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Mc/sec is used in Eq. (11), it is found that

with an uncertainty of about 1% When the theoretical
value u„t,(3d'4s rS~) = —144 Mc/sec is used, the same
equation gives Hs +1.8——X10' G.

Freeman and Watson have followed a more detailed
approach for the theoretical evaluation of the internal
field. ' They have made approximate spin-polarized
Hartree-Fock calculations in which the core electrons
are allowed a polarization due to the unpaired 4s elec-
tron as well as to the unpaired 3d electrons. Their
result for the 3d'4s 753 configuration gives —0.65)& 10' 6
from the core polarization and +1.15)&10sG from the
4s electron. The internal field is thus calculated to be
+0.50 && 10' G, a value somewhat closer to the measured
value than the simpler estimate given above. Freeman
and Watson emphasize that their result for the (pres-

' A. J. Freeman and R. E. Watson (private communication).

ent) case of two unfilled shells is especially sensitive to
several factors" which occur in the calculation.

Although the data suggest that b may be exactly 0,
this value is entirely consistent with the data and with
what would be expected for a (d's) state.
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INTRODUCTION

CONSIDER an atom in an external field of given~ frequency to and of wavelength larger than atomic
dimensions. The response of the atom to the field is

discussed most conveniently in terms of the properties
of its differential oscillator-strength distribution g(co).
This function is related directly to the photoabsorption
cross section of the atom, i.e., the photoextinction
coefficient per atom,

with 5 Ry=13.6 eV. Of recent, the need for compre-
hensive information about the properties of g(co) in
difterent frequency ranges for atoms throughout the
periodic system has become acute in many fields, and
has pointed to the limited description current atomic
theory can aA'ord of the response of an atom to an arbi-
trary external field.

The function g(co) may be said to comprise all the
fundamental information on the quantum dynamics
of atoms. For a cursory survey of the dependence of
g(co) on frequency and atomic number 2', it is convenient
to coosider three frequency ranges. In the low-frequency
range (1),where 0& (co/Ry) &1,g(co) essentially consists
of the sharp lines familiar from optical spectroscopy,
separated by frequency ranges of low absorption; in
this range, g(co) changes irregularly with Z and reflects
in its details the atomic binding. In the high-frequency
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range (3), where (ro/Ry)&ZZ, g(ro) exhibits character-
istic x-ray absorption edges; beyond the E-shell ab-
sorption edge, it tends monotonically to zero as
(ro/Ry) ", where zz (2—4). In. the intermediate fre-

quency range (2), where 1& (ro/Ry) &Z', the contribu-
tions from the intermediate shells of the atom are ex-

pected to overlap strongly such that, on the whole,

g(ro) should depend smoothly on ro. While g(zo) has been
studied extensively in the frequency ranges (1) and

(3), very little is known about the properties of g(ro) in

range (2).
Our study is intended to contribute to the theory of

g(co) with particular emphasis on its properties in the
intermediate frequency range 1& (ro/Ry) &Z'. Section
1 summarizes the formalism of response functions and
introduces an approximate integral equation for the
propagator function of excitations in atoms. Contact is
made with previous work in Sec. 2 by deriving from
this integral equation the response function of atoms in
the local electron-gas approximation. A Fredholm per-
turbation expansion yields new approximate solutions,
in Sec. 3, by retaining coherence effects between all
single-particle excitations of the atom. In the framework
of the schematic Hartree model, these solutions give
indications for atomic resonances which are basically
collective in origin. In Sec. 4, the theory is restated in
terms of the statistical model of the atom, with similar
results. An illustrative example in the statistical ap-
proximation, given in Sec. 5, bears on the conditions
for such collective resonances to occur and sketches
some of their features.

