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The steady-state distribution function is obtained for electrons initially emitted from a point source into a
neutral gas and which subsequently drift under the inhuence of a uniform dc electric 6eld while undergoing
elastic collisions with the gas atoms. The usual approximations, regarding the distribution function as
almost spherical in velocity space, and regarding the fractional energy gain or loss by an electron upon col-
lision as small are retained. However, the terms in the Boltzmann transport equation involving spatial
derivatives of the distribution, which are usually assumed small in comparison to the 6eld and collision
terms, are treated exactly. The distribution function is given as a sum of energy modes, each of which de-
cay with distance from the source. The lowest of these modes is the far-distant distribution, while the
higher ones, which decrease more rapidly with distance describe the decay of the initial source energy dis-
tribution. The complete distribution is obtained in terms of known functions in the case of an energy-
independent collision frequency, whereis in the energy-independent cross-section case, only the lowest
mode is obtained. The far-distant part of the distribution function is compared with the usual approximate
expression which is obtained when the gradient terms are considered small and which is expressed as the
density times a normalized energy function. It is shown, that when the gradient terms are correctly con-
sidered, the far-distant distribution in energy becomes position-dependent. I'"urthermore, the deviation from
the approximate theory becomes larger, the further the electrons are oR the geometrical axis. This position
dependence is most important when the electron energy is large in comparison to thermal energies. The
interpretation of Townsend method for the determination of the ratio of the diRusion coeKcient to the
mobility, D/p, is re-examined on the basis of this more exact theory. It is shown that the error in D/p that
results from using the conventional interpretation of this method under typical experimental conditions is
never more than about 20%%uz.

I. INTRODUCTION

'T is usually assumed that electrons which drift and
- - diffuse through a gas under the inRuence of both
uniform electric fields and electron density gradients
have a distribution in energy that is independent of
position. This means that the distribution is assumed
to be unaffected by the presence of gradients in the
electron density and is taken to depend only on the field
strength and, of course, on the pressure and variety of
the gas. A direct consequence of this is that the electrons
can be characterized by a diffusion coeKcient, D, and
a mobility, p, which are independent of position. It is
this aspect that has been the basis for the interpretation
of many experiments concerned with the transport
properties of electrons in gases, such as the Townsend-
type experiment for the measurement of' ' D/IJ, and the
time of Right measurements of p, ."In turn, the analysis
of the measured transport coefIicients from these
experiments in terms of electron-atom collision cross
sections have also been dependent on this assumption. "

The theoretical justi6cation of this assumption must
come from the solution of the Boltzmann transport
equation that is appropriate to electrons under the
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inhuence of both electric fields and electron density
gradients. Allis and Allen' have derived the basic
equations for electrons under these conditions. These
authors did indicate certain formal aspects of the
general solution as well as pointing out, qualitatively,
the approximate nature of the conventional assumption;
however, they did not discuss any specific case fully.

It is the purpose of the present study to (1) investi-
gate the conditions under which the effect of electron
density gradients on the distribution in energy can be
neglected and (2) to obtain solutions of the Boltzmann
equation which will demonstrate the speci6c eGects
introduced by the gradients. The geometry used in this
study, which is one of the simplest that can serve to
illustrate these effects, is the point source of electrons
in an in6nite uniform 6eld region. Also for reasons of
simplicity, the collisions between the electrons and gas
atoms are taken to be elastic. In Sec. II the Boltzmann
equation for the case of an energy-independent collision
frequency is given and the approximations involved in
assuming the distribution in energy to be position-
independent are examined. Also a criterion is developed
for the conditions under which the eGect of electron gra-
dients can be neglected. In Sec. III the Boltzmann
equation, as given in Sec. II, is solved. The resulting
solution yields not only the limiting distribution at far
distances from the source but also the higher modes
which describe the decay of the initial distribution into
this far-distant part. The far-distance distribution is

s W. P. Allis and H. W. Allen, Phys. Rev. 52, 703 (1937).
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then compared with the usual position-independent dis-

tribution. In Sec. IV the Boltzmann equation for the
case of an energy-independent cross section is given and
an approximate expression is obtained for the distribu-
tion at far distance from the source. This expression is

compared with that obtained for constant collision
frequency. In Sec. V the Townsend D/ii experiment is
examined on the basis of this more exact theory and
the errors that result from using the conventional
interpretation of this experiment are discussed.

II. GENERAL CONSIDERATIONS

The average properties of electrons moving through
a gas, e.g. , electron density, current density, mean

energy, etc. , can be predicted once the electron distri-
bution function, f(r,v), is known. The significance of
this function is that f(r,v)drdv denotes the number of
electrons at position r in dr and with velocity v in the
range dv. The distribution function in turn satisdes
an equation of continuity in position and velocity space,
i.e., the Boltzmann transport equation. This equation
describes the balance that must exist in steady state
between the rate at which electrons enter and leave a
given element of volume, drdv in velocity and position
space. The Bow in position space results from the
velocity of the electrons while in velocity space it
results from their acce1eration due both to collisions

with the gas atoms and to the applied field.
There are several approximations commonly made

in order to simplify the integral-diGerential Boltzmann
equation when applied to electrons. The 6rst is that the
distribution function is almost spherically symmetric in

velocity space and therefore can be adequately repre-
sented by the first two terms of an expansion in spherical
harmonics involving the direction of the velocity. That
is, f(r,v) can be written as'

f(r,v) =f'(r, ti)+f'(r, v) (8),

where 8 is the unit velocity vector. The second is that
the fractional energy gain or loss by an electron upon
colliding with a gas atom is small. This is justified 1n

the case of elastic collisions, to which the present paper
is restricted, because of the small electron to atom mass

ratio. %ith these approximations the Boltzmann
equation reduces to two partial diGerential equations.
The present discussion will, in addition, be restricted
to uniform dc electric 6elds and to a constant-collision-

frequency gas. While this latter restriction will be
relaxed further on to include the case of constant cross
section, for the present the case of constant collision

frequency can serve best to illustrate the important
features of the problem.

