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Correlation ESects in Many-Fermion Systems: Multiple-Particle Excitation Expansion
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The ground-state wave function and energy of a 6nite system of interacting fermions are expanded in
terms of multiple-particle excitations on an uncorrelated zero-order state. The resulting set of coupled
equations constitutes a systematic variational generalization of Hartree —Fock theory. Comparison is made
with many-body perturbation theory and it is shown that to any order the theory incorporates an infinite
number of perturbation theory terms. Solutions of the equations for ground-state atomic systems are dis-
cussed and related to previous work using many-body perturbation theory. It is shown that the sums of
perturbation terms necessary for convergence are automatically included in the equations for two-particle
excitations. Application of the equations to open-shell atoms is described.

I. INTRODUCTION

'ANY systems of interacting fermions are well
~ approximated by uncorrelated wave functions

and, in particular, by determinants of single-particle
states determined by Hartree-Fock theory. It is natural
to attempt to expand the true wave function for such
systems in multiple-particle excitations on the zero-
order approximation. Ke present here such a systematic
expansion which corresponds to including firstly one-
particle excitations, secondly two-particle excitations,
and, in succeeding orders, excitations of more and more
particles. The magnitudes of the excitations are deter-
mined by a variational approach. The resulting coupled
equations are derived in Sec. II. Similar equations were
previously derived by Nesbet'; our equations differ
from his in that they show the explicit dependence
upon the potential V which is used to determine the
single-particle states for the expansion of the wave
function If). However, the chief advance in this paper
lies in the identification and approximation of those
terms which were shown to be important in a previous
calculation of the ground state of the beryllium atom
using many-body perturbation theory. ' Section II also
contains a treatment of the eGect of using the Hartree-
Fock potential and the approximate inclusion of three-
particle and higher excitations.

In Sec. III the solutions of the coupled equations are
discussed and related to the beryllium calculation. ' In
that calculation it was necessary to include high orders
in the perturbation expansion. It is shown in Sec. III
that the important in6nite sums of perturbation terms
are automatically included in the coupled equations
for two-particle excitations. Application of the equa-
tions to open-shell atoms is described at the end of
Sec. III.
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IL THE COUPLED EQUATIONS

1. Derivation

In order to solve the equation

~l~) =~I~),
both H and lib) are expanded in terms of a complete
set of single-particle states lrt) which are determined
from the eigenvalue equation

(T+V) Ist)=e„lst).

The operator T represents the one-body operators of
the Hamiltonian. In the atomic case,

T= pt'q'/2rrt —Ze'/r . —
The potential V is a one-body potential which approxi-
mately accounts for the effects of the interacting
femions. The particular choice of V is arbitrary except
that it must be Hermitian; it is often chosen to be the
Hartree-Fock potential.

The Hamiltonian H in second-quantized form is

H=Q e,rt.trt.+ Q (ttblvlcd)rt trtstrtart,
a a, b, c, d

Z(b I
&

I
a)—ns'n' (2)

The sums are taken over all the single-particle states.
In the second summation only distinct matrix elements
are included; for example, (brt

I
e

I
dc) is not distinct from

(ab
I

ttl cd).' It is assumed for simplicity that the ground-
state wave function lb) may be approximated by an
unperturbed solution C o) which is a single determinant
composed of the X states lst) which are lowest in
energy. %hen it is necessary to express the unperturbed
state Ice) as a linear combination of determinants, the
following approach is still applicable, but it is then
necessary to consider correction terms for each of the
determinants and the equations become more lengthy.

The ground-state wave function is expanded as

l~) = Ic.)+Z f(k;-)."..Ic.)

+ 2 f(II"~P)ns'ns'nw-l~'o)+" (3)
~,P, I, r I

' J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).
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The states labeled k are excited states and not occupied
in I CO). The states labeled with Greek letters are states
which are occupied in ICO) and are called unexcited
states. An unoccupied, unexcited state is called a hole
state. In all the sums only distinct terms are included.
Terms which diBer only in permutations of the excited
states or the hole states are not distinct.

