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Polarization phenomena in collisions between one-electron (alkali-like) atoms are calculated with density-

matrix techniques. The kinetic energies for which this treatment is valid are limited from above by the

use of the Born-Oppenheimer approximation, and from below by the assumed degeneracy of the hyperfIne

states. The basic mechanism for polarization changes is the electron-exchange effect, as suggested by Purcell

and Field and by Kittke and Dicke. The special situation of unpolarized targets is treated in some detail.

In this case, there are two numbers which characterize the scattering through any angle: the absolute values

of certain direct and exchange scattering amplitudes, Iid and Ii,. All cross sections must be expressible in

terms of
~
Fe [ and

~

F [, and this is explicitly carried out in two cases of special interest. One refers to the

case in which only the electron-spin polarization is measured, and the other to measurements of the polariza-

tion of the hyperfine states of the scattered atom. Effects of the identity of the atoms are also studied in

detail.

I. INTRODUCTION as a function of scattering angle and relative kinetic

energy. The most interesting case, from the point of

view of the theory, is the collision of two hydrogen

atoms, for here there is some hope of making a complete

theory starting from the full four-body problem.
The purpose of these papers is to present a more

complete theory of spin-exchange scattering than has

been available in the past. The dynamical basis of the

theory is actually very similar to the 6rst work by
Purcell and Field' and by %ittke and Dicke, ' and a
more recent version by Dalgarno. ' In particular, the
collision of one-electron atoms will be considered for
relative energies much greater than the hyperfine

splittings, but small enough for the Born-Oppenheimer

approximation to be valid. This means that the colli-

sion time must be much greater than the electronic

periods, but much less than the period associated with

the hyper6ne splittings. For two hydrogen atoms,
this restricts the relative energy to the range (measured
in degrees) from approximately 10 to 10' 'K. By a one-

electron atom is meant, of course, an atom with a single

s electron outside closed shells. Neglecting all magnetic
moment interactions, ' the above restrictions on the
relative kinetic energy imply that the scattering can be
reduced to an elastic scattering problem. In this ap-

proximation, the atoms interact through a spin-de-

pendent central potential Vs(r), where r is the distance

between the atoms, and 5 is the quantum number for
the total electronic spin, equal to 0 or 1. Associated
with the potentials Vs(r) are scattering amplitude fs(0),
which are obtained in the usual way by solving the
Schrodinger equation.

The present development of this model attempts to
improve on previous work by giving a more general

and complete description of the polarization effects in

spin-exchange scattering. This is largely accomplished

by use of the density matrix. Effects of the identity of

~~OI.I.ISIONS between atoms in which angular~ momentum is transferred are an important re-

laxation mechanism in paramagnetic gases. If the atoms
have unpaired electrons, then the most important fea-
ture of the process is the identity of the electrons. This
gives rise to the exchange of electrons between the
colliding atoms, the so-called spjN eoccItar-tge scattering.
In this paper, the polarization phenomena in spin-

exchange scattering are studied in some detail. In a
second paper with S.A. Lebede6, the problem of calcu-

lating the relevant scattering amplitudes is examined. '

There has been much interest in this process in con-
nection with the polarization of hyperfine states of
alkali atoms in their ground electronic states. A simple

theory for spin exchange between hydrogen atoms was

developed by Purcell and Field' and by Wittke and
Dicke. ' The former pair of authors was concerned with

the intensity of the 21-cm line in radio astronomy, the
latter with line broadening in a precision measurement
of the hyperfine structure of atomic hydrogen. Spin
exchange has also been observed with optical pumping4'
and electron-spin resonance' ' techniques, particularly
in alkali vapors.

Attempts are now being,"made in many laboratories
to measure spin-exchange cross sections with sufhcient
accuracy to be of use in the theory of interatomic
forces. The best method, and one which is also very
dificult, is to scatter two polarized atomic beams. In
principle, this can give all of the scattering amplitudes
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the atoms are also considered. The statistical problem
of the relaxation of a collection of such atoms is not
studied in this paper at all, although the results are
expected to be useful in analyzing such problems. The
results should be most directly applicable to cross-
section measurements made with crossed polarized
atomic beams, i.e., where a truly two-body encounter
is of interest. The problem of calculating the various
cross sections and scattering amplitudes is treated in
another paper. '

The plan of the paper is as follows: The theoretical
basis of the model is presented in Sec. II. The discus-
sion here is quite general and includes the use of the
density matrix, the effects of identity of the atoms, and
the definition of a general spin-exchange cross section.
The remaining sections are devoted to specific applica-
tions, with special emphasis on the situation where the
target atoms are unpolarized and measurements are
made only on the incident atom before and after scat-
tering. In Sec. III, results are presented for the situa-
tion in which only the polarization of the electron spin
is measured, a case relevant to electron spin-resonance
experiments. The various cross sections of interest are
then independent of the nuclear spin except when the
atoms are identical. In Sec. IV, it is assumed that the
polarization in the atomic hyper6ne states is measured
and that the atoms are not identical. A simple closed-
form expression is then derived which gives the cross
section for scattering from any hyperhne state to any
other, provided the target is unpolarized. The eHects of
the identity of the atoms is most fully investigated in
Sec. V, which deals with the collision of two hydrogen
atoms.

Although the discussion of this paper is directed
toward collisions between normal one-electron atoms,
it also applies to other situations in which electron ex-

change is important. These include electron scattering
from normal one-electron atoms and collisions in which
one (or both) partners is an ion with one electron out-
side of closed shells.