When the above approximations and restrictions are

~The detailed derivation of these equations along arith a
discussion of the approximations used in obtaining them is given
by %. P. Allis, in Huwdbuch der Physik, edited by S. Flugge
(Springer —Uerlag, Berlin, 1956), Uol. 21. Also see T. Holstein,
Phys. Rev. 70, 367 (1946).

taken into account the equations that result for f' and
f' are'

(2e)'i'( „Bf')
vf'+I —

I I
&f'+«&

Em) 0 ae)
(2)

Here the electric field E is given by E= kE, whe—re k

is the unit vector in the s direction, v is the momentum

transfer collision frequency, e denotes the kinetic energy
of the electrons, m and M are the mass of the electron
and the atom respectively, T is the gas temperature,
and S(r, e) is the electron source term.

Qualitatively these equations can be explained as

follows: We have assumed that f(r,v) can be represented

by the term, f, that is spherically symmetric in velocity

plus the small nonspherical term, f'8. Therefore, the

Boltzmann equation, which balances the rates at which

electrons enter and leave drdv, also breaks into two

parts, the first, Eq. (1), which balances the spherical

rates and the second, Eq. (2), which balances the

nonspherical rates. The first term in (2), which

represents the eGect of collisions in reducing the asym-

metry in f(r,v), is balanced by the second and third

terms which represent, respectively, the eGect of

diGusion and drift in increasing the asymmetry. The
first two terms in (1) re6ect, respectively, the fact that
electrons can lose and gain energy as a result of collisions

with the gas atoms. The third term represents the net
How of electrons into dr with energy e that occurs when

the asymmetrical part of f varies with position. The
fourth term reflects the fact that the electrons can gain

energy from the field and that this occurs only through

the asymmetrical part of f
The equation that f must satisfy is obtained by

substituting f'from (2) into (1) and is

2mv 8
I
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+ V'fo= —S(r, e). (3)
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When f is independent of position, i.e., when the

electron density is uniform, the solution of (3) with

S=O is given by
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Under these conditions the balance, as represented by
the Grst three terms of (3), is between the electrons
losing energy from collisions and gaining energy from
collision and from the Geld. When f' depends on position,
the additional terms in (3) that involve the spatial
gradient of f' appear. If these terms are assumed to be
small in comparison to the collision terms and to the
field term, then an approximate solution to (3) can be
expressed as f'=e(r)F(e), where e(r) is the electron
density, whose functional form is as yet undetermined,
and F(e), which represents the distribution in energy,
is given by (4). The equation that e(r) must satisfy is
obtained by multiplying (3) by 0'"de and integrating
over the complete energy range. The resulting equation,
w'hich is the familiar continuity of current equation, can
be written, with S=O, as

V (DVe —p,Eke)=0,

where D and p are given by

82r (2)'12 " e"'
D=

i

—
) F(e)de,

3m'hami

82re 2 )'~2 " 02~2 dF(e)

3m' mi, v de

A simple criterion can be obtained for conditions
under which the gradient terms can be neglected in
comparison to the 6eld term or the collision terms. If
the approximate form for f0 is assumed, i.e.,

f'= () mr. —/(kT+1/8)j,

where 8= (3/M) (mv/eE)' and this is substituted into
(3) along with the equation for &2e given by (5), then
the relative magnitude of the various terms can be
compared. For this case of constant collision frequency
the last two terms on the left-hand side of (3) cancel.
The ratio, (R, of the remaining gradient term to either
the energy loss collision term or to the sum of the
collision and field term representing energy gain can be
expressed as

ez )( Be
(R= i——D— p,En

e..ik Bs )
In this equation e, denotes the average electron energy,
—,'(kT+1/8), ez is the thermal energy of the gas, 2kT,
and D/y, = (kT+1/8)/e. We see that if 0, )er (high-
Geld limit), the gradient terms can be neglected when
the diffusion current in the Geld direction, D(Be/Bs),
is small in comparison to the drift current, pEn. How-
ever, as e, approaches ez (low-field limit) the gradient
terms become less and less important for a given ratio
of diffusion to drift current.

The ease of a point source in an infinite uniform field
region can serve to illustrate these points for a speei6c

where s is the distance from the point source along the
6eld direction and p is the cylindrical radius. When the
density gradient to density ratio is obtained from this
expression and is substituted into (7), the ratio of terms
in the high-field limit (1/8) kT) becomes

1(
(it= —

i
1—cos8—

24 3eEs
cos'8 i,

where 0 is the polar angle from the source. When the
factor 40. /3eEs is small and the point of interest is
near the axis (cos8=1), the gradient term can be
neglected. However, for positions suKciently off the
axis (cos8(1) and again with 40, /3eEs(1, the gradient
term cannot be neglected under any circumstance.

The extension of this type of argument to a constant
cross-section gas is straightforward and probably the
above conclusions are a reasonable guide for gases with
a more complicated energy-dependent collision
frequency.

IH. CONSTANT COLLISION FREQUENCY

A. General Solution

The equation for f', which is given by (3), can be
rearranged to read

B Bf' 1 Bf'
e '"—0"'( f'+(kT+1/8) +

Be 8& eEB Bs

B2f0
+ q2f0

eEB BeBs (eE) 8
MS(r, e)

7

252p6

where 8, as deGned previously, is (3/M) (vm/eE)' It is.
clear that because of the mixed derivatives in e and s
the equation is not separable in these variables. How-
ever, by changing to new independent variables that
are, for convenience, made dimensionless, the equation
can be put into a separable form. The new variables
are defined as follows'.