When Eqs. (2) and (3) are substituted into Eq. (1)
an infinite set of coupled equations is obtained by
equating terms with the same single-particle states.
It is important in the appreciation of the theoretical
basis of these equations to realize that this procedure
is equivalent to a variational approach where the f's
are determined by minimizing Q IVI ') subject to the
constraint Q IP)=const. Anticipating the rapid con-
vergence of the approximation scheme, the following
discussion is limited to one-particle and two-particle
excitations, Higher order excitations are discussed in
Sec. II.3.

The first equation in the system is obtained by taking
the I40& component of the result of inserting Eqs. (2)
and (3) into Eq. (1):

N N

Z -+Z&(»)-I I»)-2&vivI»
n=l 7(5 7=1

+2{Z&~vl~l(kv)-) —(~l vlk)}f(k ~)

result is

(ep+eg+ g c e—. cp—)f(kk'; np)

+ & {Z ((») *I&l»&—(vlvl»}f(kk' ~p)7«.P &«P

+((kk'), I.I~p)y p &(kk'), l~lk"k ")f(k"k"', &p)

+ Q ((vk') lvlk"p)f(kk";uv)
7gf I 7PcP

+ p &(k v), l.l~k")f(kk-; vp)7«

+g{ p ((vk'),„Ivlvk") —(O'I Vlk")}f(kk"; np)
k" 7«,P

y p &(kv), l.lk-p)f(kk-;. v)
gg/ I 7+P

+ g ((vk). Ivlk"n&f(k"k'; vP)
kti

+2{Z ((kv)-i~1k"v& —(kl Vlk")}f(k"k';~P)
k" 7«,P

+ 2 ((») I I p)f(kk';»)
7 &a.p
bWa, p

+ 2 {-Z &(vb) I
~ IPb&+&v I VIP) }f(kk', ~v)

+ Q &nPlvl(kk'). &f(kk', nP)=E, (4)
a, p, k, k'

where&(~b). *l ~l «&=(~b
I ~l «&—(b~ I ~!«& The~~"~-

I ~o)
component yields

(~~+ 2 ~-—~-)f(k; ~)+ 2 ((kv)-Ivln» —
&kl via)

+ Z {-2 &(»)-I I b&+&vl vl-)}f(»', vp)

—2 &(vk')-l~l&&f(k' v)
7~a,p

—Z ((kv).*l I p)f(k', v)
7«P

+g((kk'), I elk"P)f(k"; n)

+ 2 &(vk)-I Ik')f(k" v)
k', 7«

+2{2 &(kv).*l ~
I
k'v& —

&k I
V lk'&}f(k' ~)

{2&(») I
~l&b& —

&vl vl&&}f(k; v

+ & {& ((»)-I ~ I »&—
&v I

v l»}f(k ~)

+ 2 &(Pv) I ~l k'~&f(kk'Pv)
P«,7«

+ & {& &(»)-I&lk'b& —(vl Vlk')}f(kk'~)

+g((kk'), I rink"&f(k"; p)

+{2 &(vk')-l~lvp& —&k'I Vlp)}f(k;~)
7«

—{2 ((vk)-l~l vP) —
&kl VIP)}f(k'; ~)

+{2 &(kv)-I ~1~v&—(kl Vl~&}f(k'; p)

—{E &(k'v).*l~l~v& —&k'I Vl~&}f(k' p)

=Ef(kk', aP) . (6)

2. The Hartree-Fock Potential
k', 7 5«

A great simplification in Figs. 4, 5, and 6 results

+ Q ((kv), lgl k'ki') f(k'p' ~ ~v) —jFf(k ~ a) (5) from choosing V to be the Hartree-Fock potential Vap,
k', k",7 dered by matrix elements

The third equation in the series is obtained by multi-
plying Eq. (1) from the left by (4»lg Jpstpz g&. The

(al vHplb)= g &ariel (be).„&.
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FIG. 1. Diagrams corresponding to
the terms of Eq. (10). (a) Diagrams
for f(k; n) and f(kk', aP) Dia.grams
(b), (c), and (d) correspond to the
terms labeled (b), (c), and (d) in
Eq. (10).

