

~&~.l~l~.)=0
The self-consistent equivalent is that the occupied
single-particle states {X},are eigenfunctions of the
Hartree-Fock Hamiltonian, which, in turn, depends on
the states {X}through

&~lhl&)=(~Ilail&&+&
&o1~II'~IP» (4)

given by

A(l T, l; m; jj'j "j"';mi)

lg
m m), M re

j/!I J
m), 3f

x{(jj"&T=1
I
I'~Ij'j'"JT= 1)

+&ii "»= IT*I I
v lii''"JT= IT*I&} (8)

where the sum goes over the d' ' d'" and s' ' states.
The coefficients C),~& are the parameters over which the
variation will be performed. The fourfold degeneracy
is built into the process by using a determinantal wave
function, where, along with each single-particle k state,
one includes also the states obtained from it by inter-
changing protons and neutrons, and by reflecting across
the x-y body axed reference plane. That is, a proton
and a neutron are taken in the state (5) and in the
state IX; —h), where

IX; —h)=P (—1)~"C),&&lj —h). (5a)

The fourfold degeneracy of h, therefore, comes as a
result of taking the sum in Eq. (4) over configurations
of 4e nucleons in the s-d shell. h is diagonal in m and in
r„but is not diagonal in j.We compute it in the (jml
representation. Equation (4) becomes explicitly

&jmr Ihlj' mr)=& jmrll~lj' m)r

The general solution of the self-consistency problem
is quite de.cult. In the approach used here all the
preliminary assumptions are incorporated beforehand
into the mathematical procedure. Axial symmetry is
introduced, by taking for the trial states, eigenfunctions
ofj,. In the s-d shell each such state is a (normalized)
linear combination of the form

Ix; h)=Q C~'I jh),

In the sum over occupied states, we perform separately
the sum over each quartet of states with the same

Im), l. Thus,

(jmlhl j'm)

=&j l&lj' )+&
I ~) l i"i'"

XCI..I CI..I , (9)

w~ere

&I-.l(m; jj'j "j"')

The self-consistent condition implies that the states X

are eigenstates of h, that is, for each
I mal,

2 CI-~l'hl jim~I&=E~ 2 CI-~l'I jim~I& (11)

The variational problem is solved, using an iterative
method on Eqs. (9) and (11). An initial set of the
parameters of the occupied orbits is chosen, Ct
This choice automatically fulfills condition (Sa). At
each step, the next iterated set, Cl ),I&("+", is obtained
in the following way. The set CI &I

&'("' defines the single-

body Hamiltonian h("+'), through

(jmlh&"+'&
I
j'm)

&&CI ),I'"'"'CI xl'"'"'

which, when diagonalized, yields

=Eg&"+'& Q Cl ), ,

&'"+'i
I j Imp I) . (11a)

where the state X is given by (5), and characterized by + C;&„+»h&„+»
I

.
I7,&. Since we have the matrix elements of the two-body; ™I

interaction in the (jij2JTI representation, we trans-
form (6), using coupling and decoupling relations,
where M=m+m&, and T.=r,+r,q. We get

(jml hl j'm)=&jmI EIj 'm)

+Q Q A(l T, l; mj j'j "j"';mi)

(7)

where the coeKcients A ( I T,I; m; jj 'j "j"', m&, ) are

The convergence of the method is, in general, a con-
sequence of the properties of the Bl ), I

coef6cients, and
quite independent of the parameters CI ),I'(", initially
chosen. However, as more and more orbits are being
filled, the behavior of the energy surface & 'ICHOI ')Ca0s
a function of the CI ),I& becomes more complicated. A
detailed investigation of that expectation value, then
reveals the exact nature of the point of equilibrium. As
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TABLE I. Single-particle self-consistent Hamiltonians for t/ p
=50

MeV, e3/s 0, e&q&
———4.2 MeV, es/&= —5.0 MeV (T. he italicized

numbers are the self energies in MeV. )~

8

X
47

-l2

-16—

-20
lo 20 40

I/2

5/2

5/2

83/g = 1
t/ 6/2

E'= —,
' —16.7977 —17.9103 —19.018Z —19.ZZ01 —Zl. 1816

0.7106 0.7043 0.7118 0.7644 —0.5025—0.3911 —0.3557 —0.30/2 —0.3102 0.2894
0.5848 0.6143 0.6316 0.5652 0,8147

E= —,
' —7.Z580 —10.07h'7 —13.1306 —14.0767 —17.4118

0.9925 0.9772 0.9628 0.9787 0.6302—0.1224 —0.2121 —0.2700 —0.2051 0.7764

E= ~~
—5.7057 —6.781Z —7.75h'5 —10,8785 —Z0.9543

1.0000 1.0000 1.0000 1.0000 1.0000

Vo( MeV)

FIG. 1. Single-particle self-consistent energies, for Ne~, as a
function of the strength of the two-body interaction, t/"p. e3/2

——0,
e1/2 ———4.2 MeV, e6/2= —7.0 MeV.

a result, we obtain the energies and eigenfunctions of
nonoccupied single-particle levels as mell.