$=x eEBs, —
R= eEBp,

and with n =k TB. Then the diGerential equation

2 L. G. H. Huxley, Phil. Mag. 30, 396 (1944).
SThis type of transformation has been used previously by

W. P. Allis and H. W. Allen, Ref. 5.

geometry. The density for a point source is given by~

pZ
e(r) ee (S+p2) ' eXp LS—(S+p2)' j (S)

2D
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becomes

0 —
B 0 B2 0

x-2» g»1 f0+
Bx E Bx) Bp BP

1 B ( Bf0) —MS
+(1+~)—

R BR& BR] 2tnvx

where J0(ER) is the zero-order Bessel function. ' In
order to put (11) in a recognizable form let

p= :(-1 v—')

F= h(x) expL —-', (1+y)x].

Then (11) becomes
(93

8(0—00)~(p)
S(0,s,P) =5 (s)

2rp (42r/222) (20/222) "2
(10)

This term represents one electron per second being
emitted with energy eo from the point z= p=0.

The homogeneous form of Eq. (9) can be separated
into the three ordinary diGerential equations,

where p' has been expressed in cylindrical coordinates
since f'is to be calculated under conditions of cylindrical
symmetry. It should be pointed out that in the high-
field limit, i.e., when n«1, the new variable $ is simply
proportional to the total electron energy, 0—eEs.
Since the equation separates in the variables x and ]
and not in e and z, it would be a formidable task to
satisfy boundary condition on a z plane. However, what
can be obtained in a straightforward fashion are
solutions for the case of volume sources in an unbounded
region. Another case that can be simply treated, but
will not be detailed in the present paper, is for volume
sources in the presence of cylindrical boundaries parallel
to the z axis and on which f0 vanishes, e.g., a point
source on the axis of a right cylinder with f0 vanishing
along the inside surface. However, the simplest geometry
that can be used to illustrate the features of the distri-
bution when the gradient terms are correctly considered
is the point source emitting monoenergetic electrons
in an unbounded region. Therefore, Eq. (9) is to be
solved with 5 given, in terms of e, z and p, as

d'h dh
+ (-;—~x)——;(~—1)&=0.

dx dS

The solution of interest is regular at the origin and is

«~) )'
where F(al cl s) is the confluent hypergeometric func-
tion. ' Now Eq. (11) is an eigenvalue equation for p
(or y). It is easily shown that the corresponding eigen-
functions are orthogonal with respect to the density
function r(x) =x'"e~, i.e.,

a~~e*I',I',.d'~=0 if &~&.

The eigenvalues and eigenfunctions are found by
selecting the set of y's which made the solution of (11)
quadratically integrable and orthogonal with respect to
the density function. Sy inspection of the asymptotic
behavior of the con6uent hypergeometric function, ' the
allowed spectrum for y and the corresponding eigen-
functions can be found. A part of the set is discrete with

1
F2 (x)=—exp I

——,
' (1+F2)x]L)&"'& (yxg)

where L&&'!"~ is a I-aguerre polynomial, '

dF(x))—
x—»2—2» F(x)+

1
+pF(x) =0, (11)

dx dx )
PL

1+-'2l

l=0, 1, 2 ~ (positive integers),
1 d ( dP(R)

R dR& dR
and with the normalization constant X given by'l

and
d'Z(g) dZ(g)

+ (&'(1+ )—+P)Z(t) = o (13)
dP d$

(1+-;i)» (2t+-;)r (-;+~)S2=—

The rest of the set is continuous with
where Z2 and P are the constants of separation. The
solutions for (12) and (13) that are of interest can be
written down immediately as

P(R) =J0(RR),

—
1m L1+4x(E2(1+0.)+p)]'"

Z(P) =exp
2'

fico 1)—
F-(x)=C- expl:—-'(1+&~)x]FI %1

where C„ is a normalization constant, y=i~ and co is a

9 P. M. Morse and H. Feshbach, 3fethods of Theoreticu/ I'hysics
(McGraw-Hill Book Company, Inc. , New York, 1953), Chaps.
5 and 6.
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continuous variable in the range of 0-++oo. It will
be assumed that this is a complete set.

The solutions to Eqs. (11), (12), and (13), as given
above, will now be used to build up the solution to
Eq. (9). It is convenient 6rst to 6nd the Green's func-
tion for (9), i.e., to 6nd the function G(x,),R I x,g,B) that
satisfies the equation

8 - BG) — BG 82G
x-2/2 —e/2 Gy I + +n

c/x fix / 8$ BP

1 a( c/G)
+(1+~)—

R BR( c/R~

&(x—x)S—(P j)S—(R R)—, (14)

where the indicated summation is to be taken as a
sum over the discrete spectrum of y plus an integral
over the continuous part. When this expansion is
substituted into (14) and the result is multiplied by
r(x)F». (x) and integrated over x, the equation for A»
is found to be

BA» 82A» 1 8 /-eA,+ + +(1+ )—
aP aP RaRE aRJ

= —r(x}F„(x)8{R—R)r(P —j). (16)

Now A~ can be expressed as

U»($,R,j,x)Jo(KR)KdK.

and then to use the expression'

8U~ O'U~
to obtain the f' that satisfies (9) for a specific source (/+( +~)K)~»+ +~
term. Now the function 6 can be expanded in terms 8 8

of the energy functions Ii~ as Rr(x) F—,(x)J,(KR)S (P j)—

%hen this is substituted into (16) and the result multi-
-jlf S(x,j,R)- plied by RJo(K'R) and integrated over the complete

yo(x pR) — G(x t Rlx pR)
' '

dxdgR (15) range of R, the equation for U» that results is
2

G=Q» A»(),R,),R,x)F»(x), The solution to this equation is

expL (P g)/2r—r7 exp( —
LI 1+4n (P+ (1+sr)K') 7'/'/2a71 ( ( I

)—
V„=Rr(x)F„(x)J,(KR)

L1+4es (/P+ (1+n)K2)71/2

Therefore, G(x, &,Rlx, &,R) is given by

G=R-pL(~-a/2-7Z (-)F,(-)F,()

x dEKJo(KR) Jo(KR)$1+4ot(P+ (1+n)K )27 '/'-
xexp( —I:-'.~'+(0+(1+~)E')/ 7'"I 5—kl).