1. FORMAL STATEMENT OF PROBLEM

W=2zr P 8(ro —E„) (zz~ d'xp(x) exp(zq x) ~0), (2)

where
~

0) denotes the ground state of the system, and

~
zz), E„denote its excited states and the corresponding

excitation energies.
The transition rate can be related to the autocorrela-

tion function of the density fluctuations in the usual
manner,

R(q, ro) =— dte"~' d'xd'x'

Xexp( —iq x)
~ (0~ TLp(x t)p(x', 0)7~0)

~
exp(iq x'), (3)

where

p (x t) e~lr tp (x)e—iH t

II being the Hamiltonian of the system in the absence
of an external field. T denotes the Wick time-ordering
symbol. On introducing the eigenstates of H, Eq. (3)
can be written for co40 as

R(q, ro) = lim P—
6~0

E

(zz~ d'xp(x) exp(iq x) ~0)

(o—E~+ze

where q is the wave vector, and p(x) the electron density
of the atom at the point x. All quantities are considered
given in atomic units. In the following, we set Vp=1.
The total transition rate of the atom from the ground
state in Born approximation is given by

We wish to calculate the rate of excitation of an atom
from its ground state in an external field sufficiently
weak for the Born approximation to be valid. The field

is taken to be scalar, of a definite frequency and of a
wavelength large compared to the dimensions of the
atom. We describe its interaction with the atom by the
density operator p(x)=gt(x)f(x) in the notation of
second quantization. For a study of the absorption of

light we should consider the interaction with a trans-
verse field, of course, but in the long-wavelength limit,
the responses of the atom to a transverse field and to a
longitudinal field are connected in a simple way; the
scalar field is chosen merely for mathematical conveni-
ence. Our presentation follows the lines of linear re-

sponse theory as now widely used in many-particle
physics, and we refer to the current literature for de-
tailed expositions. '

Let the interaction be of the form

V= Vs d x exp[i(q x—rot)]p(x)+c.c. ,

(zz
~

d'x exp( —zq x)p(x) j 0)

IV= —2 ImR(q ro) .

Because of the sum rule

ImR(q, ) droroczorqsX, (6)

where cV is the number of electrons in the atom, we
can introduce a differential oscillator-strength distribu-
tion g(&u), defined as

g (ro) = —(2(o/zrq') ImR (q,ro),

and, by Fq. (6), normalized such that

Ql+E~ —z e

The poles of R(q, ro) give the excitation energies of the
system, while the transition rate can be expressed as

i Cf., e g , D. Pines, .T.he Many Body Problem (W. A.-Benjamin,
New York, 1961);A. J. Glick. Ann. Phys. (N. Y.) 17, 61 (1962).

g(co)dho=zU.
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The study of the function g(o&) under various as-
sumptions about the dynamic response of the atom is
the primary concern of this paper.

The formulation of our problem, Eq. (7), in terms of
the complex response function, Eq. (4) suggests a study
of the propagator function

C „(x) denotes the "wave function" of the particle-hole
pair, i.e., the product N;~(x)N;(x) of the corresponding
one-electron wave functions associated with the Hartree-
Fock statesi and j.

Next, we introduce the approximate integral equation
which forms the basis for our discussion

Q(x,x',(o) = —i dte'"'(Ol T(p(x, t)p(x', 0)) IO) (9) Q(x,x', &o) =Qo(x,x',o&)+ Qo(x, x",co)
x —x

from which the function R(q,~) is to be calculated ac-
cording to

R(q, co) = d'uPx' expl —iq (x—x')]Q(x,x',~) . (10)

The further formal development along these lines
would entail a study of the equation satisfied by the
two-particle Green's function, as discussed frequently
in current literature. Since we aim at a discussion of the
properties of the differential oscillator-strength distribu-
tion g(cv) under simplifying assumptions, we shall not
pursue here these general questions, but rather turn
to a description of the approximations to be considered
as starting points for our further considerations. %e
base our development on an approximate description
of the atom corresponding closely, in physical terms, to
the linearized time-dependent Hartree equations, in
which the shifts of the energy levels due to many-
particle eGects are accounted for by a time-dependent
Hartree Geld. Instead of working directly with the time-
dependent Hartree equations, however, we start out
from an equivalent integral equation for the propagator
function Q(x,x',cv).

As our zeroth-order approximation, we employ the
conventional Hartree-Fock description and assume the
single-particle energies and the one-electron wave func-
tions N;(x) to be known both for the occupied and the
virtual unoccupied states. In the ground state, the E
lowest levels are taken to be occupied, and for simplicity
we assume that the ground state is nondegenerate.
Elementary excitations in the system imply the raising
of an electron from an occupied to an unoccupied level,
i.e., particle-hole excitations. Such excitations couple
to each other through the Coulomb interaction. It is
our task, then, to find at least approximately the result-
ing new states of the atom, which manifest themselves
as resonances of Q(x,x',co).