The separation of the sum in Eq. (4) to different
quartets of orbits, offers a great advantage. We can
solve the self-consistent problem, with any particular
set of coeKcients B~ „~, multiplied through by a con-
stant Oq. As eq goes from zero to unity, the change will

mathematically reAect the transformation of the single-
body Hamiltonian, as the

~
mz

~
orbit is being gradually

filled. Physically, this enables us to treat configurations
not containing exactly 4e nucleons. It is true that this
process involves an averaging effect over protons and
neutrons. We should, therefore, only treat nuclei with
equal numbers of protons and neutrons, or pairs of
mirror nuclei simultaneously.

RESULTS

Table I7 gives the eigenvalues and wave functions
of the single-body Hamiltonians for diBerent values of
Ailing-numbers 0 of the various orbits, for fixed Vo,
o, l., and nil. The left column gives the k of the states; the
italicized number is the self-energy in MeV, followed

by its eigenfunction, given by the coefFicients Cz~',

starting with C~~' ' .

EFFECT OF CHANGING Vp

The deformation of the nucleus is caused by the inter-
action between particles, which tend, for semi-filled
shells, to prefer deformed over spherical orbitals. It is
interesting to see how the single-particle spectra changes
with the strength of the two-body interaction. That is
shown in Fig. 1 for Ne" (er/s ——1) and in Fig. 2 for
Mg" (Oj/s 03/s 1). The resemblance to the Nilsson
curve (which is a function of r/) is striking especially for

'H. E. Gove, Proceedings of the International Conference on
Euclear Structure, Kimgstor/, edited by D. A. Bromley and E. %.
Vogt (University of Toronto Press, Toronto, Canada 1960), p. 438.

E= —,
" —6.Z566 —h'. 530h' —11.6h'78 —1Z.5096 —h'. h'411

0.6835 0.6915 0.6158 0.5786 0.8517
0.1866 0.5395 0.7054 0.7167 0.3278—0.7057 —0.4803 —0.3508 —0.3893 0.4087

E=g" —3.1975 —5.019Z —5.9875 —7.7605 —4.7548'
0.1668 —0.1606 —0.3379 —0.2842 0.1488
0.9012 0.7631 0.6387 0.6246 —0.8973
0.4000 0.6260 0.6913 0.72/4 0.4112

a Around mass number 27, where the d6/26/2 level is being filled, there is
an abrupt change from positive to negative deformation. This is in agree-
ment both with other calculations and, most probably, with experimental
data. (See Ref. 7.)

the second case. This resemblance also occurs when the
corresponding wave functions are compared. The varia-
tion of x(=Cr/s' ') and y(=Cr/ss") as a function of rt,

and as a function of Vo, is illustrated in Fig. 3.

THE DEPENDENCE ON 0.'I., AND eI2

The dependence of the single-particle Hamiltonian
on the single-particle part E, is summarized in Tables
II and III; where, for Ne" and Mg" respectively, the

p -8
XI

- l2

-l6

20
10 20 30 40 50

V (M8V)

FIG. 2. Single-particle self-consistent energies, for Mg24, as a
function of the strength of the two-body interaction, Vp. e3/~=0,
e1/2

———4,2 MeV, e6/2= —7.0 MeV.