V=+ Vs(r)Ps, (2 &)

where V8 is the potential and PB is the projection
operator for states of total electronic spin 5. The
scattering from such a potential is familiar from nuclear

II. GENERAL THEORETIt"AL BASIS

The general features of the scattering of two non-

identical one-electron atoms will be given 6rst. As
mentioned in the Introduction, the kinetic energies
considered are high enough to justify ignoring the
hyperhne splittings but low enough to use the Born-
Oppenheimer approximation. The interaction between
the two atoms, which have electronic spins s~=s2=~
and nuclear spins i ~ and i 2, is

where fs (8) is the usual scattering amplitude associated
with the potential Vs(r), t) being the center-of-mass
scattering angle. If the two atoms are initially in the
spin state ~nrno), then the differential cross section for
scattering through the center-of-mass angl. e 8 to the
spin state ~ni'e2') is

e(nins)ai'no'- , e) =
~

(err'mrs'
~

S
~
nrno)

~

' (2.3)

The operator 5 is diagonal in the representation in
which the total nuclear spin and the total electronic
spin are diagonal. However, this is not the one used to
describe measurements, which are usually made on
isolated atoms. Of greatest practical importance are
the states in which the total angular momentum of
each atom is diagonal. The analysis of this paper will,
however, avoid the complexities of the transformation
coefficients (niao

~
IMrSMs) between the states of

physical interest ~vino) and the states in which F is
simple (i.e., diagonal) ~I3IrSMs) M

The scattering operator can be put into a convenient
form by using the familiar expressions for the projec-
tion operators,

The result is

where

Fo=~r(1 —er eo),

Fi——-', (3+ei es).

F=Fg+F~i eo,

Fd= 4fo+4 fi,
F.= ~ (fi fo)—

(2 4)

(2 5)

(2.6a)

(2.6b)

The amplitudes Fd, and F, are called the direct ampli-
tude and exchange amplitudes, respectively. As will be
seen below, F~ never contributes to scattering in which
the spin-state changes, if the atoms are di6erent.

Pure states are seldom realized in scattering experi-
ments, so it is necessary to consider statistical en-
sembles. In the kind used in this paper, the state of
relative momentum is pure, but the spin state is com-
pletely general. If the density matrix for the initial

"Such codEcients are discussed in great detail in the literature,
e.g., A. de-Shalit and I. Talmi, 1VNcleur Shel/ Theory (Academic
Press Inc. , New York, 1963).In the case where o, is fm, the quantum
numbers for the square and one projection of the total angular
momentum of a single atom, the transformation coeKcients are

(f~m& fomo ( IMrSMB)
= L(2fr+1) (2f2+1) (2I+1)(2S+1)g'~'

X Z (f&m&fromm~ JM)(IMrSMs~ JM)X(imz~I[$2S( fifmJ),
ZJVf

where (f~m~fqm2(JM), for example, is a Cleboch-Gordan coei5-
cient and X is a 9-j symbol,

physics, and Dalgarno has discussed the structure of
the scattering amplitude for the present case. ' In par-
ticular, the scattering can be calculated from an opera-
tor in the spin space of the two atoms,

(2.2)
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state is normalized to unity"

Trl p' 7=1 (2.'I)

the density matrix for the beam scattered through the
angle 8 is

p..(e) = ~p -~' (2 g)

Kith this normalization, the differential cross section
for scattering into al/ final spin states is just the trace
of p„(8). Any property of the incident or scattered
beams can be calculated in the standard way from the
appropriate density matrix p,

O= TrL&Oj/TrLpj, (2.9)

where 0 is the observable in question.
The result of any scattering experiment can be

calculated with this general formalism once the initial
density matrix is specified. Some interesting special re-
sults can be found with comparative ease for experi-
ments in which no measurements are made on one of
the atoms, so that its polarization may be assumed to
be completely random. Although a complete analysis of
the scattering process does require such measurements,
most experiments in the near future will involve un-
polarized targets. In this case, it is useful to define
spin-exchange cross sections o(u,u'; 8) for scattering of
the incident atom from an initial spin state n to a final
spin state 0.'. Associated with these states are projection
operators Pi(u) with the usual properties, "

spin states are always defined with respect to the same
quantization axis, both before and after scattering.

When the explicit form for & given in Eq. (2.5) is
substituted into the spin-exchange cross section, four
terms are obtained. Two of these are zero, however,
because they are linear in the target-atom Pauli opera-
tors which, of course, have zero trace. The result may
thus be written

1
~(u,u', 0) =—TrL

I
F~ I'Pi(u)P, (u')

g2

+ IF*I'2 ~r'Pi(u)&i'Pi(u') 1 (2.12)

This equation is completely devoid of spin operators
for the target atom, so all reference to it can be
eliminated":

(u,u'; fl) = IFdl' trLP(u)P(u')3

+ I
F I' P trl o;P(u)o.;P(u')]. (2.13)

As pointed out by Kichmann, " this result can be gen-
eralized to arbitrary statistical ensembles, not just the
particular initial and final states involved in the spin-
exchange cross section. If p; (1) and p„(1) are effective
density matrices for the initial and final states, then
Eq. (2.13) implies the relation

The subscript 1 stands for the incident atom and the
subscript 2 will represent the other (unpola, rized) atom.
The spin-exchange cross section is defined as

o (u,u'; &) =Trg..(e)(P1(u )XI2)j, (2.10a)

with the incident density matrix given by

p;„= (1/gs)Pi (u) XIs, (2.10b)

and, therefore, the above definition is

o (u,u'; 8)= (1/gs)
XTrP(P, (u) XIs)St(Pi(u') XIs)). (2.11)

Here I2 is the identity matrix for the spins of the target
atom of order gs ——2(2ss+1). This definition embodies
the usual averaging over unmeasured initial spin states
and summing over unmeasured final spin states. The

"Some explanation of the matrix notation of this paper is in
order. First of all, Tr/0] stands for the trace of 0 in the spin
space of both atoms, i,e., in the vector space formed from the
product of the four spin spaces of both electrons and both nuclei.
The symbol trL0(1)] is the partial trace carried out in the spin
space of just one atom, i.e., in the vector space formed from the
product of the spin space of the electron and the spin space of the
nucleus'of this atom; the operator o{1) is an observable for the
atom. The matrix 0 is frequently the direct product o{i)Xo(2)
of matrices referring to the individual atoms. The cross notation,
as well as identity matrices, will frequently be suppressed if the
meaning of an equation is clear without them.