By using the integral expression (15), with the source
term given by (10), and integrating over the complete
range for x, $ and R the following expression'o is
obtained for fo:

C,XoseFB /'1+a'l '/2

41rD„F2(-ss) k ot

&(expL(xo —&)/2n7 P e"F,(xo)F,(x)

IThis solution is not valid within distances of the order of a
mean free path or less of the point source. For in this region,
because the electron density changes by an appreciable fraction
of itself in a mean free path, l

f'
l is no longer small in comparison

to f and the description in terms of just fo and f' breaks down.

1+4rrP
X dKKJo(KR)

0 4er(1+n)

1+411P q1/2~1+try1/2
Xexp— +K

I I I lxo
4(1+et) I kn I

In this expression C„, which is the normaliza-
tion constant for the Maxwell-type distribution,
expL —(Be/(1+n))], is C„=(rrtB/22r(1+a))2/2 and D„
is the diGusion coe%cient that corresponds to this
distribution, i.e., D,= (1+n)/vs/tB. The convenience in.

expressing the constant in this way will be apparent
when the far-distant part or lowest mode of this
complete distribution is discussed below.

The integration over E can be carried out im-
mediately by using the following equation given by
Watson"

dKK J (KR) (K2+gs)—»2 expL —(K2+es)»six
I 7

(x2+Rs) 1 2 expL f/(x2+R2)»27

"G. N. Watson, Theory of Besset Fgrtctiorss (Cambridge
University Press, London, 1952), Chap. 13.
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The resulting expression for f' is

C„XpoeEB 1+n)'/' 1+n
(P—xp)'+R'

4rD, I'(-', ) n ) n

XexpL(xp —$)/2n7 g e*'F,(x)F (xp)

( 1+4nP )'/'

(4a (1+n))

1+a
X (5—xo)'+E

a )

B. Lowest Mode

Lme-Fi eld Limit

For low fields n) 1 and fp from (18) becomes

( e ep

e e/e—r
4prD, E k TeEB

«( e—eo

2kT 5 kTeEB)

--1/2

eE ( 0—ep

Xexp —
l

s— +p'
2kT E kTeEB

17 If the position is far from the source, then

eEBz)&(e ep)/k T—,
and fo' becomes

—1/2

The lowest mode of the distribution corresponds to
the eigenvalue P=O(y=1) and to the energy function

Fp(x) =e *10""'(x)/Xp——e—'I'(az)/$0.

0 +1~
AD,

( eEs)t
e s/er(zp—+pe) i/0 exp!

(2kT)

eE

This part of the distribution is
Xexp (z2+p2) 1/2

2kT

C„eEB 1 n '/'
0—

4xD„n
1+a

Xe ($—xp)'+R'
(xo—5)

exp!
2n )

x )0 gp 1/0)

Xexp —
I ! +

4 (1+a)

When this is expressed in terms of the variables e, s
and p it becomes

.CeE( 1+)a"' a+1(e—eo

4zD( a ) n (1+a

2 --1/2
—eEs + (eEp)'

Be B(
Xexp — — exp l

eEz
(1+n) 2a 0

e—ep)

1+u)

B—1 (0 ep )2 (eEP)P
—1/2

Xexp ———
l

—eEs ! + — . (18)
2 n' 5 1+n ) n(1+n)

It will be shown below that the higher modes decay
exponentially with distance froxn the source. Therefore,
the lowest mode is the only part of the complete
distribution that is of interest at far distance from the
source. To contrast the behavior of this far-distant
part with the usual distribution as discussed in the
previous section, it is best to go to the limiting cases
of low and high field.

In this limit the distribution function agrees with the
usual distribution where the density is given by (8) with
D////=kT/e. Of course with E—=0, the diffusion limit
results, i.e.,

(fo')- = (C./4/rD. )(z'+p') "' exp( —0/kT)

Theref ore, as was shown by the qualitative discussion
above, when the electrons are in equilibrium with the
gas, the eRect of gradient terms can be neglected.

High-Fi eld Limit

In this case n(1 and fp' from (18) becomes

C„eE
(fpo)~&, = e e'! (o—ep eEz)'+n(eEp—)'7 '/'

AD,

XexpL —(B/2n) (e—ep —eEs) 7 exp( —(B/2n)

X! (0—eo eEs) +n(eEp) 7 / —}. (19)
Now

P(p 0, eEz)'—+n—(eEp)'7"

e eEp=
l e—pp

—eEsl 1+- +'''
2 ~—eo—eEs

and, therefore, fp' can be written as

0 a&1

C,eEe'l 0—eo—eEz I-
4n-D „

Xexp( —(B/2u)L(e e'0 eEz)+ l 0 eo eEzl 7}

XexpL —B(eEp)'/4!e —ep —eEz!7, (20)
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2.0

1.5
&C
C)

1.0

o L5

p/z = 0

simplicity, the initial energy eo is taken equal to zero.
This plot indicates that electrons close to the axis have
a higher average energy than would be expected while
those suKciently oQ axis have a lower average energy.
Also there are fewer electrons o6 axis than would have
been predicted by the usual distribution.

If the position is far from the source, then the quantity
ejeEs can be considered small in comparison to unity
and taking up to erst order in this quantity, the distri-
bution from (21), with es——0, becomes

(fo')-( =
I
1+

I
expL —Be(1+(p/»)z)3

4rD„s E eEs/

Xexp t
—eEBps/4sf .