E=.—,
" —l.0034 —Z.3641 —3.5626 —7.1Z71 —8.9939

0.1224 0.2121 0.2700 0.2051 —0.7764
0.9925 0.9772 0.9628 0.9787 0.6302
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RO

Ne TAar, E II. Single-particle self-consistent Hamiltonians for Ne~;
Vp=50 MeV e3/g=0 8y/g= —4.2 MeV.

e5/2= —5.5 es/2 = —6.0 e5/2 ———6.5 eg/2
———7.0

.30—

.25—

.20

—17.0157 —17.ZZ91 —17.4417
0.7439 0.7724 0.7973—0.3928 —0.3911 —0.3868
0.5406 0.5003 0.4633

E= —,
' —7.7414 —8.Z304 —8.7ZSZ

0.9940 0.9950 0.9961—0.1097 —0.0985 —0.0886

E = -', —6.Z79Z —6.8571 —7.4364
1.0000 1.0000 1.0000

—17.6565
0.8193—0.3805
0.4290

—9.ZZ54
0.9968—0.0800

—8.0155
1.0000

, l5—

.10—

,05—

Vo=lO

E—2

Q II
2

—6.3477
0.6480
0.2264—0.7272

—3.Z435
0.1633
0.8912
0.4230

—6.4Z98
0.6145
0.2616—0.7443

—3.Z934
0.1602
0.8823
0.4424

—6.5035
0.5825
0.2929—0.7581

—3.3473
0.1575
0.8744
0.4590

—6.5685
0.5520
0.3211—0.7695

—3.405Z
0.1550
0.8672
0.4731

0.75 .80 .85 .90 ,95 I.O

E =-," —1.0753 —1.1495 —I.ZZ36
0.1097 0.0985 0.0886
0.9940 0.9950 0.9961

—I.Z968
0.0800
0.9968

FIG. 3. The variation of the equilibrium point for Ne~ and
Mg~, as a function of Vp, compared to the Nilsson model. e3/2 —0,
e~~2= —4.2 MeV, es/~= —7.0 MeV.

d'"-state position is being changed relative to the s' '
and d' ' states '

is therefore treated separately, to form a stationary
determinantal state. This is done with the help of the
filling parameters 8. For mass number A=21 nuclei
(Ne2i and Na2i), the following configurations are

POLARIZATION EFFECTS

The single-particle Hamiltonian for a particular
nucleus generates, as we have seen, not only the oc-
cupied, but the nonoccupied orbitals as well. For even-
even nuclei, with equal numbers of protons and neu-
trons, the determinantal stationary ground state
is relatively stable. The single-particle self-consistent
representation may then serve as a proper basis for a
perturbation treatment of low-excited nuclear levels.
In odd-even nuclei, an extra nucleon is added to the
stable core treated before. The properties of the low-

lying levels of such a nucleus would depend, to a great
degree, on a set of intrinsic nuclear states, where, in
each one, the odd nucleon occupies a different orbital. '
This is, in particular, true for varieties of the collective
rotational model. "The erst attempt might be to use,
for the odd nucleon, the nonoccupied orbitals obtained in
the variational calculation for the even-even core. How-
ever, following the ideas of the present analysis, such
a choice clearly neglects the two-body interactions of
the nucleons in the core with the odd nucleon. Moreover,
this effect depends quaatita, tively on which level the
latter occupies. Each con6guration of the odd nucleus,

"S. A. Moszkowski, Hundbuch der Physik {Springer-Verlag,
Berlin, 1957), Vol. 39, p. 411.' A. Bohr and B. Mottelson, Kgl. Danske Videnskab. Selskab,
Mat. Fys. Medd. 27, No. 16 (19S3).

N K. H. Bhatt, NucL Phys. 39, 37S (1962).

TABI E III. Single-particle self-consistent Hamiltonians for
Mg Vp=50 MeV, e3/2=0, e~/2= —4.2 MeV. ~