The average value of any observable o(1) of the scat-
tered atoms is then

0„(1)= trp„(1)0(1)).
Most of the analysis of this paper is based on Eq. (2.13)
or its equivalent, Eq. (2.14). From them it can be seen
that experiments with unpolarized targets depend only
on the absolute values of F~ and Ii . To obtain com-
plete information about the scattering process, i.e., to
measure the relative phase of Ii& and Ii, obviously re-
quires polarization studies of both atoms. In resonance
experiments, where only polarization changes are ob-
served, only IF, I

can be measured. This follows from
the fact that the first term of Eq. (2.13) vanishes unless
o.=e'. Although only two numbers determine the
spin-exchange cross section at each angle, there are
L2(2ii+1)j' spin-exchange cross sections according to
the definition of Eq. (2.11).One of the main objectives
of this paper is to relate these cross sections, which are
clearly not all independent, to the quantities IFd~
and IF,I.

This analysis can be extended to identical atoms by
properly symmetrizing the scattering amplitudes. If Q„
and Q, are the operators which interchange the two
electronic and the two nuclear spins, respectively, then

's E. Wichmann (private communication).
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5'=Gd+G~r es, (2.17)

where G~ and G, are the nuclear spin operators

G.(8) = sLfp(8) —(—)"+'Q-f.( —8))
+lLf (8)+( )"+'Q-f ( —8)), (2.»—a)

G.(8)= s Lfr (8)+ (—)""Q.fr (~—8))
—:I.f.(8)—(—)"'Q.f.( —8)), (2.»b)

The alternative forms,

Gs(8) =Fg(8)+F ( ss8) ( )"+'Q„, —
G.(8)=F*(8)+F.'(~—8) (—)""Q-

(2.19a)

(2.19b)

emphasize the connection with the previous treatment
for nonidentical atoms. The amplitudes Fd,

' and F ' are
obtained from Fz and F, of Fq. (2.6) by simply chang-
ing fp to fp. —

F.'(8)= l fo(8)+-'f (8), — (2 2Oa)

F.'(8) = ,'f, (8)+„'f, (8) --(2.2Ob. )

These amplitudes share with Fd and F, the useful
property

IFs'(8) I'+3IF.'(8) I'= IFd(» I'+3IF.(8) I'
= 4 I fo(8) Is+a lfr(» I' (2 2«)

their basic properties follow from the equations,

Q e I
IMrSM s) = (—)s+'

I
IMr SMs),

Q~ I
IMrSMs)= ( )+"—

I IMrSMs).

Therefore, the scattering operator must now be

O:=Z. Lf.(8)+(-)""Qf.( —8))P., (2.»)
where Q= Q„Q, interchanges both the electronic and the
nuclear spins. The factor (—)"+' is even for half-
integral i and odd for integral i, corresponding to the
boson and fermion character of the utoms for half and
whole integral values of the nuclear spin, respectively.
In the representation in which the total nuclear and the
total electronic spin are both diagonal, F- is diagonal
with the eigenvalues

(IMrSMs I
&

I
IMrSMs) =fs(8)+ ( )r+sf—s(rr 8) . —

Most of the remaining analysis parallels the previous
discussion for nonidentical atoms. For identical atoms,
Eq. (2.3) gives the differential cross section for colli-
sions in which two identical atoms in spin states o,~

and n2 are scattered into the spin states 0.~' and n2'.

The angle 0 refers to the direction of motion of the atom
in the spin state 0.~', measured relative to the incident
direction which is de6ned by the motion of the atom in
spin state nr. Using the familiar form for Q„

Q.=Pr —Pp=-,'(1+rrr es), (2.16)

Eq. (2.15) becomes

~= Lfo(8)- (—)""e.fo( —8))P
+Lf.(8)+(-) '"e.f.(--8)»..

The generalization of Eq. (2.5) for P to identical atoms
is, therefore,

The spin-exchange cross section, Eq. (2.11), can now
be written in a form analogous to Eq. (2.12) for non-
identical atoms,

Once again there is no mixing of direct and exchange
amplitudes because the scattering operator is linear in
e&. This expression may be further developed by using
Eq. (2.19) for Gd and G,. For this purpose, it helps to
recognize that"

Trl Q„)=4(2i+1)

and to then express Q„as

(2.22)

where
Q„= (2i+1) 'I+Q„',

TrLQ„')=0.

(2.23)

(2.24)

Equation (2.19) then becomes

G.(8) =&.(8)+J:.(8)Q',

G.(8)=&.(8)+&.(8)Q-',
where

(2.25a)

(2.25b)

Jd(8) =Fd(8)+$( )"+'/2i+1)—Fd'(7r 8), (2.26a—)

and

&.(8)= (—)'" '+~F'(~ —8) (2.26b)

I (8) =F (8)+I ( )"+'/—2i+1)F.'( s8), (2.27a)

Z.(8)= (—)s'+rF '(~—8). (2.27b)

Detailed use of these expressions will be made in Secs.
III and IV, where the e8ects of identity are studied for
some specific kinds of spin exchange.