First, we introduce the propagator function Qo(x,x',cu)

corresponding to the elementary excitations without
interaction. We obtain Q0 with the use of Eqs. (4) and
(9) by replacing IO) and In) by the corresponding
Hartree-Fock states, and E„by the energies of the cor-
responding particle-hole excitation energies, to be de-
noted by ~,

XQ(x"',x',&o)d'x"d'x"'. (12)

In the language of many-particle perturbation theory,
the approximation inherent in our basic Eq. (12) cor-
responds to neglecting all but the so-called "bubble"
diagrams describing elementary particle-hole excita-
tions, with the obvious difference that, in the present
context, the elementary excitations refer to the Hartree-
Fock states of the atom rather than to the plane-wave
states of extended systems.

It is evident from the structure of Eq. (12) that ex-
citations of diferent synnnetry will not mix; one has
to couple the particle-hole excitations in Qo(x,x',co) to
the appropriate quantum numbers before attempting
to solve the equation. For our discussion, only the case
of dipolar excitations is of interest.

Before proceeding further, we digress brieQy to estab-
lish contact with the theory of the extended uniform
electron gas in the high-density limit, and quote its
results for reference in our subsequent discussions. In-
serting the free-electron energies and wave functions in
Eq. (11),we obtain

Qp(x, x', a)) =
(2s.)'

where

d'q expl iq(x —x')]Qo(q, &v), (13)

Qo(q, ~)=
(2m)'

d'p~ (I pl —p )& (lp+-ql —p )

X([ca—(2q'+p q)+ie] '

—I:~+(2q'+p. q) —i~] '}. (13a)

Q(x,x', (o) =
(2s-)'

d'q expLiq(x —x')]Q(q, ~) (14)

and inserting Eqs. (13) and (14), Eq. (12) has the well-
known solution

» Eqs. (13), (13a), q denotes the momentum difference
of the particle-hole excitation, y the momentum of the
hole state, p p the Fermi momentum, and

~,=l(1~*iI ~I).
On writing in analogy to Eq. (13)

C „(x)C„*(x') C„*(x)C.(x')
Q0(x,x',~) = hm Z

0)—(d +16 4)+(d ZE

. (11)
Qo(q, ~)

q, M

1—(4n/q') Qp(q, a&)
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For later reference, we quote the solution in the limit
q-+ P,

Lindhard and Schar8,

g p
lim Q(q, cp) =

EV
—C00

(16) g(pp) = d'xp(x)5(p~ —rpp(x)),

where p is the density of the gas, and ppp
——(4prp)' ' the

classical plasma frequency.
From Eq. (15) follow all the dielectric properties of

the electron gas, as first derived by I.indhard. '

2. ATOMIC RESPONSE FUNCTION IN THE
ELECTRON-GAS APPROKIMATION

In this section we give a brief discussion of a simple
approximation to the function g(cp), which, although
neither new or revealing with regard to collective be-
havior, nevertheless is pertinent to our later discussions.
One of the simplest assumptions one can make about
the excitation spectrum in the framework of noninter-
acting particles is to associate with each point in the
atom a single frequency, which is a function only of the
local density. Such a model and its application to physi-
cal phenomena has been employed in particular by
I.indhard and Schar6, ' and we refer to their paper for a
detailed discussion. In the simplest version, one chooses
the frequency to be equal to just the classical plasma
frequency happ(x) = L4prp(x)]'». This choice of resonance
frequency is equivalent, of course, to assuming that the
local response to the 6eld is the same as that of a uniform
electron gas of a density equal to the local density.

It is a straightforward matter to rederive the expres-
sion for g (pp) in the form given by Lindhard and ScharB
by introducing the corresponding approximations in
solving the integral equation. The local density fiuctua-
tions at a wave vector q and frequency co are given by
Eq. (10), for which we find the expression

Qo(q, ~)
R(q, pp) = d'x

1—(4pr/q') Qp(q, p~)

wllel'e Qp(q Cp), given by Eq. (13a), depends on the local
density through

p p(x) = L3~'p(x)]'».