(a)

k k'g
(b)

'k k i' T

(c)

Equation (4) becomes

Z Z»= —g & pn( (v(kk'), )f(kk', @),

where

n 1 y~l

while Eq. (5) for f(k; n) reduces to

(es e)f(k; n—)+g & (yk). I
v i(k'n) f(k', y)

(a) (b)

+ Z ((Pv)-Ivlk'a&f(kk';Pv)

(c)

+ P &(k~), (v~kk-)f(kk-; &)

~en V is chosen as VHp, Eq. (6) reduces to

(g) (es+ e,. e. —e,)f—(kk'; ap)+((kk'), )v tnp)

+ g ((kk') iv(k"k"')f(k"k"', aP)

(i)

+ g &(yk') ~(v ((k"P&f(kk"; ny)

(ii)

+ Z «k'), I I-k-&f(kk-;.P)

(iii)

+ g &(&k).„)v( k-P)f(k-k; n&)

(iv)

+ g&(7k) (v)k-a)f(k-k; &p)

(v)

+Z&(v~) I l~)f(kk', 7~)

= (E EHp) f(k—; n). (10)

The sums over unexcited states are no longer restricted
because now there are additional terms arising from

incomplete cancellations with the Hartree-I'ocI): po-
tential VHp. They correspond to diagrams in pertur-
bation theory in which the exclusion principle is

violated in the intermediate states. ' The terms of Eq.
(10) are represented by diagrams in Fig. 1.The diagrams
provide a connection with the corresponding terms of
perturbation theory. In order to correspond more

closely to the diagrams of Goldstone perturbation
theory, ' the term (a) of Eq. (10) should be brought to
the right-hand side and then the equation divided by
(e —ez+E Z»). In Goldsto—ne's theory, the energy
denominator would be (e —eq). The term (E—EHp)
incorporates the summation of many higher order terms
in perturbation theory and corresponds to inclusion of
the third class of EPV (exclusion-principle violating)
diagrams of Ref. 2. It is assumed in this paper that
(E—EHp) is not large relative to (e —es) and this
assumption constitutes a restriction to 6nite systems.

(vi)

-Z«»)..l l~u(k;. )

(vii)
—Z((kv)-I I P)f(k" v)

(viii)

+ g((kk').„(v
~
k"P)f(k";a)

(ix)

+g((kk'), i(v ink")f(k"; P)

(x)
= (Z Z,)f(kk', np—). (11)

Again, as in Eq. (10), the sums over hole states are

unrestricted because of contributions from the po-
tential VHp. The diagrams for Eq. (11) are given in

Fig. 2.
3. Higher Rxcitations

The discussion so far has only included one- and

two-particle excitations, and there are, of course, exci-
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(a)

k'

Fxo. 2. Diagrams corresponding to
terms of Eq. (11). (a) Ladder diagram
for term (i). (h) Ring diagram and
hole-particle diagram of term (ii).
The diagrams for (iii), (iv), and (v)
are similar. (c) Hole-hole interaction
diagram of term (vi). (d) Diagram
for coupling of one-particle and two-
particle excitations of term (vii). The
diagram for (viii) is similar. (e)
Diagram for (ix) and (x). The ex-
change diagrams for (c), (d), and (e)
have been omitted.

tations up to X particles. When higher excitations are
included, Eq. (4) still involves only one- and two-
particle excitations directly. Equations (5) and (10)
for f(k; rr) must be modified to include coupling with
f(kk'k";nP&) and Eqs. (6) and (11) for f(kk';nP)
must include terms coupling with f(kk'k";nPy) and
f(kk'k"k"'; rrPV». The importance of higher excitations
depends both on the size of the system and the "good-
ness" of the single-particle wave functions used in the
expansion. In perturbation theory, both one- and two-
particle excitations enter in erst order. Three- and
four-particle excitations enter in second order. When
good single-particle wave functions are used, the matrix
elements involving unexcited to excited states may be
expected to be small, as found in Ref. 2. In Eq. (5)

