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Diffusion of electrons and ions in a plasma across a magnetic field with the interplay of an anisotropic
dynamical friction is formulated in terms of the methods of Brownian motion. For a special symmetry of the
dynamical friction matrix it is found that for Larmor periods of the order of the relaxation time across the
magnetic field the diffusion takes place as an ordinary Brownian motion uninhibited by the external magnetic
field.

I. INTRODUCTION

''N a previous paper' the author has discussed the
& ~ diffusion process in a plasma as a Brownian motion
arising from local Quctuating electric fields in the
plasma. However, the formulation given there leads to
the use of a distribution operator for the calculation of
the average values of various quantities. From a
classical point of view the experimental observation of a
distribution operator cannot be defined unambiguously.
It is, therefore, necessary to give a general formulation
of the problem based on a more conventional discussion
of Brownian motion. Furthermore, the assumption of
spherical symmetry for the distribution functions for
the diffusion of charges in a fixed magnetic field suffers
from certain drawbacks. The spherical symmetry of
the distribution functions in momentum or configura-
tion spaces is closely related to the assumption that
the dynamical friction of charges is a scalar.

A more natural description can be found by noting
that a plasma placed in an external magnetic field is
not a spherically synunetric system and, therefore, the
dynamical friction cannot be independent of the
possible anisotropic distribution of momenta in such a
plasma. In a plasma one takes into account the effect
of collisions between particles by means of fluctuating
local electric fields which influence the motions of the
particles in the manner of Brownian motion. One of the
basic differences between Boltzmann and Brownian
motion description lies in the fact that the latter
expresses most of the dynamical properties of the
system in friction coefficients instead of by direct use of
collisions cross sections as in the former approach.

The interparticle interaction does not change the
Brownian character of the motion since the actual
value of the electric field at any particular instant will

depend on the instantaneous position of all other
particles and is, therefore, subject to Quctuations. The
processes of ionization and recombination can also
contribute to the Quctuation of electric field. Because of
these facts one cannot obtain the exact dependence of
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the field on the position or time. However, one can
calculate the probability of a given electric field strength
at a point in a plasma. This problem has been treated
by Holtzmark. 2

What is important in this case is the cumulative
effect of a large number of separate events each of
which has only a very minute effect. The total sum of
these effects, lasting about a time interval ht, say,
produces an appreciable change in the momentum of a
Brownian particle. The resulting motion is analogous to
a random walk problem. The random walk of the
charge, in this case, is caused by an anisotropic dynam-
ical friction superposed on local random Quctuations of
electric field. The anisotropy in question can be estab-
lished by observing that the external magnetic field has
a definite inQuence on the hyperbolic orbit of a charge
obtained upon a collision with another particle. The
magnetic field will cause the orbits to rotate. The
resulting increments in the momentum of the particle
cannot be resolved into two components parallel and
perpendicular to the initial direction of motion. This
means that the relation between the average and initial
momenta is not simple.

A particle deviates from its initial state at different
rates in different directions. Thus, we shall assume that
a dissipative force of the form

will operate, where the dynamical friction matrix f is
a 3X3 symmetric matrix and the symbol

I p) represents
a column vector:

pl P 7
IP)= P»nd f= ~ t p (I2)

ps. p v

and where the eigenvalues of f are real. In order for an
equilibrium state to be approached, the six independent
elements of f must be restricted by the statements

(i) trace f)0;
(ii) Pts y') 0, tt v —p') 0—, 13 v P)0 (I.3—)
(iii) det f)0.

These conditions are sufhcient for f to have positive
eigenvalue s.

' A. Holtzmark, Ann. Physik 58, 577 (1919).
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In the simple case of a scalar dynamical friction itis
rather simple to evaluate its general form. In this case
P arises from a systematic tendency of the particle to be
decelerated in the direction of its motion by an amount
proportional to lsl. We shall use Chandrasekhar's'
formula for dynamical friction calculated for a star
acted on by fluctuating gravitational fields. We replace
the constant of gravitation G by es//m3II and the average
distance between stars by the Debye length and obtain
for the scalar dynamical friction coefficient P, for a
plasma with Maxwellian distribution, the result

Srtgs- e4 m
[C (xe) —xeC'(xs)] inX, (I.4)

3f 3~T 3KT

magnetic fields, will consist of the statistical properties
of h(t) and B(t) S.uch a problem for gravitational field
has been discussed in detail by Chandrasekhar and
von Neumann. 4

II. GENERALIZED LANGEVIN EQUATION

By introducing a dynamical friction matrix f, we
modify Lorentz's equations of motion into the form

where, in the absence of a fluctuating magnetic field,
we have

where

e 'dx,

0 —i 0
A =f ito,Es—, Es'i 0 ——0

0 0 0

l F(t))= el $(t)&= fiuctuating electric force,

n=average number of particles per unit volume, and

j is a parameter which measures the dispersion of
velocities in the system. The quantity X is de6ned as

and f is defined by (I.2). The magnetic field is taken in
the Z direction.