Thus, the atom responds locally at the wave number
only of the external field. In the long-wavelength limit,
the response function reduces to

p()
lim R(pl pp)=q' dsx
@~0

pp cop (X)

We insert in Eq. (7) and obtain the expression of

~ J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 28, No. 8 (1954).' J. Lindhard and M. Schar8, Kgl. Danske Videnskab. Selskab,
Mat. Fys, Medd. 27, No. 15 (1953).

i.e., g(pp) is equal to the number of electrons with fre-
quencies in the range I &p, cp+dppj.

In this model, therefore, the function g(pp) maps the
charge distribution of the atom and, consequently, is
essentially a smooth function of frequency in the rele-
vant frequency range. It exhibits no collective reso-
nances reminiscent, say, of the giant resonances in
nuclei, because the model assumes ab initio that each
spherical shell of the atomic cloud responds separately.

One might suppose that these shortcomings can be
remedied to some extent by taking into account the
effects of the density gradient in a way similar to the
Weizsacker correction in the statistical Thomas-Fermi
model, while maintaining the idea of a local electron-gas
approximation. This amounts to replacing the step
functions in Eq. (13) by the quantum-mechanical
expressions

&&exp( —ip r)(xI 0+Lp,p' —ps'(x) j I x), (20)

where r= x—x', and R= (x+x')/2. This integral can be
solved by a formula due to Glauber' in an approxima-
tion which depends on the commutator of y,p and pp(x)
and all its powers; the 6nal result can be expressed in
terms of Airy integrals. For evaluating Qp(q, &p), it
turned out to be most convenient to work with the in-
tegral representation

1
(8~(s))=~ lim

2mi '"0

+" expLi(st —ts))
dt, (21)

' R. J. Glauber, Phys. Rev. 84, 395 (1951)

with s= (p' p&')/(pF I ~p~—
I )

However, the result in the long-wavelength limit re-
duces exactly to the result for a gas with no density
gradient. That is, corrections to Eq. (19) due to the den-
sity gradient will appear only if one takes into account
effects deriving from the actual wavelength of the ex-
ternal held. We shall not discuss such sects in this
work.

The conclusion of this brief discussion is that the local
approximation of the type incorporated in Eq. (19) can-
not exhibit possible collective resonances in the response
of atoms. We are led to expect that in order to 6nd such
resonances, approximations to the solution of the inte-
gral equation must be found which preserve the phase
relation between the response of different parts of the
atom.
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3. APPROXIMATE SOLUTION OF
INTEGRAL EQUATION

An exact solution of the integral equation is possible
only under very special assumptions about the matrix
elements of the interaction. In general, one has to resort
to approximation methods, chosen in such a manner,
however, that they in contrast to approximations as
the one discussed in Sec. 2, retain the salient features of
atomic dynamics which can cause new resonances in
the complex response function E(q,&u). For example,
the ordinary perturbation expansion of Eq. (12) repeats
to all orders just the resonances in Qp(x, x',or); therefore,
it is ruled out as an acceptable approximation method
since new possible resonances are coherence effects
arising from the interaction to all others.

We employ the Fredholm expansion, which constructs
the solution to the integral equation as the ratio of two
entire functions in the coupling constant. For the pres-
ent, let us consider the expansion of the solution of Eq.
(12) only to the lowest order terms in the interaction in
both numerator and denominator,

Q(x,x )pi) =Qp(x)x )pp)

d'yd'sgp(x, y, pp) Qp(x, x',or)

(22)

1— d'yd'sgp (y, x,pi)

states, the variation between matrix elements with
different particle states is governed predominantly
by the dipole matrix elements. For Eq. (24), the integral
equation (12) can be solved directly. We find in the
limit

~ q~
—+ 0 the expression

R (q,pi) = q' Q
GP —co~

f ' ( f
, (25)

GO
—

GO~

where f„=2&v D„' is the oscillator strength of the
particle-hole excitation e in atomic units. The sum-
mation includes, of course, an integration over the con-
tinuous part of the spectrum.

Equation (25) coincides with the result obtained from
the first-order Fredholm formula Eq. (22), which proves
it to be the exact solution of the integral equation for
the schematic model. As the higher order corrections to
Eq. (22) obviously also vanish for oscillations of the
uniform electron gas at a given wave number q, we
expect Eq. (22) to be useful for gaining some insight
into the collective behavior of atoms.