.2 ,4
g/eEz

, 6 .8 1,0

where only terms that are independent of n or vary as
o. ' are retained. It should be apparent from (20) that
the fraction of electrons with e& so+eEs becomes
smaller as n decreases while the fraction with e &so+ eEs
is independent of a. Therefore, the limiting form for f,
when n is small can be expressed as

Xexp —eEBpz/4s 1—
eEs )

(21)

when e&eo+eEs, and

=0,
when e& ep+eEs

This distribution must now be contrasted with usual
distribution which, in the same limit, is

C„
(f') = e '(s'+p') '"

4vrD,

XexP( ——'zeEBf(P'+s')'iz —sj), (22)

where the density factor is given by (g) with Djfz =1/eB.
It is clear that since (21) cannot be written as a

function of energy times a function of position, the
distribution in energy will depend on position. To
illustrate this new behavior the ratio of (21) to (22)
is plotted in Fig. 1 as function of e/eEs for various
values of p/s. In this plot the parameter 3/2eEzB,
which is shown below to be equal to e, /eEs for on-axis
points far from the source, is taken to be 0.1. Also, for

FIG. 1. The ratio of (f'), ao&/(fz), »„versus e/zEz for con-
stant collision frequency. The vertical dashed line indicates the
approximate position of z,v/eZz on the horizontal axis.

We immediately see that when e/eEs and (p/s)' can be
neglected in comparison to unity, i.e., for positions far
from the source but very close to the axis, the distri-
bution agrees with (22). This agreement is consistent
with the earlier qualitative considerations. The above
expression can now be used to obtain approximate
expressions for the average energy and density. These
are"

3(1+1/eEBs)

2B(1+(p/2z)')
(23)

(1+(3/2eEBs))
exp( ——;eEBs(p/s)z$. (24)

4zrD.s(1+ (p/2s)')"'
I

These express, in a quantitative way, the behavior
displayed in Fig. 1. Again we see that the average
energy for electrons on axis is larger then would be
predicted by the usual distribution and by a factor of
(1+(1/eEBs)). This points out the fact, which was
not clear from Fig. 1, that for positions far distant from
the source the average energy of on-axis electrons goes
to the expected value of 3/2B. Also we see that electrons
suKciently off the axis have a lower energy than
expected. For example, at an angle of 45' (p/z=1) the
average energy is down by 25%, when the term 1/eEBs
is neglected. The usual expression for the density around
a point source, as contained in (22), can be expanded
in powers of (p/s)' to be compared most easily with the
above "exact" expression for the density. Such an
expansion results in

1——', (p/s)'+ (1/16)eEBs(p/s)'
+ approx

4mD„s

Xexp
eIf Bp2

~ These results are not changed significantly if «o/0 or if there
is a spread to the initial energy. For example, if the initial energy
distribution ~ z'lz exp( —Bz), then z, is still given by (23)
while the density as given by (24) is modified by a factor of
(1—(p/2a)zg z~'(1 —3/2eBBz).
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and the ratio of the densities can then be expressed as

(+)"exact"

+ approx

=(1+1(p/ ) (1/16) EB (p/ ) +(3/2 EB )).
This relationship shows that the density for on-axis
electrons can be higher than predicted by the usual
theory, while for electrons sufficiently off axis the
density can be lower than expected. This is in agreement
with the behavior shown in Fig. 1.

The above results would indicate that the average
electron energy would continue to decrease without
limit as the position got further and further off the
geometrical axis. The apparent lack of a lower limit
to the average energy arises because the results were
obtained in the limit of very small n. By returning to
expression for the lowest mode as given in (19), it can be
shown that for large enough p, such that O. l'p»s
+[(op—o)/eE j, the limiting mean energy is 3kT.

A qualitative explanation as to why the "exact"
theory predicts an average energy that can differ from
the usual position-independent value of 3/28 can be
given as follows. The current density at a given point,
which is made up of the diffusion current plus the drift
current, is a direct measure of how asymmetric the
distribution is, i.e., a measure of how many more
electrons are moving in the direction of the current
than against it. Now the electrons, as a whole, gain
energy from the field only because there are more
electrons moving against the Geld than with it. In the
usual theory in setting up the balance between the
electrons gaining energy from the Geld and losing
energy from collisions with the gas atoms it is assumed
that the contribution to the electrons gaining energy
from that part of the asymmetry corresponding to the
diffusion current can be neglected. Therefore, in the
"exact" theory where the eBect of the diffusion part of
f' is taken into account, it is clear that when the diffusion
current adds to the drift current the mean energy will

be higher and when it subtracts from the drift current
the mean energy will be lower. These conclusions are
consistent with the results for the point source geometry,
for in this case, along the axis the diQ'usion current aids
the drift current and it was here that the energy was
found to be higher, while sufficiently o8 the axis where
the di6usion current opposes the drift current the
energy was found to be lower.

C. Higher Nodes

When this is written in terms of the variables ~, s and p,
it becomes

C,eEEo'
e eoP (Bop)P&(Bo) (eEs o+oo)(f')-&i=

4 D„r (-,')

Xexp( —PeEBs) expQB(o —op))

eEBp'
)&exp—

4 (eEs—o+ op)

It is evident that the higher modes have a decaying
exponential in s'. From the eigenvalue spectrum given
above for 7, it is seen that the characteristic distance
for the first mode above the fundamental is

1/P ieEB=4.9/eEB.

Therefore a distance of the order of 1/eEB must be
reached before the lowest mode becomes the most
important term. This explains why the discussion of the
lowest mode as representing the far-distant distribution
was carried out for s)1/eEB.

1 B f Bf oM (Bf 1 Bf )——"I fo+» + («»'I +-
oBo 4 Bo 6m (Bo eE Bz J

M B'fo MXo MLS(r, o)
+ eEyo + ~ofo= ——,(25)

6m BoBs 6m 2(2mo)'~'

with X=1/Xo-, where E is the gas density and o, is the
momentum transfer cross section. This e uation could
not be converted to a separable form by a change to
new independent variables as was possible in the con-
stant v case. However, when the equation is taken to the
high-field limit, then such a conversion can be made
and, of course, in the zero-field limit it is directly
separable. These two limits will therefore be presented
as separate problems.