The formal solution of the stochastic diAerential
equation is

A method similar to that for the gravitational case
used by Chandrasekhar can be developed for the
calculation of a friction matrix. The fluctuation of the
electromagnetic field can be analyzed in terms of
individual two-particle collisions where each is rep-
resented as a two-body problem. Because of the
magnetic field the net change in velocity cannot be
resolved into perpendicular and parallel components
and, therefore, calculation of the various components of
the friction tensor f,, will be quite complicated. The
actual computation of f,; will not be important for
purely qualitative discussions in this paper.

At this point we would like to remark that a more
realistic picture, for the stochastic processes in plasma,
must take into consideration the possibility of existence
of randomly fiuctuating magnetic fields in the plasma.
Such a possibility may give rise to a new mechanism
effecting the diffusion of particles across magnetic
fields with actual exchange of energy between particles
and 6elds in the plasma. The solution of this problem
would require a combined study of Maxwell's equations
and generalized Langevin's equation where Maxwell's
equations are to be regarded as stochastic equations,
the source of the field being an external current superim-
posed over a fluctuating internal current of the plasma.
In this case solutions of Maxwell's equations, as
equations for the irreversibly fluctuating electric and

t S. Chandrasekhar, Pritteiples of Stellar Dyrtatrtt'es (Dover
Publications, inc. , New York, 1942), p. 257.

and

l
I „)=C (NAl, l) l r(At)),

Ct(] t) —stt($ t)—
(~+i)ac

l~(~)&d~

(II.4)

represents the net force which may act on a Brownian
particle on a given occasion during an interval of time

4 S. Chandrasekhar and J. von Neumann, Astrophys. J. 95, 489
(1942), and 97, 1 (1943).' S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

Now, the left-hand side of (II.2) must have the same
statistical properties as its right-hand side. We shall
generalize the method used in Chandrasekhar's paper'
to the present case where the usual dynamical friction
term [the first term on the right-hand side of (II.1)),
has been replaced by —Al p). A statistical analysis of
the solution (II.2) of the Eq. (II.1) may proceed in
terms of time intervals At during which we can treat all
functions of time except lF(t)& as constant. However,
the time interval ht is long enough for the position or
momentum of a Brownian particle to change appreci-
ably. It is reasonable to assume that a finite time
interval (O, t) can be divided into a large number of
subintervals of duration At. Under these conditions the
Eq. (II.2) can be replaced by

(II.3)
where
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KT4
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Xexp —(.T/a)(pl l

t

~f~« ll.) d"
o

Using this result in (II.14) we get

W(u, uo, t)

= (1/2or)' exp(-tp u)

The average energy of a particle can be ca,lcuiated by
expressing p' in terms of I' as

po= I'0+(pol exp( —At)exp( —At) l pp)

+(ppl exp( —At) l
I')+(I'l exp( —At) l po).

The relevant integrals are of the form

I~ I—"—exp[ —(I'l yl I')jd'I'

det — 0 d

—3/2

2 dety
P (first minors of y)

—3/2

( t )—1

Xexp —(a/4~T)(Nl l
+f+dg

l l~), (II 17)
2 dety

I,= 7 exp[—(I'lyl I')jd'I"=0,

(Vl|'2+72 YS+7173)

+f+d&= exp[A(P —t)jf exp[A(( —t)]dP

exp[A($ —t)1(A+A) exp[A($ —t) ldll

where we put

—(exp[A(( —t)) exp[A(( —t) j)d$
o d$

= -', [1—exp( —At) exp( —At) j, (III.1)

f= ,'(A+A)-
and where the relation

which is the required proof for the lennna.