We calculate the differential oscillator-strength distri-
bution for the schematic model. On inserting Eq. (25)
in Eq. (7), one finds

Because of the reasons given in Sec. 1, it is understood
that Eq. (22) considers only the subset of Qp(x, x',o&)

corresponding to the symmetry type of the excitation.
The new resonances, shifted relative to those of Qp

by the Coulomb interaction, are the solutions of the
dispersion relation

(P X„'fJ'[Q,s —p~„')—')h(cv —0;) . (26)

I' denotes that the principal value shall be taken in
the continuous part of the spectrum. Equation (26)
shows absorption at frequencies 0,, which are solutions
of the dispersion equation

1= d'yd'sgp(y, z,p~) (23) (27)

The general nature of these results is best elucidated
in terms of the dipolar excitations of a model similar to
the so-called schematic model' in discussing the qualita-
tive features of giant resonances in nuclei. We choose
the quantization axis along the direction of the wave
vector of the external field and consider the excitations
corresponding to the quantum numbers I.= j., M=1,
S=O. We approximate the matrix elements of the
Coulomb interaction by the expression

U„, =X„)~„D
where D and D are the dipole matrix elements for the
particle-hole excitations n and m; ) „and X„,are coupling
parameters of dimension frequency which depend mainly
on the corresponding hole state, so that for given hole

& G. K. Brown, Lectures on 3lcny-Body Problems (NORDITA,
Copenhagen, 1961).

Equation (26) reduces to the function

g(~) =2 f-~(~—~-)

of the single-particle excitations if and only if all 0„—=co„,
which obtains for all X„~O.

Knowing the quantities &e„, f„and X„one can solve
for the resonance frequencies by numerical or graphical
methods. Here, we follow an earlier discussion' and
indicate only in a qualitative way the nature of the
solutions of Eq. (27) and the corresponding properties
of g(~) in three different situations.

(a) In a frequency range where the separation between
adjacent levels is small, the right-hand side of Eq. (27)
oscillates rapidly between minus and plus infinity when-
ever the frequency passes through the range between
neighboring levels, (&o; or„+i), i.e., a root 0 &v exists

' W. Brandt, Phys. Rev. Ill, 1042 (1958).
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between any two such adjacent levels. These states are
best characterized as slightly modified particle-hole
excitations with no bearing on collective phenomena,
because at such frequencies Eq. (26) reduces essentially
to a partial sum of the form

(28)

The effective oscillator strengths associated with these
states, 6, are in general very small.

(b) In a frequency range where the excitation energies
of the noninteracting particle-hole states are so widely
spaced that XPf~((~cu~+i2 —coP~, one root appears in the
range between co~ and co~& which is given approximately
by

(29)

trum at frequencies corresponding approximately to
the frequency ranges (1) and (3) referred to in the
Introduction.

(c) Consider now a situation where a gap exists be-
tween groups of discrete levels in the particle-hole
excitation spectrum, which is either empty, or contains
parts of the continuous spectrum of small total oscillator
strength. If, then, at frequencies slightly larger than
all the levels below the gap

one root can exist in the spectral range of the gap. For
a root sufFiciently far from the gap edges, the resonance
frequency is given b&»

QP = ((a,2).„+(XPf,),,

That is, the square of the resonance frequency appearing
between coP and &e~+,

' (co~+i&&u~) consists of a single-
particle component and a collective component. The
state may be considered more or less collective in nature,
depending on which component dominates. For a uni-
form electron gas in the long-wavelength limit, ~~=0
and XPf~=cog, i.e., the excitation in that case is entirely
collective. States of the kind described by Eq. (29)
contribute to g(&u) the partial sum

where to leading terms in the shift,

We introduce the following averages over the distribu-
tion of particle-hole excitations

If the second term in the brackets is small compared to
1, the states again may be considered to be slightly
modified single-particle states, as in range (a). Whenever
this term becomes & 1, the interaction causes a redistri-
bution of the single-particle spectrum proportional to
XPf~. However, there still exists a one-to-one relation
between Q~ and a&~, i.e., in range (b) as in (a), g(~) re-
tains the characteristics of single-particle spectra.