To conclude this section, the unpolarized scattering
is calculated from Eq. (2.8), starting with the initial
density matrix

p;„=L4(2ir+1) (2i.+1)) 'I.
For nonidentical atoms, Eq. (2.2) is used for 5,

(2.28)

~(8) =L4(»r+1)(2is+1)) ' E»LI fs(8) I'Ps)
S

with the expected result

~(8)= s I fr(8) I'+l
I fp«) I'

For identical atoms, Eq. (2.15) must be used,

(2.29)

~(8) = . 2 TrC( I fs(8) I'+
I fs(~—8) I'

4(2i.+1)' s

+(—) '+ 2 Refs*(8)fs(pr —8)Q Q,jPs),
'3This follows from the fact that the ratio of symmetric to

antisymmetric states under interchange of nuclear s ins is (i+1)/i,
the total number states of course being (2(2i+1) '.

1
o (cr,cr', 8) =—tr/GsP, (n)Gs P, (n')

g2

+Q G,or;Pt(rr)G. or;Pr(rr')). (2.21)
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with the result,

2s+1

( )2i+I

+4 I fi(ti) I'+
I fi(~—e) I'+—.—2 «fr*(0)fr(w —0) . (2.3o)

2s+1

III. CROSS SECTION FOR EIECTRON
SPIN EXCHANGE

A first simple application of the above theory is to
collisions in which the initial and final states are char-
acterized by the polarization of the electron spin.
Assuming unpolarized targets, the initial density ma-
trix is

p;.(1)=-', (I.+ p) X[(2
' +1) 'I.], (3.1)

where p is the initial electron polarization and I, and
I„are the identities in the electron and nuclear spin
spaces. The length of p is restricted to 0 &p &1, a pure
state being characterized by p=1 and a completely
unpolarized state by p=0. The final density matrix
is easily obtained by substituting this expression into
Eq. (2.14), the result being

p-(1)= (e)-'(I.+ p')X[(2 +1) 'I-]. (3 2)

The cross section o.(0) is just the unpolarized cross sec-
tion given in Eq. (2.29). This expression has the usual
form of a density matrix describing electron polariza-
tion and, thus, the quantity p',

p= p)
IFd I'+3 IF.I'

(3.3)

is the 6nal electron polarization. The final polarization
is parallel to the initial polarization, and always smaller
in magnitude.

These expressions for the unpolarized differential cross
section also follow from the alternative expressions for
F given in Eqs. (2.5) and (2.17) and the simple relation
(o i o s)' =3—2 (o i os), i.e., for nonidentical atoms

~(~)= [4(»i+1)(»s+1)] ' Tr[IF~(i)) I'+3 IF (0) I']
= IF.(()) I +3IF.(e) I, (2.31)

and for identical atoms

~(e)= L4(»+1)'] ' »[G~(())G"(i))+3G.(d)("(8)]
= IF.(e) I'+3 IF*(())I'+ IF~(w —8) I'+3 IF*(~—» I'

+[(—)"+'/2i+ 1]2 Re[Fd*(0)F&' (7r ())—
+3F,*(ti)F.'(w —0)]. (2.32)

In the approximation that the interference term can
be neglected, e.g. , for large nuclear spin or for ampli-
tudes peaked in the forward direction, the cross section
in Eq. (2.32) reduces to a form appropriate to classical
scattering theory.

Possessing a complete solution of this problem, a
number of special cases can easily be studied. For ex-
ample, if the initial state is unpolarized (p=0), the
Anal state is also

o d (0) = o (n, n; 0),

and the cross section for a spin-Qip as'

(3.7a)

o.(i)) = o (n, n; t)),— (3.7b)

Eq. (3.6b) leads to the following formulas for these
cross sections,

- = IF.I'+ IF.I',
o,=2IF, I'.

(3.8a)

(3.8b)

These cross sections do not depend on the nuclear spin,
which seems natural, since they refer to experiments in
which only the electron spin is measured —and also
since the potential [Eq. (2.1)] arises from electron ex-
change. It can also be checked [using Eq. (2.13)]that,
if measurements are also made on the nuclear spin, the
cross section vanishes unless the initial and 6nal nuclear-
spin states are the same. This justifies the use of the
name, "electron spin exchange, " for the kind of cross
section under discussion.

The identity of the atoms may be accounted for by
using Eq. (2.21) and averaging and summing over the
unmeasured nuclear spins. The cross section for scatter-
ing from a state in which the electron has the polariza-

"This is a factor of two smaller than the spin-Qip cross section
used by R. M. Mazo, J. Chem. Phys. 34, 169 (1939), who has
analyzed linewidths in electron paramagnetic resonance in gaseous
hydrogen. The cross sections used here are the same as introduced
by Purcell and Field (Ref. 2) and by Dalgarno (Ref. 8).

-(1)= (i))(lI.)X[(2 +1) 'I.], (34)
and the trace of p„(1) in this case is the unpolarized
cross section o (0). More generally, the cross section for
finding the scattered electron completely polarized in
the direction A is

o (p; A,8) =Tr[p„(1)-,'(I.+e 8)XI.], (3.5)

the second factor being the projection operator for this
pure polarization state. Using Eq. (3.2), this is simply

(p;nP) = l(1+p'. ~).(e), (3.6a)

or, with Eq. (3.3),

(p;~,e)=-', (1+p a)IF.I+-(3—p n)IF,
I

. (3.6b)

Defining the cross section for no spin change as
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tion p to a state in which it is completely polarized in
the direction R is

a (p, 6; t))

= [8(2i+1)']—'{Tr[Gq(I,+eq p)Got (I,+eq i))]

of neglecting the interference terms in Eq. (3.11). As
already pointed out in Sec. IT, the unpolarized cross
section reduces to the classical form, but all of the
other quantities of physical interest here do not. For
example, the ratio of the polarizations tends in this
limit to