A. Zero-Field Limit

In this limit the equation for f' is

IV. CONSTANT CROSS SECTION

The equation that f' must satisfy for a constant
cross-section gas is'

A higher mode from (17), in the high-field limit and
for $ xp (or o oo+eES), is

1 8 Bfog MX'
——" fo+kr
686 Bo) 6m

qofo—
2 (2mo)'I'

C„eEBEO'
(f,o)„„= eZ, ( x)Z, ( )x(x,—t)-i

4orD„I'(-,')
Xexp[ ——,'R'(xp —$)]exp[—P (xo—g)1.

This is to be solved with the source function, 5, given.

by (10). The complete distribution function for this
case is obtained by the same procedure as was used
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with constant v and is

Co
fo Q e tot&TF (p /kT)Ft(&/kT) (z&+tiP)-itP

4n-Dp ~
1(6lm 't'

&(exp ——
I

(z'+pP)'tP (26)
&EM

changing to new dimensionless variables given by

y= (Ap)'

f= 2A (e eE—z),

g= 2eEAp,

where A = (1/eEX) (3m/M)"', the equation becomes
The energy eigenfunction, Ft(te), are solutions to the
separated energy equation — I'f'+

I + '" +-—~'

By k By) Bl gagE Bg)d'F deI +(2+I) +(2jl)F=O,
dg dQ

A y't'M), S

2rtt) 4y't4
where I= p/kT. These functions are discrete and given
by

Ft(N) = e—"I.t&" (u)/Xt,

with /=0, 1, 2 ~. E~, which is the normalization
constant for the density function r(N) =Ne", is given by

This is now in a separable form. The formal solution
to this equation, which can be obtained by the same
procedure that was used for constant collision fre-
quency, is

C eEA
1VtP= (1+l)1"(l+2).

~Dt's

l
dKKJp(Krt)e"'Ft(K yp)Ft(K y)

The constant in front is expressed in terms of Co, the
normalization constant for the Maxwell distribution
e-e/kT

( 5$

i,2 kT)

Xexpt —
q t(2yp'" f)j—

for 2yp't') f and equal to zero for 2yp't'( f'. The constant
C is the usual normalization constant for the
Druyvesteyn energy function, expL —(A. c)'j, and is

and in terms of Do, the corresponding diffusion coeS.-
cient, given by D p(2X/3)(2kT/m )'prtPThe lowest
mode from (26) is of the expected form

(Cp/4prDp)e 'Pr(p'+z') '".
and D, is the corresponding diffusion coeKcient

The higher modes decay exponentially with distance
from the source with the characteristic length of

(M q'"
x/

( 6lrrt)

1 B M (Bf' 1 Bfe)——p pfP+ (eEX)'I +-
8 BE-65't (B peE Bz )

MeEX' B'f' 3A'
+ v'f'=

6m BeBs 6m 2 (2rrtp)'t'

3. High-Field Limit

In Eq. (25), for the limit of high Geld, the term
representing electrons gaining energy from collisions
with the gas atoms can be neglected and the resulting
equation. is

The functions Ft(KP,y) are the eigenfunctions of the
separated energy equation,

d'F ) de )
+(1+y) +(1—KP+yitP«)Ft=o,

with corresponding eigenvalues pot(K'). The density
function for this equation is y'"e&.

Because the behavior of this equation near its
irregular singular point at y= ~ requires a more
complicated solution than the usual exponential, " the
exact analytic form of the solutions couM not be
obtained. However, an approximate expression for the
lowest eigenfunction can be obtained by a perturbation
calculation, in a form which is appropriate for expressing
the far-distant behavior of the distribution function.
The far-distant mode of the complete distribution is

It is clear that because of the mixed derivatives m p & F. L. gnce, Qrttenary g7QFerentug pquateons (Dover pubii-
and s the equation cannot be separated. However, by cations, Inc. , New York, 1944), Chap. XVII.
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given by

C @ED
fo'= — -ewo dEKJ0(E2))Fo(K', y())Fo(K', y)

~D p

&«xp[—(2yo'" —i) ( 0]

We will consider that Ii p and (pp can be expanded into

a povrer series in E', i.e.,

Fo(E2 y) =Fo(0)+E2F0(()+E4F (2)y. . .

s'0(E') = 020"'+E'(00"'+E's)0"'+

When these are inserted into the above integral, foo

becomes

f 0—
mD,

ewo jEEJp(E2/)(Fp 0 (yO)+E FO( )(yO)+ ' ' ')(Fp(0)(y)+K2FO( )(y)+ ' ') eXp[ K2(2yp~ 2 f')p20O)]
0

&&exp[—(2yp'" —i)qp( ](1—E'(2yo'l' —f')yp(')+ )(1—E'(2yo'" —i) 020")+ . )

These series can now be multiplied out and fp' can then be expressed as

f 0—C.eEA
e"' exp[—(2yp f) (po(')] dEEJp(E2))go(1 jEgg+E g2+

' ' ') exp[ (2—yo'/' —f)E happ( )], (27)

where the g functions are given by

gp
—Fo(o) (yo)F0( ) (y)

Fo(&) (yo) Foo) (y)
g(= +

Fp(0) (yp) Fp(0) (y)

Fo (y) Fo (yo) Fo (y)Fo(') (yo)
g2= + (2yl/2 i ) 020(2)

Fp"'(y) Fo"'(yo) Fo")(y)Fo"'(yo)

Equation (27) can then be integrated term by term using the following Bessel integral formula given by Watson, "

dEE2 "+'A(E2)) exp[ —E'0]=exP[—2)'/40]1..")(rj/48)