III. AVERAGE ENERGY

From the Eqs. (II.2) and (II.S) it follows that the
operator %($,t) is given by (II.4). We can apply the
lemma above to find the probability distribution of

l Y) as defined by (II.2). Thus,

where y~, yo, yp are eigenvalues of y= (1/2nwT)
X (1—exp( —At)exp( —At)) '. Hence,

p' ='
det[2mzT(1 —exp( —At) exp( —At))j2' 4m

XP first minors of

X
2m~T(1 —exp( —At) exp( —At))

1
+ (ppl (exp( —A.t) exp( —At)) l pp), (III.4)

21S

which is not independent of the external magnetic
Geld. On this basis, one should regard the operator
4'f%'t as the effective dynamical friction coefficient for a
plasma in a magnetic Geld. However, if the dynamical
friction is a scalar (or diagonal), then.

A = t3 tpo,K0—and AA =AA,

so that the distribution function reduces to
AAQAA. , (III.2)

—3/2

will lead to a dependence of the average energy of a
particle on the external magnetic Geld. This is a conse-
quence of the anisotropic dynamical friction which
arises partly from the rotation of hyperbolic particle
orbits by the magnetic Geld. This anisotropy gives rise
to a coupling of the components of particle's momen-
tum. Thus from (II.9), taking a=1/m, we get

W(p ppt)=
det[2orma T (1—exp (—At) exp (—At) )$-

(I l (1—exp( —At)
28$aT

2orm~T(1 —e '&')

Xexp — . (III.5)
2m~T(1 —e 'e')

(p pp
,'~T(1 e 'e')+ e

—'e'——
2m 25$

(III.6)

It is easy to verify that the distribution function
(III.5) satisfies the differential equation

In this case the average energy is independent of the
field,

Xexp( —At)) 'l I') . (III.3)
BW 8(ptW

-=A;,-

Bt Bp;

) O'W
+om~T(A+A);, —, (III.7)

P'~Pi
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INCRII

"1 o em or . H. Freeman
and Company, Sa,n Francisco, 19
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for transverse diffusion, and

for longitudinal diffusion.
Now in order to test the basic role of a nondiagonal

element in the process of diffusion, we shall retain only
one (y) of the dynamical friction coefficients y, 8, p and
will assume that the other two vanish (5=p=0). We
further set P=p= i in the dynamical friction matrix f
With these assumptions it is quite easy to calculate
the diffusion coeKcients D~, D2, and D3 which are
just the eigenvalues of (aT/m) (Lf 'A) '. These eigen-
values yield the result

where

Di+D2
2~Tj9 ~T

D3 , (I——V—.13)
m(p'+(op —y') pm

(IV.14)

This is well-known classical diffusion where the ordinary
Brownian motion of the particle is inhibited by the
magnetic field.

(ii) p= &~, yields
2tcT3

((AR,)')= (IV.16)

This is an "enhanced diffusion" which takes place
either at a critical value of 8 or for a certain value of
the parameters (particle density, temperature) in y.
This result is, presumably, related to some relaxation
process in the plasma placed in a magnetic field.
In such a plasma relaxation times differ in different
directions with respect to the direction of the magnetic

The same results are obtained regardless which of the
off-diagonal friction elements is retained.

We shall consider two cases:

(i) y=O so that

2~TPt 2~Tt co,'
1— . (IV.15)

2 ~2 yg 2 ~2

field. According to (IV.16) at y=&cv, the diffusion
process occurs as an ordinary Brownian motion un-
inhibited by the magnetic field.

However, it must be observed that for the enhance-
ment of diffusion to occur we must, at least, have a
plasma where the diagonal relaxation coefficient P ex-
ceeds co, , The latter may arise from assuming that col-
lision frequency is much higher than ~„i.e.,

In this case the off-diagonal relaxation term y can be
expected to increase and the condition y=&M, may
be realized.

V. CONCLUSION

We have shown that in the presence of an anisotropic
dynamical friction force, stochastic processes in the
plasma lead to an enhancement for the diffusion of
particles. For a special choice (8=p=O) of the friction
matrix, maximum diffusion independent of magnetic
field (ordinary Brownian motion) sets in across the
magnetic field where y=&co, . The significance of this
result will depend very much on the form of y as a
function of particle density, temperature, and relative
thermal velocities. However, despite this theoretical
incompleteness it should be of great interest to look for
possible experimental evidence for this type of diffusion
in a plasma placed in a constant magnetic field.

This approach to the diffusion process may also be of
some use in the discussion of cosmic ray accelerations.
The assumption of randomly moving magnetic fields
in interstellar space can form the basis for Brownian
motion of cosmic rays across these magnetic clouds.
The possibility of enhanced diffusion of the particles
may be a reasonable mechanism for the acceleration
process.
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