+2 Tr[G.a '(I +a~ p)G*'a~'(I.+~ &))) (3 9) p' IFa(0) I'—IF*(t))I'+ IF~'(~—()) I'—IF '(~—0) I'
i=1

P IF~(()) I'+3IF*(e)I'+ IF.(~—t)) I'+3IF.(~—e) I'

There are many kinds of experiments in which elec-
tron spin exchange manifests itself through changes in
the polarization of the atomic hyperfine states. One
example is relaxation studies in paramagnetic gases
using radio-frequency spectroscopy and various po-
larization techniques, e.g., optical pumping. The sta-
tistical analysis necessary for understanding such ex-
periments is not developed in this paper, however, but
only the properties of some of the two-body scattering
events occurring in these gases. The results are, there-
fore, more directly applicable to scattering experiments
with crossed polarized atomic beams. The cross sections
for the various polarization changes observable in
atomic-beam experiments will now be calculated with
the density-matrix techniques developed in previous
sections.

Restricting the analyses of this section to nonidentical
atoms, the cross section for a change in hyperhne state
from fm to f'm', on scattering from unpolarized atoms,
is [using Eq. (2.13)]

a(p 8 ())= {—,'(1+p 8) Tr[GgGgt]
4 (2i+1)'

+-,'(3—p ri) Tr[G~G.t]) . (3.10)

This result is the generalization of Eq. (3.6b) for identi-
cal atoms. In fact, comparison with this equation indi-
cates that all of the results of the preceding analysis
can be extended to this case, if the following replace-
ments are made:

4(2i+1)'

( )2i+1

+ 2 Re(Fq*(0)Fq'(n. —|))], (3.11a)
2i+ 1

This expression reduces considerably because the terms
inear in the Pauli operators have zero trace and be- IV. CROSS SECTIONS FOR CHANGES IN THE TOTAL

ANGULAR-MOMENTUM QUANTUM NUMBERS

operators:

Tr[G.G.t]
4(2i+1)' o (fm, f'm'; 8)

=
I
Fgl' tr[P(fm)P(f'm')]

( )2 i+1

+ 2 Re[F,*(e)F,'(7r —e)]. (3.11b)
2i+1

This transcription may be made to obtain the effective
density matrix from Eq. (3.2), the polarization after
scattering from Eq. (3.3), the cross section for a pure
polarization state from Eq. (3.6a), and the cross sec-
tions for no spin change and for a spin fiip from Eqs.
(3.8a) and (3.8b), respectively. For example, o, is
twice the expression given in Eq. (3.11b), and a~ is
the sum of Eqs. (3.11a) and (3.11b). The polarization
after scattering p' is parallel to the initial polarization
p and the ratio of their magnitudes is the difference of
Eq. (3.11b) and (3.11a) divided by Eq. (2.32) for the
unpolarized scattering cross section. All of these quan-
tities diGer in magnitude from the values appropriate
to nonidentical atoms. They will also now depend ex-
plicitly on the nuclear spin through the factor (2i+1) '
X (—)"+' which is associa, ted with the "exchange
amplitudes" Ii~' and Ii '. The diHerences with the
results for Donidt:ntic@l atoms persist even in tht: limit

+ IF*I'2 «[a'P(fm)a'P(f'm')] (41)

The operators P(fm) are the projection operators for
the hyper6ne states of the incident atom. The hrst
term vanishes unless the initial and final states are the
same. The second term, which expresses the effect of
spin-exchange scattering on the hyper6ne states, is
determined by the quantity""

A(fm, f'm')= Q tr[a,P(f—m)o,P(f'm')]. (4.2)

By evaluating the trace in the fm representation, this
expression may be rewritten as

A(fm, f'm') =g
I
(f''m'I o., l fm) I',

"The dependence of a(fm, f'm', S) in Eq. (4.1) and A(fm, f'm')
in Eq. (4.2) on the magnitudei& of the nuclear spiri of the incident
atom (and on the electron spin=~) has been suppressed here.
This is aho true of various other quantities derived from these.
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and by transforming to the spherical basis o„(tt=1, and IF&I, ot the two basic scattering amplitudes. The
0 —1) " essential step was the application of the %igner-

1 Eckart theorem to the quantity h(ftrt, f'nt') of Eq. (4.2).
os= 0'g oyy= W (0'g&$0'o) ) From this result, the "selection rules" for the process

W2 can also be ascertained:
it becomes

(4.7a)

(4.7b)

This is a form suitable for applying the Wigner-Eckart
theorem"

(f'trt'I o„l frrt) = (frrtltt
I

f'trt') (-', if'Ilo II-', if),
where the first factor is the usual Clebsch-Gordan co-
e%cient, and the second is the reduced matrix element
of the Pauli spin operator. Thus, 6 of Eq. (4.2) may be
written as

which follow from the fact that the process occurs by a
unit change in the projection of the electron spin.

The factor A(f,f '), which is essentially the square of
a reduced matrix element, may be evaluated directly
from an alternative form of its definition in Eq. (4.4):

(4.g)

Q(f f ) —
I ( 'f

II II f) I

2 Q (ftrtltt
I f nt )2 (4 3) The oPerator P(f) is the sum of the 2f+ 1 Projection

operators P(fm),

Summing over magnetic quantum numbers and using
the orthogonality of the Clebsch-Gordan coefFicients
lead to

P(f)= P P(fm),
m= 7

(4 9)

and the possibility of eliminating the reduced matrix
element in Eq. (4.3), i.e., P(i+-', )= (2t'+1)—'(s+1+tr ~ I),

P(t' ', )= (2t'+—1-)
—'(i—e I),

(4.10a)

(4.10b)A(fm, f'm') = sA(f f') P(fntf' nt'I1 —tt—)'. (4.5)

or, in one equation,

At the same time, the spin-exchange cross section
becomes

i.e., it is a projection operator for any state with total
angular momentum f. For the two hyperfine states
f=i+ '„ these o-perators Lwhich are the obvious gen-

(4.4) eralizations of the familiar singlet and triplet projection
operators of Eq. (2.4)] may be written as

o(fnt, f'rtt';(l)=5rt 8 IFel'+-', 6(f f')

&&+ {fntf —nt'll —
t )' IF* '.