The particle-hole spectrum in atoms suggests that the
conditions for these types of solutions with modified
single-particle spectra in situations (a) and (b) may be
fulhlled best by the valence shells, where the levels
below the ionization edge are closely spaced, and by the
innermost shells, where the high-excitation energies to
unoccupied states make the single-particle contribution
to the dominating component. The modification of the
single-particle spectrum by the interaction in the sense
of Eq. (30) should be most pronounced for excitations
of the electrons just below the valence shells, where the
level spacing is sufFiciently large for the conditions of
range (b) to apply, but where the single-particle and
collective contributions are comparable. One may
reasonably suppose, therefore, that in general g(&u) will

have the properties of a modified single-particle spec-

where for large shifts X„' 0,2X„/co„'. By Eq. (26), states
of the type described by Eq. (31) contribute to g(&u)

the term

(33)

Equation (33) couples all single-particle states into new
resonances of the atom as a whole.

This situation is likely to correspond somewhat to
the giant resonances known to exist in nuclei. In atoms,
such contributions may come from groups of closely
spaced particle-hole excitations to particle states above
the ionization edge, acting coherently to give rise to
collective resonances. Resonance phenomena of this
sort lie in frequency range (2).

The effects of the resonance conditions on the damp-
ing of the resonance will not be discussed in the present
context.

The preceding remarks were intended only as a
qualitative orientation regarding the possible nature of
coherent modes in atoms. Work is in progress to explore
the relevance of this simple model for real atoms, which
will be reported separately. The results to be expected
from such an investigation will depend on details of
the properties of a specific atom. in question. It is of some
interest, therefore, to undertake a simplified treatment
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based on the statistical model of the atom which ex-
presses collective phenomena in atoms as smooth func-
tions of the atomic number Z.

4. ATOMIC RESPONSE PUNCTION IN THE
STATISTICAL APPROXIMATION

In rederiving the results of Sec. 3 for the statistical
model of the atom, we assume, as in Sec. 2, that the
energy spectrum of particle-hole excitations and the un-
perturbed propagator is locally the same as that of an
in6nite electron gas of density equal to the local density
p(x). However, we do not insist on local momentum
conservation, as in Sec. 2, which led to the result that
each spherical atomic shell responds only to the wave
number of the external 6eld. %e employ the Fredholm
expansion instead, whereby we retain in an approximate
manner the coherence between the response of diferent
parts of the atom, analogous to the response of the atom
as a whole as sketched in the preceding section for the
Hartree model.

The statistical model of the atom is justified, at least
formally, only for large Z. Our treatment makes use of

this by only retaining terms to leading order of Z in
each term of the expansion. Consistency with the choice
of the propagator of the infinite electron gas for the
unperturbed Qo(x,x',&o) requires that also the kernel
and the iterated kernels of the integral equation (12)
be those of the in6nite electron gas; i.e.,

E„(x,x', oo) = (2or)
—' d'q

&& exp[i'. (x—x') ][4orQo(q, o~)/q']",

(34)

With Kq. (34), an approximate solution of Eq. (12)
obtains from the Fredholm expansion by summing both
numerator and denominator and retaining the leading
terms in Z in each order of the interaction. To each order
in the interaction, the terms containing only E (x,x,oi)
are of higher order in Z than any of the products of
traces and kernels of lower order, and the latter are
neglected. One obtains

Q(x,x', &o) Qo(x, x',~o)+ d'y{P E„(x,y,o~) }Qo(y,x', &o) 1— iPx{P E„(x,x,oo)/n}

Qo(q, ~)4~Qo(q, ~)/q'
=Qo(x, x',oo)+[1+F(oi)j '(2or) d'q exp[oq (x—x')$, (35)

1—4s Qo(q, oo)/q'

where

F(o))= (2or)
—' PnPq in{1—4irQo(q, o~)/q'}, (36)

E(q,oo) = q'
p(x) F(oi)

CPX
~'-~o'(x) 1+F(~)

~o'(x) ~(x)
d'x . ('38)

