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The formula in question is

?(E in ") =[n(n—1)(4+2—n)( 4+2—n—1)/2(4) (4 —1)Jo?(E in 2).

The proof makes use of probability matrices rather than of fractional parentage coefficients.

I. INTRODUCTION

HE mean interaction energy in an electronic con-

figuration /" is known to be related to the mean

interaction energy in the configuration /2 by the simple
rule

n
w(E in l”)=( >p.(E in /%), (1.1)
2

where it is understood that the two-electron interactions
have the same strength in the configurations /* and /2.
Moszkowski! has suggested the following formula re-
lating the mean-square deviation of the interaction
energy from its mean value in /* with the corresponding

quantity in /2:
G
2 2
()
2

where No=4/+2, the number of electrons in a complete
! subshell. Moszkowski verified Eq. (1.2) in a few
particular cases and gave an ingenious plausibility
argument for it, based on the method of second
quantization.

It is natural to attempt a proof by expressing o2 (E
in /) in terms of two-electron matrix elements, by
means of the now-standard techniques introduced by
Racah.? However, because one has to deal with the
squares of interaction matrix elements (or the matrix
elements of squares of interaction operators), this ap-
proach quickly leads to rather forbidding complications.
An alternative and, as it turns out, much simpler

approach, followed here, employs probability matrices
of a kind introduced by Bacher and Goudsmit? in 1934.

o(Ein "= o2(Ein I?), (1.2)
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II. PROBABILITY MATRICES

Let P(I"T'y»™T'3|I*T) denote the probability that,
when an #-electron system is in the state [T, a given
m-electron subsystem of it will be found in the state
I"T'; and the complementary (%z—m)-electron subsystem
will be found in the state [»~™T';. Clearly,

P(IT =Ty |I"T) = P(ImTylmTy | I°T)

= [Ty T, T |2, (2.1)

the square of a cfp (coefficient of fractional parentage).
The quantity

P(l"Tl{l"I‘)EZP(l’”I‘ll"’mI‘ZIZ"I‘) (22)
T

is the probability that a given m-electron subsystem
will be found in the state II'; when its parent #-electron
system is known to be in the state I'. The quasiunitarity
of the cfp matrices ensures that

Z P(l"‘I‘ll"_”‘I‘z [ l"I‘) = Z P(lmI‘l 1 l"F) =1.

'y I

(2.3)

The probabilities P(J»I'1|I"T") contain less information
than the corresponding cfp’s—much less if n—m>2—
but have simpler properties, of which the three following
are especially useful.

(§) Composition law. By elementary probability
theory,

Z P(l’"l‘lll’I‘z)P(l’I‘g[l"I’)=P(l’"I‘1[l"I‘)
T2

(m<r<n), (2.4)

where the sum runs over all states I'; of I (in the sequel
all such sums will be understood to be complete). Start-
ing with the probabilities P(J*"'I'y|I*T'), one can
generate all the probability matrices ||P(I»T|I"T)|| by
successive applications of Eq. (2.4) with r=m--1,
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(i1) Completeness. Let &(T)[=(2S+1)(2L+1)] de-
note the statistical weight (degeneracy) of a state [T
The total number of nondegenerate states of I* is

,
(An')). Hence, the probability of realizing the degenerate

P(I"T)=a(T) / (?) .

Now, by elementary probability theory, the joint prob-
ability P(ab) of two states a, b is given by

P(ab)=P(a|b)P();

Pla)=% P(ab), P(b)=2 P(ad).

state I"I' is

(2.5)

(2.6)
2.7

and

Hence,

> P@mTy|I"T)P(I"T) =3 P(I"TJ"T)=P("Ty). (2.8)
T T

(#11) Relation between probabilities in complementary
configurations. To every state {"I' there corresponds a
unique state of the complementary configuration Vo=,
which we may indicate by the same label I'.* The
decomposition

[I"T)= 3 [Ty | I mTo) (PTim—mT, JIT)  (2.9)
T'il2

corresponds to the decomposition

|p¥o-mT )= 3 [ 10T | 1 Ty)

I'Ty

X (INo=njr=m, [INo-mD) . (2.97)

Racah® has given a relation between the cfp’s that occur
in the last two equations for the case m=1, from which
a relation valid for any value of # can easily be derived.
The same relation (apart from a phase factor) can be
derived from elementary probability considerations, as
follows. Let P(abc) signify the joint probability of the
three states, a, b, ¢. Clearly,

P(InT 7 mTylrT) = P(INo—nTln—mTylNo=mT'y)
It follows from (2.6) that

P(lmI‘ll""'”I‘z I l"I‘)P(l"I‘)
=P(lN°*"I‘l"“’“I‘2[lN°—’"I‘1)P(lN°—’"I‘1) (211)
-:P([N()*nl‘ln—mr‘z!lNo—ml"l)P(lml"l) ,

(2.10)

which is the desired relation.