Substituting these operators into Eq. (4.8) for &(f, f')
and dropping the terms linear in the Pauli operators
(which have zero trace), leads to

1 s

This expression fulfills one of the important aims of '
(2s 1)s, ,

this paper, which is to relate the L2(2i+1)] spin-
exchange cross sections to the absolute values, IF, I

+ (—)t'-r'o;tr Io.,~ I]. (4.12)

TABLE I. Values of h(f, f') from Kq. (4.13).

The traces can easily be evaluated and the result is

D(f,f')= (2/2i+1)
XI.3(f+s)(f'+s) —( )' 't(&—+1)] (413)

(2i+2) (2i+3}

(2i+1)

si(i+1)

2i+1

Si(i+1}

2i+1

(2e—1) (2e)

(2i+1)

The spin-exchange cross section is now finally given by

a(fttt, f'nt') =8l rb„ IFel'

+ . I:3(f+s)(f'+s)—(—)' 's(s+1)]
2s+1

XP (fntf '—nt'
I
1—tt)'

I
F.

I

'. (4.14)
"M. E. Rose, Elementary Theory of Angular Momentum Qohn

Wiley % Sons, Inc. , New York, 1950},p. 64.
"M. E. Rose, I"lementary Theory of Angular Momentum Qohn

Wiley 8c Sons, Inc. , New York, 1950), p. 85.
For convenience, the coefficients A(ff') are tabulated
in Table I.
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One of the 6rst uses of this formula is to check the
results of the preceding section on electron spin ex-
change by simply setting the nuclear spin to zero in
Eq. (4.14): f=1

m=1
f—1)
m=o

f=o,
m=o

TmLE II. The sixteen spin-exchange cross sections
for nuclear spin i= 2.

a(-', m, —'2m')=5 „IFsls
+2(-,'ms —m'l1m —m')'~F, l' (4.15)

The square of the Clebsch-Gordan coeKcient is —,
' for

es'=m, and 1 for m'= —m, and thus

f'=1,
f'=1,
ff
f'=0,

m'=1
m'=o
m'= —1
m'=0

I
pd I'+ IF* I' IF*I' o IF*I'

o IF*i' IF*I'+ IF I'
IP fs IP Is IP ls IPsls

and
a(2m 2m)= IF sl'+ IF.I'=«

o (sm, 2
—m) = 2

l
F,

l

2 =a» (4.16b) P a(fm, f'm') =o (f,f'), (4.20a)

actually suKcient to give the average cross section4.16a

in agreement with Eqs. (3.8a) and (3.8b).
The situation for nuclear spin i = -, is not much more

complicated, and the sixteen spin-exchange cross sec-
tions are listed in Table II. The cross section for an
actual change in angular momentum state is lF, l' in
this case, in contrast to 2

l
F,

l

' for nuclear spin zero.
The sum of the entries in any row or in any column of
Table II is equal to the unpolarized cross section of Eq.
(2.31). Both of these results can be understood as
special cases of some general properties of the spin-
exchange cross sections which will now be proved.

It is useful to define the average cross section

(4.17)

lima(f, f)=as,

limo (f,f'& f)=o, .
t, ~00

(4.19a)

(4.19b)

Summing the general spin-exchange cross section in
Eq. (4.6) over just one magnetic quantum number is

which, from Eq. (4.6), is equal to

a(f f') =~f f'IF.I'+(2f+1) '~(f j') IF.I' (4 18)

The quantity A(f,f') is given by Eq. (4.13) and also in
Table I; the four values of o(f,f') are also listed for
convenience in Table III. In the limit of very large
nuclear spin, the average cross sections approach the
ones for i =0 in Eq. (4.16) and also the cross sections
for "pure electron spin exchange" in Eqs. (3.8a) and
(3.8b):

2f+1
Q o(fm, f. 'm') = o (f,f ') .
m 2f '+1 (4.20b)

From Table III or from Eq. (4.18), it can be shown that
the average cross section satisfies certain sum rules:

2 a(f f)=2«,
f

P a(f,f')=o,

Z a(f,f'&f) =2a.
f

2f+1
(f,f')=,

f,f' 2(2i+1)

(4.21a)

(4.21b)

(4.21c)

(4.21d)

where r, r~, and 0, are the cross sections previously
introduced in Eq. (2.31) and Eqs. (3.8a) and (3.8b).