4) (d —
Ggp X

As in Eq. (25), the first term in Eq. (38) is just the
response of the individual spherical atomic shells in the

with the notation 2 ln{G}= ln
~

GG*
~
+ln(G/G*); in the

imaginary part, only the principal values between —ix
and +i~ are retained. Inserting Eq. (35) in Eq. (10)
yields the response function

Qo(q, ~) F (~)
R(q,o~) = dos

1—4orQo(q, oo)/q' 1+F(o~)

Qo (q,oo)4orQo (q,co)/q'
X d'z . (37)

1—
4~rQo(q, oo)/q'

In the long-wavelength limit, ~q~~0, Eq. (37)
reduces to

electron-gas approximation as given in Eq. (18). The
second term arises from the modification due to the
response of the atom as a whole.

We recall that the derivation of Eq. (38) is based
exphcitly on the assumption that we are dealing with a
bounded system of a given number of electrons. It does
not seem obvious from Eq. (36) that F (co) should vanish
in the limit of an infinite system of constant number
density. However, one can demonstrate the proper
limiting behavior of F (o&) along the following lines. The
integrand in Eq. (36) depends on the electron density
through Qo(q, oo) and thus on r. For a spherically sym-
metric density distribution, we can integrate by parts
over the radial coordinate while keeping q Axed. This
leads to a new integrand containing the gradient of
the electron density as a factor. The integrated part
vanishes for a bounded system such as an atom, where
the density is finite at the origin and vanishes sufFiciently
rapidly at infinity. This result shows that F(oi) and,
hence, the atomic response as compared to that of the
uniform electron gas depends in an essential way on the
gradient of the electron density. If we let the density
gradient go to zero, F(oi) —+ 0, and we retrieve the re-
sponse function Kq. (17) in the uniform gas
approximation.

The difr'erential oscillation-strength distribution can
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now be derived according to Eq. (7).

g(~) =gt(~)+gs(~),
where

g$ (tp) = dsxp (x) Re/1 +F(pp (x))$ '8(cp —top (x)) (39a)

to be well-defined states of excitation. In this approxi-
mation, the first part of Eq. (39) becomes

gt(tp) = lsd(x)PL1+F(cp(x))] 'h(u) —top(x)). (43)

To calculate gs, we expand 1+F(o~) about the roots 0,
of Eq. (40), and take the imaginary parts,

~(x)~p'(x)
dsxp

QP —rdp'(x)

dF( ))—'

(39b) ~ dry' / o;
F()

1+F (tp)

ppp'(x)
-

p(x)
d'x — P

2'
g2= —Im

7r &u' —reps (x)

is the continuous distribution of the atom of Eq. (19),
modified by the interaction, while the second term

accounts for the atomic resonances. The appearance of
the denominator in Eq. (39a) suggests the possibility
for new resonances in the electron cloud of the atom.
For, if real roots exist of the eigenvalue equation

g(o~) shows at these resonance frequencies sharp absorp-
tion lines for ImF(o~) —+ 0, or correspondingly broader
peaks if ImF(&p) is finite.

Equations (39a) and (39b), as derived for the statisti-
cal model, appear to correspond loosely to the cases
(a,b) and to (c), respectively, in the schematic Hartree
model.

Work is in progress to calculate g(tp) for the statistical
Thomas-Fermi model of the atom under realistic as-
sumptions about the damping terms in F(~).In the next
section we discuss qualitatively the content of Eq. (39)
for a model suKciently simplified to give explicit results.

5. AN ILLUSTRATIVE EXAMPLE

For a first estimate of F(pp), Eq. (36), we note that
the real part of 47rgp(q, tp)/q' varies with the electron
density as p(x) or as p'is(x), depending on whether

~ q~
is small or large compared to pp/pr. However, the con-
tributions from small

~
q

~

should doininate over most of
the frequency range of interest. This agrees also with the
philosophy adopted in our Fredholm expansion, since
after forming the traces of the iterated kernels, the con-
tributions from small

~ q ~

are of higher order in Z than
those from large

~
q~. We neglect the finite imaginary

part of Qp which appears only for higher values of
~
q~.

For our calculation then, we use the approximation

If roots of Eq. (40) exist, the neglect of a finite imaginary
part of F(pp) in favor of the simple approximations Eqs.
(41) and (42) gives unphysically sharp resonance lines
in g~, of course, and leads to spurious negative contribu-
tions to g~ near such resonances. Nevertheless, a study
of Eqs. (43) and (44) suggests the type of interaction
effects one may expect to find by an exhaustive analysis
of Eq. (39) under physically more realistic assumptions.