III. PROOF OF MOSZKOWSKI'S FORMULA

Let G, denote a symmetric sum of two-electron inter-
actions g;; among » electrons:

G.= X gi.

all pairs

(3.1)

4 See Ref. 2, paper II.
5 See Ref. 2, paper III.
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If G,, is diagonal in the T scheme, it follows from (2.9)
and (2.1) that

("T|G,|1"T)

n

; ("7 |G| 17T
(5)

n

2
=—— 3 (1| Gn|I"T)PImT @1y |I°T)  (3.2)

<m> rire
2

n

2
= (l”‘l"l l Gml lmF1>P(lmI‘1 l l"I‘) . (3.2b)
I

()

Multiplying Eq. (3.2b) by P(I*T") and summing over T,
we obtain, with the help of the completeness relation
(2.8),

M(Gn)Eer(l"I‘ |G| 1*T)P(I"T)
n
2
= <lm1‘1 l Gm ’ lmF1>P(lmF1)
m\ T
()
n
()

=E—u (Gm) )
m

(3.3)

2

which contains Eq. (1.1) as a special case. The “fluctuat-
ing part” of G, is defined as

Gr=G.—u(G.). 34)
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Subtracting (3.3) from (3.2), we obtain
(1| G.|i"T)

n

2
=—— 3 {I"T| G| I"T1)PImT 7T | I"T) . (3.5)

()"
2

We consider two special cases of the last equation:
n=n, m=2; and n=No,—2, m=N,—n. Thus, we re-
quire both G, and G, to be diagonal in the I' scheme. In
the first case,

<1nr|én|z"r>=(’;> > (ery|Gslery)

T1’To’

X P(2T/ 12Ty’ | I"T);  (3.6)

in the second,

(I¥o=2T'1 | Gvya| IN02T)

()

— L > (T |G| YT

(No—n> I'T2
2

X P(IN=nT/[n=2Ty | INo=2T) . (3.7)

We now assume that, for any value of m,
(T | G| I°T) = £ (52T | G| P¥0T), - (3.8)

where the sign depends only on the nature of the inter-
action and not on the value of . This relation is valid
for a wide variety of interactions, including the Coulomb
interaction and the spin-orbit interaction (taken sepa-
rately). With the help of (3.8) and (2.11) we may write
Eq. (3.7) in the form

(121, | G, | 1PT,) P(12T)

<A‘To— 2)
2

> 17| G, |I"TYP(IT)

<No—n) T'Tyf
2

This relation expresses the two-electron matrix elements
as linear combinations of the n-electron elements, while
Eq. (3.6) does just the reverse.

Multiplying (3.6) by the transpose of Eq. (3.9), we
obtain

X P(eTy»—2Ty' |I°T7).  (3.9)
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S (7| G| 1T | G | 1T ) P(IRTY)

/Ty’

CXCY)
= ¥ (14| G| BT )Ty | Ga | TY)

(N 0— 2) Iy/Ty’
2

X P(I2Ty) P(2TyI"—2Ty | I"T).

X P(I2T0»—2Ty’ |I*T”)

(3.10)

We now seek to invert the probability matrix
|| P(72T1i»—2T5|27T)||. In order to do this, we must first
make it into a square matrix by adjoining the columns
corresponding to nonantisymmetric states I'. This can
always be done, since the cfp matrix ||(2T'1/»=2Ts[1"T)||
can always be eked out with extra columns to make it a
true unitary matrix. Moreover, one can always ensure
that the augmented probability matrix is nonsingular if
the columns that correspond to antisymmetric states T
are linearly independent. If this were not so, however,
one could construct a linear combination of matrix
elements (I"T'| G, |IT') that would vanish identically for
every interaction g, that is diagonal in the T’ scheme
—which is impossible.

Let Q(I2T'yi»2T',|I"T) denote an element of the in-
verse of the matrix ||P({2T'y/»2T';|/*T)||. Then,

Z P(l2r1l"_2P2 1 l"P)Q(l2F1ll"_2F2’ i l"P)
T

= brury/ Oy, (3.11a)
3" P(RTy—2Ty |I*T) Q2T 72Ty | 1"TY)
" = bpyr,/0rr’, (3.11b)
T Py | I"T)Q(I2Ty 17=2T, | 1"T)
2 =br,r/0rr’. (3.11¢)

Multiplying Eq. (3.10) by Q(i?T'J*2T's|IT") and sum-
ming over I'y, I's, T, we obtain, with the help of (3.11),

g [T |G, |i"T)|2P(I"T)
G
S ; |21y | Ga| 2Ty) | 2P(2Ty)  (3.12)
(™)
G
O TN
()

which is Moszkowski’s formula.

or

a%(G2), (3.13)