P ((P&)„.l. lk k-)f(kk k-;.P&) (12)

is added to the left-hand side (lhs) of Eqs. (5) and (10)
for f(k; n). The following terms are added to the lhs
of Eq. (6) due to triple excitations:

for f(k;n) and Eq. (6) for f(kk', oP), the three- and
four-particle terms correspond to two higher orders of
perturbation theory than do the lowest order terms.
When X is not so large that the possible number of
higher excitations can overcome the reductions due to
terms reduced by two orders of perturbation theory,
higher excitations are not expected to be very im-
portant.

When three-particle excitations are included, the term

Z ( Z ((») lelk-~)-(vlVlk"))f(kk'k";. ~~)- Z ((»).*lelak-)f(kkk-;-»)
~,arI I~a,p, q ~+p, g I 1

+ 2 ((k'v), l
lk"k'")f(»"k"', P~) — g &(»),I.I k")f(kk k"; ~P|)

Coupling with four-particle excitations adds the term

((»)ex!elk k"')f(kk'k"k"'i rxP») (14)

to the left-hand side of Eq. (6) for f(kk'; nP). Equation
(11) for f(kk'; nP), using VnF, is modified on the lhs
by the last four terms of Eq. (13) (without restrictions
on the sums over hole states) and by Eq. (14).

The terms f(kk'k";+PE) and f(kk'k''k'";aP78) are
determined from equations which are similar to Kqs.
(5) and (6). When X is not large, it should be quite
valid to truncate terms beyond four excitations in the
equations for f(kk'k"; re) and f(kk'k"k"', nP») and
to exclude all higher excitations. A simpler approxi-
mation is to approximate three- and four-particle
excitations by products of one- and two-particle
excitations and to omit three-body and higher clusters,
as has been discussed by Brenig and Sinanoglu. 4

4 0. Sinanoglu, J. Chem. Phys. 36, 706 (1962);W. Brenig, Nucl.
Phys. 4, 363 (1957).

y, b&n; k"

+ 2 &(kv)-I elk"k"')f(k"k'k'" aW') (13)
t 1

III. APPLICATIONS OF THE EQUATIONS TO
ATOMIC STRUCTURE CALCULATIONS

1. Solutions and Perturbation Theory

The set of coupled equations (4), (5), and (6); or
(8), (10), and (11) if Vnp is used; may be solved for
the ground-state energy E. That is, the matrix deter-
mined by the complete set of equations must be
diagonahzed. The lowest eigenvalue is the ground-state
energy and higher eigenvalues correspond to excited
states with the same symmetry. The set has already
been truncated because higher excitations have been
omitted. The continuum may be divided into finite
blocks such that the variation of f within any given
block is small and the calculation is then reduced to
that of a finite number of coupled equations provided a
finite number of bound excited states is used.

When VnF is used, the one-particle excitations f(k; n)
are relatively unimportant compared to the two-
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particle excitations f(kk'; nP), and only the f(kk', ~P)
are needed to determine E—EHF.

The solution of Eq. (11)is, in the first approximation,

f(kk'; nP) = (p +p p p„—pI;—((—nP),„I
v

I nP)

+E EHF) ((kk'), I
p

I p) . (15)

The term (aPIvInP) in Eq. (15) comes from the
diagonal part of term (vi) of Eq. (11).It is the same
term used in Ref. 1 to shift all energy denominators of
the terms in perturbation theory. It might be expected
on physical grounds because p +pp ((~—P), IsInP) is
just the effective two-particle energy for particles in
states Ia) and IP&. The ladder diagram term (i) of Eq.
(11) accounts for the interaction of two particles in
states Ik) and Ik'). Since the states Ik) are determined
by a potential in which all the unexcited states are
filled (in the HF case), there is also a correction to
account for the fact that Ik) and

I
k') are propagating

with Ia) and IP) unoccupied. This correction comes
from the terms y=P in (ii) and (iv) of Eq. (11) and
from terms y=n in (iii) and (v) of Eq. (11). These
terms were called hole-particle EPV (exclusion principle
violating) terms in Ref. 2 because they involve hole-
particle interactions (and exchange) in which the
exclusion principle is violated in going from one hole
state to the same hole state.

