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The formula in question is

~'(L~' in l") = Ln(e —1)(4l+2 e) (—4l+2 I—1)—/2(4l) (4l 1)]0'—(E in l').

The proof makes use of probability matrices rather than of fractional parentage coefFicients.

I. INTRODUCTION

'HE mean interaction energy in an electronic con-
6guration l" is known to be related to the mean

interaction energy in the con6guration P by the simple
rule

(n
p(E in /") =! !ll,(E in /s),

2)

II. PROBABILITY MATRICES

I.et P(/"ri/" "rs!/"r) denote the probability that,
when an n-electron system is in the state /"F, a given
nz-electron subsystem of it will be found in the state
l"I'i and the complementary (n —ns)-electron subsystem
will be found in the state l" l'2. Clearly,

where it is understood that the two-electron interactions
have the same strength in the configurations l" and P.
Moszkowski' has suggested the following formula re-

lating the mean-square deviation of the interaction
energy from its mean value in /" with the corresponding
quantity in P:

the square of a cfp (coeKcient of fractional parentage).
The quantity

(2 2)

gs(E jn P) =
(

n) //tT p n)—
2)( 2

o'(E in /s) is the probability that a given ns-electron subsystem
will be found in the state l I'1 when its parent n-electron
system is known to be in the state 1.The quasiunitarity
of the cfp matrices ensures that

where N p= 4/+2, the number of electrons in a complete
l subshell. Moszkowski verified Eq. (1.2) in a few

particular cases and gave an ingenious plausibility
argument for it, based on the method of second
quantization.

It is natural to attempt a proof by expressing o' (E
in /") in terms of two-electron matrix elements, by
means of the now-standard techniques introduced by
Racah. ' However, because one has to deal with the
squares of interaction matrix elements (or the matrix
elements of squares of interaction operators), this ap-

proach quickly leads to rather forbidding complications.
An alternative and, as it turns out, much simpler

approach, followed here, employs probability matrices
of a kind introduced by Bacher and Goudsmit' in j.934.

The probabilities P(/ I'i!/"r) contain less information
than the corresponding cfp's—much less if e—m&2—
but have simpler properties, of which the three following
are especially useful.

(i) Conspositson /ato. By elementary probability
theory,

Q p(/"I' !l"r )p(/'r !
/" r) =p(/" I'

!
l"r)

(ns&r &n), (2.4)

where the sum runs over all states rs of l" (in the sequel

Foundation. all such sums will be understood to be complete). Start-
' S. A. Moszkowski, Progr. Theoret. Phys. (Kyoto) 28, 1 (1962) ing with the probabilities P(/~ 'ri! /~r), one can
s G. Racah, Phys. Rev. 62, 438 (1942};65, 367 (1943};referred

to in suhsequent footnotes hy the roman numersis &1 off generate all the probability matrices !!P(/ ri!/" r)!!by
R. F. Bacher and S. Goudsmit, Phys. Rev. 46, 948 (1934). successive applications of Eq. (2.4) with r=ns+1.
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(ii) ComP/etersess I..et pp(r)L=(25+1)(21.+1)j de- If G is diagonal in the I' scheme, it follows from (2.9)
note the statistical weight (degeneracy) of a state /"r. and (2.1) that
The total number of nondegenerate states of l" is

~

~

/TO . Hence, the probabihty of reah»ng the degene»«(t" r G lt"r&S l

state /"F is
Xp)

p(t.r)= (r) (2.5)

Now, by elementary probability theory, the joint prob-
ability P(ab) of two states a, b is given by

P(ab) =P(a!b)P(b); (2.6)

(iii) Re/ation between Probabitities irl, comP/ememtary

corlfigurations To every. state /"r there corresponds a
unique state of the complementary con6guration P' ",
which we may indicate by the same label F.4 The
decomposition

lt"r&= & lt r &I/™r&(t'r t" -r jlt"r& (2.9)

corresponds to the decomposition

l/N--r, &= p l/N--r&lt-™r,
&

P(a) =2 P(ab), P(b) =Z P(ab) (2 7)

Hence,

p p(t-r,
l
t.r)p(t.r) =p p(t-r, t.r) =p(t-r, ). (2.g)

(e)

(t-r
l
G. l

I-r)
tmq

)I

Q (t I', !G lt-r, )p(t-r, t.=r, lt-r) (3.2)
t'my r~rp

k2)

;)
p (t-r !G lt-r &p(t-r lt.r)

(m) ri

&2)

(3.2b)

Multiplying Eq. (3.2b) by p(t"I') and summing over I',
we obtain, with the help of the completeness relation
(2.S),

Racah' has given a relation between the cfp's that occur
in the last two equations for the case m=1, from which
a relation valid for any value of m can easily be derived. r
The same relation (apart from a phase factor) can be
derived from elementary probability considerations, as
follows. I.et P(abc) signify the joint probability of the
three states, a, b, c. Clearly,

p(/mr tn —mr tnr) —p(/Np prtn mr /N—p war —
) (2 1—o)

It follows from (2.6) that

p(t-r, t=-r,
l
t-r) p(t-r)

p(/Np prtp mr—
l

/Np —mr )p(/Np ——mr ) (2 11)
p(/Np —pr/n —mr

l

/Np —mr )p(/mr )

which is the desired relation.