2gn+1

The expression for fpo becomes

0
0—C,eEAe"' exp[ (2yp'l' —

&) 02o(')] exp[—2/'/4(2yo»2 —f)02o(»]

2nD, (2yo&/2 i ) ~o(()

(2yo"' i )'(( —')0'(2y 0'/' i) 0 o"'—

gij i(0)(~'/4(2yo"' —f)(oo"') g2L2"'(~'/4(2yo"' &)~0"))—
Xgo 1+ + + (28)

then the terms that are erst order in the above small
quantities can be picked out. Therefore, the most
important terms in the bracket are

Pp(2)1
1—gy

2eEAs(lo(') 4(020&'))2(sl (q0&'))peEAs

~0(2) |/)) 2 020(2)e+As (p) 4

I-I+ "
(02 ('))'ks& 8(ppo('))' ks)

If the region of interest is restricted to points that are
far distant from the source but close to the axis, then
the quantities (p/s)2, 0/eFs, and 1/ebs can be con-
sidered small in comparison to unity. When the Laguerre
polynomials are expanded in (28) and it is recalled that
(2yo'/' f) when ex—pressed in terms of 0 and s is given by

(2yp'l' —i ) = 2eZsA [1—(0 00)/eEs]—,

Thus, knowing Ii p to 6rst order in E' and q p to second
order in E' results in an expression for f' that is valid
near the axis [first order in (p/s)2] and at far distances
from the source (first order in 1/eEAz).

In the Appendix, P0 and yp are obtained by a pertur-
bation calculation up to 6rst and second order in E',
respectively. From these results the g functions and the
expansion coefficients for yp can be obtained as

go= (2/2r»2)e
—(w+wo)

g~= —Z o-(I--")(yp)+I--") (y)),
e 0

&,(0)—0

42
o) =2/2r&/2

020(2) = —2ao/or'/2.
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Values for a„, for n up to four, are given in Table II of
the Appendix.

Therefore, fo' can. be expressed in terms of e, z and p as

C, expL —(A «)')
0— (1—(e eo)—/eEz) '

4n-D, s

m'~'eEA p'
Xexp

4z(1—(e—eo)/eEz)

(aors. g&) a07r"eEAz
X 1—(p/z)'I +—I+ (p/z)'

64

1 (aoz'~' gg )+ I + I+" ~ (29)
eEzA 2 z'"

It is immediately obvious that for points very near the
axis but at far distance from the source, the expression
reduces to the usual approximate form taken to this
same limit, i.e.,

pEp2-
(C./4n D,z) exp L

—(A c)') exp 4'
where p/D=x"eA.

For points oG the axis it is more difficult in this case
to compare (29) with the approximate f' than it was
for the case of constant collision frequency. However,
expressions can be obtained for the average energy,
e, , and for the density, e, which can be compared with
those from the approximate f' These . expressions are

I'(5/4) 1 0.410
1—0.198(p/z)'+

I'(3/4) A eEAz
and

I= (AD,z)
—'

0.39
X 1—0.204(p/z)'+ +0.023eEAz(p/z)4

ebs
x'~'eEA p'-

Xexp
4s

The integrals involving the g~ function were evaluated

by using the generating function for the Laguerre
polynomials. ' The numerical constants in these expres-
sions are accurate to a few percent. As. in the constant
collision frequency case the initial energy eo was taken
to be zero. It is to be noted that e, goes to the expected
value of (I'(5/4)/I'(3/4)A) for points very close to the
axis but far from. the source. Also it is apparent from
the comparison of these relationships with those
obtained for constant collision frequency, which are
given by (23) and (24), that the qualitative discussion
and conclusions for the case of constant-collision
frequency will apply directly to the constant cross-
section case.

VL TOWNSEND-TYPE D/p EXPERIMENT

The theory as developed above has demonstrated
that in general it is not correct to ascribe to electrons
moving through a gas a distribution in energy that is
independent of position. In turn this implies that such
electrons are not characterized by a unique di6usion
coeRicient and mobility. However, the assumption of a
unique D and p, does form the basis for the usual
interpretation of the Townsend-type D/p experiment. ' '
Therefore, this type of experiment will be re-examined
in terms of the above theory to And if, under the
conditions of the actual experiments, appreciable errors
are introduced by using the usual interpretation. While
it is recognized that the above theory does not take
into account the e6ect of electrode boundaries or of
inelastic processes in the gas, both of which are im-
portant for an accurate description of the experiments
as actually carried out, still the essential features of the
D/p experiment are represented by the point source in a
gas in which only elastic collisions take place. It is
therefore reasonable to suppose that the theory will
give at least an estimate of the errors involved.

%hen the distribution in energy is assumed to be
independent of position for a constant collision fre-
quency gas, the expression for the density normalized
with respect to the value on axis can be obtained from
(8). This density ratio, which will be denoted by X,
is given by

(&)".--= (1+(p/z)') '"
Xe p( —;eE»L(1+(p/z)')'~' —»}.

This ratio could just as well be expressed in terms of
D/p where D/p, = 1/eB. This expression is taken for the
high-Geld limit since it has been shown earlier that the
usual expression for the density is only in error when
the average electron energy is large in comparison to
thermal energies. It is clear that if the ratio of the
density at some point oG axis to the density on axis is
measured, i.e., if the density ratio is measured, then 8
(or D/p) can be calculated. "

The more accurate description of this experimental
situation has shown that while the density ratio is still
given by the above expression for points very close to
the axis, a more correct expression for points further
o6 the axis is

(X). ..g——L1+-4 (p/z) ') '" exp) —r'eEBz(p/z) )
These expressions can most easily be contrasted by
expanding each in powers of (p/z)' up to the point that
their diR'erence is apparent. This results in

(&)".--= (1 k(plz)'+ '6«B—z(p/z)')—
XexpL ——;eEBz(p/z)'), (30)

'4 In an actual Townsend experiment a current ratio is measured
and not a density ratio. However, since under most conditions the
mobility current represents the majority of the measured current,
the above description in terms of a density ratio is sufBciently
accurate for the present purpose.
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TABLE I. Maximum fractional difference in n and D/p, .

pEz/D

50-500 (Long tube)

2—10 (Short tube)

( p/ z)' (Sn/n) (%) L&(D/p)/(Dlp) 3(%)
0.005 0.3 0.1
0.02 5 0.5
0.24 15 8
0.9 100 22

as calculated from (30) and (31) for each (p/z)'. These
6gures show that for a given value of ebs the density
ratio as predicted by the two diferent theories can
diBer appreciably for typical experimental conditions.