The sum of the spin-exchange cross section o (fm, f 'm')

over all possible final states can easily be obtained from
Eqs. (4.20a) and (4.21b):

P o(fm f'm')=o (4.22)

As a further application of Eq. (4.20a) and Table III,
the cross section for a change in spin state, such that
the initial and final values of the total spin are dif-
ferent, is

1
Q o(fm, j'Wfm')

2f'&+ 1
m'

2

(f, f'&f) = IF.l'. (4.23)
2f'+1 2i+1

TABLE III. The average cross section o (f,f') given by Eqs. (4.17) and (4.18).

ff '+1

f=i+-',

(I p~ I'+ IP* I')+
2i+1

4i

2i+1

f=i—l

4(i+1)

2i+1

2
( IF~ I'+ I p* I') ———

I
F*I'

2i+1
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This conforms to the results previously stated for
nuclear spin zero and one half. Combining Eqs. (4.23)
and (4.22), the probability for a change to a spin state
with a different value of the total (hyperfine) angular
momentum f is

one in the third line can also be evaluated with the
results of the preceding section, and so only the term
proportional to IE.I requires detailed consideration
here. In particular, Eq. (5.4) is now written as"

a(fm&f ™)~ff'~- I ~al'+ 3~(2fr2f')
~P) =

2'+1 IP.I'+3IP. I~
(4.24)

x[1~ I'+-:IEal'j p(fmf' —m'l1 —~)2

Q =2(I +~i ~2), (5.1)

~i and ~2 being the Pauli operators for the proton spins.
The traceless operator Q', defined in Eq. (2.23), is now

(5 2)

The partial trace of Q„' in the spin space of either
proton is also zero. The appropriate form of the spin-
exchange cross section of Eq. (2.21) is

a (fm, f'm')

=-', Tr[(Ja+Q„'Ed)P, (fm) (Ja*+Q.'Ed*)P, (f'm'))

+-', P Tr[(Z,+Q„'E,) „P,(fm)

X (J.*+Q 'E.*)a.i;Pi(f'm')], (5 3)

V. HYDROGEN-HYDROGEN SCATTERING

The special problem of spin-exchange scattering be-
tween hydrogen atoms will now be treated, taking full
account of the identity of the atoms. This aspect of
the problem can be studied in great detail for this case
because of the simple form of the nuclear spin-exchange
operator,

+ IE.I'-', I (-', fm, —,'f'm'), (5.5)

The basic idea in the analysis is to again apply the
signer-Kckart theorem to obtain the dependence of F
on its magnetic quantum numbers. For this purpose,
the spherical basis is used, but now the tensor which
will be of interest o„r„(p, v=1, 0, —1) is reducible into
the various tensor products (oar)r, , which are irre-
ducible spherical tensors of rank L=O, 1, and 2:

avr = 2 (11»IL3I)(aar)1,~. (5 &)

Transforming I' from Eq. (5.6) to the spherical basis

r (-,' fm, -',f 'm') = P I (f'm'
I
a;r;

I fm) I

'
i, j=l

= 2 I(f'm'Ia. r. lfm)l'
p& v=—i

where F is the generalization of the 6 introduced in
Eq. (4.2):

I'(-,' fm, -',f 'm') =g tr[r,a;P (fm) .r;a;P(f'm') ). (5.6)

using the notation of Eq. (2.25) for the scattering ampli-
tudes. The special properties of the operator Q„' cited and using Eq. (5.7) leads to the reduced form
above lead to the vanishing of all traces linear in Q„',
and thus to the expression I'(-,'fm;,'f'm')= g I

(f'm'I ( g )r,~l fm)l'. (5.8)
LM

a(fm, f'm')=tr[l J& 'IP(f m) P(f' m)

+ I~.I2 P.,P(jm)a, P(j m)~

+ I
«I'l 2 tr[r'P(fm) r'P(f'm') 3

(5.4)

+
I
E,

I
'~ P P tr [r;o;P(fm) r,a,P(f 'm') 5

The first two lines are just the cross section analyzed
in Sec. IV for nonidentical atoms with Ii~ and Ii, re-
placed by J~ and J . Of the two new kinds of terms, the

TABLE IV. The four values of F(~f,—,'f') which enter into the spin-
exchange cross section for two hydrogen atoms in Eq. (5.5).

21
6

Application of the Wigner-Eckart theorem now leads to

I'(-',fm, -,'f 'rl')

=2
I (f'll(ar) ~llf) I'Z(fmL~ If'm')' (5 9)

The reduced matrix element of (a gr)r, can be related
to those of a and r (in the representations of their own
eigenvectors) with the 9-j or X coefficient, and the
result is

(2lf'll(ar) ~llllf)
= [36(2L+1)(2f+1)j'~'X(—'-'f'

I
x-,'f

I
11L). (5.10)

Recalling how F enters into the cross section of Eq.
(5.5), the three tensors (a gr)r, (L=0, 1, 2) each con-
tribute to the scattering in a characteristic way. The
zero rank tensor adds to the nonspin Qip scattering

'8 The value of the nuclear spin i=-,'has been inserted in the
quantities 6 and F to distinguish the results of this section from
the previous on,e.
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(f'= f, m'=nz), since it cannot lead to any angular-
momentum change at all. The 6rst rank tensor gives a
contribution similar to the spin-Hip scattering for non-
identical atoms discussed in the previous section. In
this case, however, the transition f~ f'= f is for
bidden, since the corresponding reduced matrix element
vanishes. '9 The second-rank tensor contributes on1y to

transitions in which f= 1 ~ f'=1.The transition f=1,
m=1-+ f'=1, m'= —1 is allowed; it occurs by the
exchange of an entire atom on collision with another
of the opposite polarization.

Using explicit values for the X coeScients, the spin-
exchange cross sections for hydrogen atoms scattered
from unpolarized hydrogen atoms is

o(fes, f'm') =Sff'e D Jgl'+s (2f+1) 'I E,I'g

+('s~(lf, lf')CI~. I'+lIIt~I'j+leif fi, Il-t*l'& Z(f~f' ~'I1—~)'

+op I 8y t
I
E, I

' Q (1m1—tn'
I
2—M)s. (5.11)

In treating the average cross section

rr (f,f ') = P rr (fm, f'm'),
2f+1 m, m

where 6 (-',f;',f ') is given by Eq. (4.13) and I'(s f;',f') by
Eq. (5.14).This cross section is summarized in Table V.