III. PROOF OF MOSZKOWSKI'S FORMULA

p (/mr
l
G

l
tmr &p(tmr )

(m)

k2)

tp(G„), (3.3)

k2)

Let G„denote a symmetric sum of two-electron inter-
actions g;; among m electrons:

G„= P g;;.
all pairs

which contains Eq. (1.1) as a special case. The "Quctuat-

(3.1) ing part" of G„is de6ned as

4 See Ref. 2, paper II.
',See Ref. 2, paper ID„ G —=G —sp(G ). (3.4)
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Subtracting (3.3) from (3.2), we obtain

«-rl ~-I/-r)

!
f"lt
k2)

p (l-r,
I
c.

I
t"r,)p(t"r,t-=r,

I

t.r) . (3.5)
(''iii)»»

p (t-r
I c„lt-r)(t-r'I c„lt-r') p(t-r')

rre
xP(Pr, t=2r, 'I l-r')

pnq /Xo —e)
I( )II( )I

p (t r, lt"., It r,)(t r, 'IG, ! t r, ')
pE —2q

XP(P1 i)P(PI'i'/" —'I'2'I/"I'). (3.10)

«"rl&. lt"r)=
I ~ (t'r, 'IG It'r, ')

2)r, r,

in the second,

(t~ -2r,
I G~, , I

Po-2r, )

xp(pr '/" 'r 'I/"r); (3.6)

(
Ão —2)

2 )
2 (I "r

I
G~O-- Il"' "r')

(
r r2

2

xp(t'v' "r'/" 'r2!p'-'ri). (3.7)

Ke now assume that, for any value of m,

We consider two special cases of the last equation:
n=n, m=2; and n=Xp —2, m=Ã —n. Thus, we re-

quire both G and G2 to be diagonal in the F scheme. In
the first case,

We now seek to invert the probability matrix
IIP(Pri/" 'I'2 I/"I')ll. In order to do this, we must first

make it into a square matrix by adjoining the columns

corresponding to nonantisymmetric states I'. This can
always be done, since the cfp matrix Il(l'I'i/" 'I'2!/"r)ll
can always be eked out with extra columns to make it a
true unitary matrix. Moreover, one can always ensure

that the augmented probability matrix is nonsingular if
the columns that correspond to antisymmetric states I'

are linearly independent. If this were not so, however,
one could construct a linear combination of matrix
elements (l"r

I
G

I

l"r) that would vanish identically for
every interaction g~2 that is diagonal in the I' scheme—which is impossible.

Let Q(l'I'il" 'rml/"I') denote an element of the in-

verse of the matrix IIP(l'ril" 'I'2!l"I')ll. Then,

p P(Pr, l.-mr,
I
t.r)Q(Pr, 't=~r, 'I t-r)

= ~r r, ~r r ', (3.11a)

p P(PI"i/'" 'I"2!l'"r)Q(/'r l" 'r 'I/"r')

= 8r, r, 'hrr', (3.11b)

(t-rlc It-r)=~«&o--rlc, It o--r), (3.8)
P P(Pr, l.-2r,

I
l r)Q(/2r, 't"-~r,

I

l-r')

where the sign depends only on the nature of the inter-
action and not on the value of m. This relation is valid
for a wide variety of interactions, including the Coulomb
interaction and the spin-orbit interaction (taken sepa-
rately). With the help of (3.8) and (2.11) we may write

Eq. (3.7) in the form

(Pri I c2 I Pr, )P(Pr, )

= 8r, r, 'brr'. (3.11c)

Multiplying Eq. (3.10) by Q(PI'i/" 'r2! l"I') and sum-

ming over I'i, I'2, r, we obtain, with the help of (3.11),

Zl(l. r I~.ll r) I'P(l.r)

n Xp—n

(¹—2

P (t r'I G„l/-r')P(l-r')
No ey r r2—

2 )
xP(/2r, t--~r, 'I t.r').

or

pl(t r, !G,!t r, )I~P(t'r, ) (3.12)

!
(¹—

2)
r,

~eq X,—my

This relation expresses the two-electron matrix elements
as linear combinations of the n-electron elements, while

Eq. (3.6) does just the reverse.
Multiplying (3.6) by the transpose of Eq. (3.9), we

obtain which is Moszkowski's formula.

(3.13)