e5/2= —5.5 e5/2 = —6.0 e5/2= —6.5 es/2 = —7.0

E = —', —19.1640 —19.Z95Z —19.4137
0.7509 0.7865 0.8188—0.2992 —0.2871 —0.2711
0,5887 0.5467 0.5060

—19.5Z01
0.8483—0.2514
0.4660

E = ~3 —13.60Z4 —14.0864 —14.5847 —15.0995
0.9662 0.9692 0.9718 0.9741—0.2578 —0.2464 —0.2358 —0.2259

E =—,' —8.3453
1.0000

—11.8051
0.5822
0.7206—0.3765

E = —,
'" —6.03ZI—0.3115

0.6254
0.7154

E =—," —3,6794
0.2578
0.9662

—8.9437
1.0000

—11.9036
0.5461
0.7366—0.3989

—6.0799—0.2882
0.6123
0.7362

—3.8041
0.2464
0.9692

—9.550Z
1.0000

—11.9839
0.5077
0.7531—0.4184

—6.13Z8—0.2675
0.5995
0.7553

—3.9338
0.2358
0.9718

—10.16Z9
1.0000

—IZ.0455
0.4670
0.7697—0.4352

—6.1918—0.2492
0.5868
0.7704

—4.0667
0.2259
0.9741

As the s'/2 states goes below the d»2 states, the equilibrium point be-
comes more and more spherical. This change is very abrupt for Ne», and
more gradual for Mg~4. This is shown in Fig. 4, where the expectation value
of Qo (the intrinsic quadrupole moment) is plotted against e(s»2) for Ne»
and Mg24. The d»2 and ds/~ levels are held fixed at 0 and —5.0 MeV, re-
spectively. It should be noted that the experimental value of (go) contains
a considerable contribution from the 0'6 core (see Ref. 8).
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Fio. 4. The expectation value of Qo (in arbitrary units of
3.1114tnb) for NP' and Mg~, as a function of e(r") Vo =50 MeV,
e(d'/s) =0, e(d'")= —5.0 MeV

seen, is most important for the difference of the 0=-,"
and E=—', states in A=25. In this case, the experi-

mental situation is also very clear. It is interesting to
see the dependence of the renormalized difference of
energies ~]/g' 65/2 on the initial forceparameters. This
is illustrated in Fig. 6. One can see that the difference

indeed becomes positive, for acceptable values of Vo

and e(d'/'). The e(s'/') value is kept constant at
—4.2 MeV.

The rearrangement of the intrinsic structure of the

core, may be regarded as a polarization effect of the
odd nucleon, and changes of collective properties might
occur. For the k= 2 configuration, the odd nucleon has

to be in a pure j= ~ state, namely d5~2' . Its interaction

treated:

{81/s——1

{81/s——1

{81/s= 1

8,/, = 14} (E=as intrinsic state),
8,»——e} (J"=s intrinsic state),

81/s ——4} (E= s' intrinsic state).

For mass number A = 25 (Mg" and Ai's)

{81/s 1 8s/s= 1 8s/s ——s} (k= s intrinsic state),
{81/2—1 83/s= 1 81/2' —k} (0= s liltl'lilslc state) .

FIG. 6. Renormal-
ized single-particle
energy difterence be-
tween the E=g and
IC =-', states, as a
function of Vo, and
eel.

O 0—
Ol

lA

I

Ol

y =40 MeV

Vp 45 MeV

Vp= 50 MeV

"6—
K= I/2'

-7—

-8 4Q5/2

KQ 3/2

& -lo-
4' -l l-

Renormalized

K Q5/2

Higher k states are well separated from these groups
(see Figs. 1 and 2), and are insignificant in the treat-
ment of low-lying levels. In the calculations of the
k= 2' states, an orthogonality condition between equal
k states is incorporated into the iterative process.

The erst result of these calculations is a change in
the total energy of the even-even system. This change
may be absorbed in the energies of the nonoccupied
single-particle levels of the core, resulting in a renormal-
ization of their values. The correction added is simply
given by

Ae/, ——(Ck(2%+1) I H(2/V+1)
I
Cg(21V+1))

—(co(») IH(») lc'o(»)& —(~lhl && (»)
where Cs(2lV+1) and H(2/+1) refer to the odd-even
system; C s(2iV), H(2/V) and h, to the even-even system.

Figure 5 shows the renormalization effect on the
physically important k levels. This effect, as is well

-5 -6
e (ds/s} [Mev]

energy with the core nucleons is given by

Vd '/' core=Ex();de/s'/sl VIX;ds s'"&

=2 2 (j ~i' &s/s'"
I
V

Ij 'rlx' ~s/s'"&

X(=x x'&x,". (13)

This is clearly equivalent to adding an extra single-

particle operator to the self-consistency problem of the
bare core, the matrix elements of this operator being
simply

(j~lonli'r/s&=(ir/s d»s'"I Vli'rw; ~s/s"& (14)

At this point, we can easily see the connection with
the Nilsson representation, which is obtained by
diagonalizing a one-body operator. In Nilsson terms,
the polarization effect would mean the following: Two
configurations of an odd number of nucleons, although
differing in the occupied level of a single nucleon, are
best treated as being generated by different values of
the deformation g. If we regard the moment of inertia
as macroscopically related to the deformation of the
nucleus, that would explain the occurrence of different
moments of inertia for different k bands.

-12— KQI/2
Renormolized ACKNOW' EDGMENT

A= 21 A= 25

Fxc. 5. Renormalization of single-particle excited energy levels,
due to polarization, for A =21 and A =25. V0=50 MeV, e3/Q —0,
e1 t2 ———4.2 MeV, e5)2= —&.0 MeV.
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