The various amplitudes which occur in this analysis
are given by Eqs. (2.26) and (2.27) for s=

the quantity

I'(—f,—f')=P trio;r P(f)a.,r;P(f') j (5.12a)
z, (e)=p, (e)+ ', p, '(~ e-), —

z.(e) =P,'(~—e),

s.(e)=p, (e)+,'p. '(~ e),-—
E,(e) =F,'(x e), -

(5.17a)

(5.17b)

(5.17c)

(5.17d)
will prove useful. Inserting the appropriate operators
from Eq. (4.11) with i=-,',

P(f) =-'I:2f+1—(—)'~ ~l (5.13)

the trace in Eq. (5.12a) is easily evaluated to yield

r(-,'f, -,'f')=-;L3(2f+1)(2f'+1)+(—)'+'), (5.14)

and the four values of I' are listed for convenience in
Table IV. These values are in agreement with those
obtained from Eq. (5.12b) and Eq. (5.9),

which in turn are expressible in terms of fs and ft.
Unlike the situation for nonidentical atoms, interference
terms now occur, but always between amplitudes re-
ferring to difierent scattering angles e and (x —e)—as is
characteristic for identical systems.

It is interesting to compare the average cross sec-
tions with those for "electron spin exchange" discussed
in Sec. III. From Eqs. (3.11)and (5.17), it is found that

«= (I~.l'+ I
Jsl')+-:(l&dl'+ I& I') (5 Iga)

I'(lf f')=(2f'+1) Zl(llf'll( ) II-'lf)I' (5 15)
o*=2(l ~.i'+ l f

&*I') (5.18b)

When the reduced matrix elements are evaluated from
Eq. (5.10) with appropriate values for the X coeflicients,
the average cross section is now

The sum of these is the unpolarized cross section of
Eq. (2.32), i.e.,

~(f f') =e» I ~dl'+(2f+I) 'f) (-'f -'f')I
I ~.l'+-'I &~I'3

+ (2f+ 1) 'I'(-', f,-', f') 4 I
E

I

' (5.16) +-,'(I Eg I'+3
I
E.l') . (5.19)

TanLE V. The average spin-exchange cross sections for two hydrogen atoms from Eq. (5.16).

1

0
I I

~~ I'+2
I ~*I'+411t~ I'+ (714) lit* I'j

L I
~*I'+ l I &d

I
s+4 lit* I'3

I:3(l~*l'+rl«l'+xi&*I') j
I I Jsl'+%I&*I'j

"It may also be noted that the "exchange direct amplitude" E'q(8) F~'(m- —8) enters into the spin-Rip part of the cross section,
which indicates that the subscript 4 and the name direct amplitude are not so appropriate for identical atoms.
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Comparing these expression. s with Table V, it is
found that two of the "sum rules" valid for non-
identical atoms, Eqs. (4.21a) and (4.21c), do not

hold in this case. All the other relations, Eqs.
(4.20a), (4.20b), (4.21b), (4.21d), and (4.22), still are
valid.
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Exchange collisions between ground-state hydrogen atoms are considered. The density matrix after
collision is calculated for pairs of atoms which initially had the same density matrix. The result is applied
to the hydrogen maser with the assumption that only exchange collisions and the escape of atoms from the
storage bulb inQuence the linewidth for the field-independent hyperfine transition. Under normal operating
conditions a frequency shift of roughly 5% of the exchange collision contribution to the linewidth is
predicted.

1. INTRODUCTION

~ 'HE eGect of exchange collisions between ground-
state hydrogen atoms has been treated by a

number of authors. ' ' In particular, Wittke and Dicke
considered a case where departures from thermal equi-
librium were small and the only nonzero ofI-diagonal
elements of the density matrix for the ground-state
sublevels were those corresponding to the magnetic
Geld-independent (F=1, Mt;=0) —+ (8=0, Mt;=0)
component of the hyperfine transition. The nuclear
spins and all magnetic interaction energies can be
neglected during collisions and the electron wave
functions for the two colliding atoms can be combined
to form triplet and singlet states. The eGect of a
collision is to multiply the triplet and singlet parts of
the wave function by e '~~ and e '~8 respectively.
hr is the integral of (Er/Pt) over the time of the
collision, where Ep is the triplet state hydrogen-
hydrogen interaction energy, and Az is defined similarly.
Wittke and Dicke made the approximation that only
"strong" collisions were important, where "strong"
collisions are those in which the relative phase shift
h=Az —68 is large enough so that the relative phase
after the collision can be considered random.

In the present paper the approximations of strong
collisions and of small departures from equilibrium are
removed. The e6ect on the density matrix of a single
hydrogen-hydrogen collision for each atom in the

sample is given in Sec. 2. The resulting effect on
operation of the hydrogen maser~ is discussed in Sec. 3.
The expected frequency shift is estimated in Sec. 4
using straight-line paths with the triplet and singlet
interaction potentials of Dalgarno and Lynn. ' A shift
in the held-independent hyperfine transition of up to
5% of the exchange collision contribution to the
linewidth is predicted.

11 10 1, —1 00
7

p= 1, 0
17 1

0, 0

The 16)&16 density matrix o.' for a pair of colliding
atoms just before collision in the F1Mp,F2M~, repre-
sentation is the direct product of p' with itself. o-' is
transformed by a unitary transformation I' to a repre-
sentation SM~IMI where the two electron spins and

2. EFFECT OF A SINGLE COLLISION WITH
ARBITRARY PHASE SHIFT

The initial 4X4 density matrix' p' for the magnetic
sublevels of ground-state hydrogen atoms is written in
the F, Mp representation:
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