For a statistical model of the atom, we turn to an
approximate description of the atomic structure due to
Bohr. ' We assign to the eth electron in an atom the
orbital radius a„and the orbital velocity v„given by

a.= v'/I,

vg=N/vq 5=1i 2i ''' Z.

The effective quantum number v increases from a value
close to 1 for the inner electrons to a broad maximum
very nearly equal to Z'~' for the intermediate atomic
shells, again to drop to values close to 1 for the outer
electrons. These three ranges of v correspond to the
three frequency ranges referred to in the Introduction,
since the frequencies cp(u ) are proportional to v„/a„.

4v.gp(q, co) 4'
lim —Qp(q, tp) =

q2 I al ~o q2

ppp'(x)
(41)

O. l

I

0,6 0.7 0.8 0,9

subject to the cutoff condition in momentum space

q (x) =n'"r, '"(x)Ps (x),
where n'~' is a constant of order T, and

r, (x)= (4s.p(x)/3) '"
For momenta larger than q, , the collective states will
decay rapidly into electron-hole pairs, and hence cease

Fzo. 1. F (cu)/s versus (co/ca.), Eq. (47), for the illustrative
statistical example.

7 N. Bohr, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd.
18, No. 8, 99 (1948); N. Bohr and J. Lindhard, r'bsd 28, No. 7, 9.
(1954).



For sufEciently large Z, the frequency range (2) domi-
nates, and to a good approximation one can set v~Z' '
throughout the atom. Equation (45) describes an atom
where &as'(x) =~ sx ', for x&1, where ~,=E,Z; &u, and
E, are cutoG constants corresponding to a cutoff radius
r, Z ' ', and x= (r/r, ). It is convenient to introduce
the abreviations y= (a&/&u, ), I';= (0,/te. ) and

j(y) =Z-'(u, g (co) .

For this model, we obtain from Eq. (36)

Fb)= I'(v), (47)

0.5

p

where «=—(3/4)' '(n/X, ) is a cutoff parameter of the
model of order unity. The function Y'(y) is shown in

Fig. 1. Equation (40) has no root for «(1.11, and two
roots for ~&1.11.

Equation (43) yields

grh) = (27'") '(1+«I'(7)) ' (48)

For K=O, we retrieve the unmodified continuous dif-
ferential oscillator-strength distribution of Eq. (19).
The interaction modifies this by the expression in the
brackets. As shown in Fig. 2, the curves of j1 shift to
higher frequencies with increasing ~, and develop a
peak. When ~&1.11, the curves have discontinuities
near the resonances, as indicated schematically for

~=1.45. Concurrently, a contribution appears from
Eq. (44),

g, (~)=Q(j',),s(v —r,) . (49)

Fn. 3. The atomic resonances and the partitioning of their
collective oscillator strengths, Eq. (49), of the illustrative statisti-
cal example, for diferent values of ft. The diagram shows only an
average behavior of the oscillator strength near ~~1.11 and

0.54, where the two roots merge {wavy line). The two points
(o) correspond to the case «=1. 54of Fig. 2.

The base plane in Fig. 3 contains the solution curve for
Eq. (40). The two roots move apart with increasing «,
and change their share in the nearly ~-independent
total atomic oscillator strength. The atomic modes ap-
pear in this model calculation as unphysically sharp
absorption lines because finite damping terms have been
neglected. Still, this example suggests that collective
atomic modes, where they exist, may well accrue a
signi6cant fraction of the total oscillator strength of
the atom.

0 O.l 0,2 0.5 0.4 0.5 0.6 0.7 0.8 0.9 l.0

Fro. 2. The oscillator-strength distribution g&, Eq. (48), of the
illustrative statistical example. For a&1.11, no collective atomic
modes exist. The areas under the curves g1 are normalized to unity.
For sc&1.11, g& breaks up over the frequency range of the atomic
modes, as indicated schematically for I(:=1.45 by the crosshatched
strip. The two points (o) mark the resonance frequencies for
sc = 1.45.
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