However, the important question is how diGerent is
the value of pE/D as predicted by the two theories for
a given X. An expression for the fractional difference
in D/p (or 1/eB) for a given Ã can be obtained by
using (30) and (31).This is given by

and in

(X),„„t= (1—-', (p/z)') expr —aeEBz (p/z)'). (31)

Typical experimental values for (p/z) and eEBz
(=pEz/D), which are also representative of previous
measurements, ' can be obtained from the recent vrork

of R. W. Warren and the author. 'In these measurements
the tvro experimental tubes that were used diGered in s,
the distance from the source to the plane of measure-
ment, and in (p/z). Table I gives the range of pEz/D
covered in these measurements along vrith the values
of (p/s)' (two values per tube) for each of the two tubes.
Also given in Table I is the maximum fractional
diBerence in E, i.e.,

(&)approx (&)exact

(&)approx

ever, these inconsistencies, which were eventually
resolved by an empirical approach, could not be
explained, even qualitatively, by the results of the
present theoretical investigation. Therefore it would
appear that in most cases the experiments have not
been appreciably affected by using the usual interpre-
tation of this experiment and in the cases where (p/z)0
vras large enough for appreciable deviations to exist,
such deviations were masked by other e6ects.

APPENDIX: LOWEST MODE ENERGY
FUNCTION OF CONSTANT e

The energy diRerential equation for this case is

d'F dF
y +(1+y) +(1—It'+y'"oo)F=0

Making the transformation

F(y) = e "h(y), -
the equation becomes

dh dh
y—+ (1—y)—+(y'"o —&')h=0 (A1)

We want to obtain the 6rst few terms of a power series
expansion in K2 for yp and ho, the lovrest eigenvalue and
eigenfunction for this equation. That is, we want to
find the 6rst few terms in

and ln
ho= ho'el+a'ho&'&+E4ho"'+.

0 0= too"'+E."9 0"'+I"'0 0"'+ (A1)
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(D/p)approx (D/p) exact

(D/p )approx

This can be expressed as

S(D/p) —4(p/z)'
D/p 2 pEz vr here

Here we have considered yp to be the eigenvalue
which is a function of E2. However, in the actual
calculation of above terms it is more convenient to

~(D/ ) reverse this viewpoint and to consider E the eigenvalue
—(p/z)z ln —

~

—4(p/z)0. which is a function of y and then to consider the term
D/p 8 (y'"q) in (A1) as a perturbation. It is convenient to

put (A1) into a standard. quantum-mechanical form"
so that the usual perturbation formulas can be used.
Kq. (A1) can then be expressed as

&olt o+ rp&'0o = te04 o,

where ln(1/1V) has been replaced by (pEz/4D)(p/z)'.
Table I gives the maximum value that this fractional
difference can attain. It is clear from these figures that
while the fractional difference in D/p is not as large as
in E, still the difference of the order 20%%uz corresponding
to the largest value of (p/z)' should be experimentally
observable. In the course of the measurements described
in Ref. 2, certain inconsistencies did arise using the
conventional interpretation of this experiment. How-

d2

&o=y +(1—y)—,

go=ho,

Wp=E e

"L.I. Schi6', Qttrtnttrrn Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1955), Chap 7.



2108 JAMES H. PARKER, JR.

When q is equal to zero, the complete set of discrete,
orthonormal eigenfunctions are9

TABLE II. Constants for the perturbation calculation.

2H p'/pMP

P„=I„( ) (y)/pp I

where 1.„(') is a Laguerre polynomial with correspond-
ing eigenvalues of

0 ~$ ~2 0 ~ ~ ~Q ~ ~ ~ Qon p j

|—1/2
-1/8—3/48—15/384

=0.259
1/2
1/32
1/288
5/12 288

kp= (4/7r)' '(l E' P—G„L„&'&(y))
n-0

and

"e written in terms o~ ~2 asThese functions are orthogonal with respect to the
density function e ~.

Using the usual perturbation formulas, Po and wp,

to second order in perturbation theory, are"

- (&-o')'
'leo= yahoo —

pp

n=l

+np
So=Up —

V Z
n=l

p o= (2/m'")E'(1 —E'ao).

The constants a„can be expressed in terms of H„p' as

4 ~ (H„o')'

where we have explicitly put Ep=0 and with H p'

given by

2 /H. p'[
for n~& 1.

H 0 = g e "UpU dp'.
Values for c„are given in Table II for e up to four. In
summary, the expansion coefB.cients for hp and qp are

pp pp' (H p')'
+ p +

&oo' (&oo')' =~

LI no
4p=&o — Q & +

Ppp n=l E

(A3)

The function Po which is normalized with respect to
p & is now renormahzed to y'/2e ~. Then pp and hp can

The value of H„p' can be evaluated with the help of the
generating function for the Laguerre polynomials' and
this quantity is tabulated in Table II for e up to four.

We can now turn around and obtain ppp(w) and
Po(w) and these relations are

4) 1/4

ho'o'= —
~

x)
1/4

&o"' = —
~

—
~ P ~~1-~"'(y),

n~p

+,(p) —0

+,(0)—
~1/2

2uo
~p(2)—

~1/2

(A4)