In the numerical calculations on Be, it was found
necessary to include certain terms beyond second order
in perturbation theory, namely the ladder diagrams
and the hole-particle EPV diagrams. ' If only these
terms are retained, then Eq. (11) becomes

f(kk', nP) =D '((kk'), „IpInP&,
where

D= p.+ps cg. pI, ((—nP),—I v In—P)+8 EHp—
Q ((kk') I

v
I k"k"')f(k"k"',aP)/f (kk'; otP)

(16)

g((pk'). —I ~I k"p&f(kk"; Qp)/f(kk', ap)
fear

r

—P((k'n).
I

V Ink")f(kk"; aP)/f(kk', QP)

—Q((nk). I
v

I
k"n&f(k"k'; nP)/f(kk', nP) . (17)

The last four terms on the right-hand side of Eq. (17)
are related to the expression (4a+2b) which was used
in Ref. 2 to sum the hole-particle EPV diagrams. The
ladder term of Eq. (17) is related to the factor ( of
Ref. 2 which summed the ladder diagrams. Equations

' For example, the correlation energy among the 2S electrons
was calculated to be —0.0285 a.u. in second order; when the
ladder and hole-particle sums were included the 2S correlation
energy was calculated to be —0.0439 a.u.

(16) and (17) are equivalent to the calculation of Ref.
2. The necessary higher order terms of perturbation
theory are thus seen to be included in the multiple-
particle excitation theory in a straightforward manner.

The last 6ve terms on the rhs of Eq. (17) may have
a dependence on k and k' which simpli6es the calcu-
lations. This was found to be true in the numerical
calculations for Be where each of the five terms could
be written to a good approximation as C, (p +ps —pq—pq —((nP),„I

w
I nP)), where C; is an appropriate

constant for the ith term. '

Equation (2) may be written as

H=Hp+n V, — (19)

where v=P~&;~(r, ,) ', V=+; P V(r~), and HpIC'p)
=Ep

I
4p). When Eqs. (18) and (19) are substituted

into (1), there results:

where AE=E—Ep. Since L and S commute with H
and e, the calculated ground state IP& will be an
eigenstate of L' and S' if L and S commute with V
and IC p) is an eigenstate of L' and S'. For closed-shell
atoms, VHF defined by Eq. (7) commutes with L and
S and

I Cp) is a single determinant.
For open-shell atoms L and S, in general, do not

commute with VHp and so it is desirable to choose a
V(r) which approximates VHF as closely as possible
but which commutes with L and S. As described in
Sec. II.1, it is convenient but not necessary that ICp)
be described by a single determinant. In calculating
the ground state of many open-shell atoms it is possible
to choose ICp) as a single determinant because the
ground state usually has the maximum spin consistent
with the exclusion principle. The energy is independent
of M'I. and Ms and the choice 3fI.=L and M's= 8 often
makes ICp) a single determinant.

Calculations for open-shell atoms, using Eqs. (4),
(5), and (6), are planned. The numerical work described
in Ref. 2 indicates the feasibility of these calculations.
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2. Application to Open-Shell Atoms

Since the Hamiltonian H commutes with the total
orbital and spin angular momentum operators L and S,
the eigenstates for this Hamiltonian must be eigenstates
of I.' and S'. The unperturbed eigenstate ICp) should
have the correct symmetry (in L and S) of the true
ground state

I P) which may be written as


