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Absorytions of Electromagnetic Waves in Electron-Phonon Systems
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A study of the absorption of electromagnetic waves in an electron-phonon system is described, for waves
whose frequencies are high compared to the collision frequency and whose wavelengths are long compared
to the Bohr (Debye) radius. The treatment rests on the introduction of the temperature-dependent Green's
function and Kubo s formula for the conductivity. An exact expression for the conductivity, where collective
effects are properly taken into account, is obtained, assuming the number of electrons in a Bohr (Debye)
sphere is large compared with one. The application of this theory to degenerate semiconductors is suggested.

I. INTRODUCTION

HE purpose of the following work is to calculate
the absorption of high-frequency electromagnetic

waves by an electron-phonon system. Such a system pro-
vides one of the mechanisms of a realistic model for
investigating infrared absorption by highly degenerate
semiconductors as InSb, InP, GeP, etc. In these de-

generate semiconductors, which are ionic to a small

degree, the conducting electrons interact with the
polarized vibrations of the lattice (optical phonons).
The interaction between the electrons and the optical
phonons is weaker here than in ionic crystals, which
allows us to assume a weak coupling between the elec-
trons and the optical phonons. An additional mechanism
for the absorption of high-frequency electromagnetic
waves is that due to randomly distributed frozen ions
which was discussed by Ron and Tzoar. ' for the case of
degenerate semiconductors. In the following, we shall
be interested only in the absorption due to the inter-
action of electrons with optical phonons.

This phenomenon is important in the frequency range
co&co„where ~ is the external Geld frequency and ~, is

the frequency spectrum of the optical phonons, as a
function of its momentum q. Since the frequencies of
interest are of the same order of magnitude as the plasma
electron frequency, collective effects of the electron gas
must be taken properly into account. Due to the inter-
action of the electron with the crystal, their effective
mass and charge is such that the number of electrons in
a Bohr sphere is larger than one. Hence, the plasma
approximation for the electron gas can be used (see, for
example, the article of Wolff'). The present problem has
been treated also by Gurevich, Lang, and Firsov. '
However, they completely neglected collective effects
which, as we point out, should be taken into account.

Section II deals with the well-known relation between
the Kubo' formula for the conductivity a,nd the tempera-
ture-dependent Green's function, We employ the dia-
gram technique of Luttinger and Ward' to obtain our

' A. Ron and N. Tzoar, Phys. Rev. 131, 1943 (1963).' P. A. Wol8, Phys. Rev. 126, 405 (1962).
3V. L. Gurevich, L G. Lang, and Yu-A. I'irsov, Fiz. Tverd.

Tela 4, 1252 (1962) Ltranslation: Soviet Phys. =Solid Sts, te 4,
918 (1963)g.

4 R, Kubo, J. Phys, Soc. Japan 12, 57O (&957).
~ J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (4960},
6A. A. Ahrikosov, L. P. Gor'kov, and I. E. Dzyalnshinsky,
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result for the absorption coefficient in Sec. III. We
reserve Sec. IV for discussion and conclusions.

II. EVALUATION OF THE ABSORPTION
COEFFICIENT

We start from the general expression of the conduc-
tivity for a system of charged particles as given by
Kubo' for wave number equal to zero (A is taken to be
one):

cc P

o (re) = - dr e""' dX(j(r —iX) j(0)),
3V. 0

where ~ is the frequency of the electromagnetic wave,

j(r) erHrj (O)e
—iHr (2)

is the Fourier transform of the current operator iIl the
Heisenberg representation for wave number zero, and
the average of an operator 0 is given by

(0) Trlee'n+&s —Irio) (3)

ln Eqs. (2) and (3), H represents the total Hamiltonian
of the system, 0 is defined by

e PQ —Tr( e—s(pN H))—
p and S are the chemical potential and the number
operator for the electrons, respectively, and P the in-
verse of the temperature in energy units. The current
operator used in Eq. (2) is defined by

where we use the following convention for Fourier
transforms:

d(u—Q exp( —i&~r —ik. x) f(k,ro)

f(k, to) = dr dx exp(i~r+ik x) f(x,r),

Zh. Eksperim. i Teor. Fiz. 56, 9OO (1959} /translation: Soviet,
Phys. —JETP. 9, 636 (1959)j.
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In order to render Eq. (1) in a more convenient form,
we integrate it by parts and obtain

(7 4) =Op 4) Oy CO (7)
where

o p(o)) =icd„s/47rcv.

Here pp~= (4z.e'rr/m)'" is the plasma frequency, I, e,
and m are, respectively, the electron density, charge,
and mass, and

grams (terms) of the perturbation expansion, we con-
sider processes proportional to the number of the elec-
trons, S, as 6nite, and include them to all orders, '

while those processes which are not proportional to X
are treated as small. This point has been discussed in
detail by Balescu. '

Our electron-phonon system is described by the
:Hamiltonian:

Oy GO

3Q) V
dr e'"'([3(r) j(0)j), Hp ——Q e„aptap+Q a),b,rb, (16)

where [, ] denotes the commutator.
We next define a Green's function

M(~) = (T(j(~) 1(0))),
3V

47l e
P&7 ~ Gp+q Cp~ q a pl(Sp

2V pp'q k~

+ Q (C,ap+pta, b, +H.c.) . (17)
Vl. /2 qp

where T is the Dyson ordering operator and

M(u)„) = de e ""M(u),

where

co„=27rin/P, ran=0, &1, +2, (13)

We now define M(z) as the analytical continuation of

M(a&„) from the infinite set of points 2rrin/P (m) 0) on
the positive imaginary axis of s to the entire upper
half-plane of z. It is then easy to show' ' that o.r(rp)
= (1/i~)M(~+is) for e —+ 0+. We therefore obtain

~(pp) = ~p(o )+ (1/i(o)M (~+ie); e ~ 0+ (14)

as our useful expression for the absorption coefficient.

III. EVALUATION OF THE ABSORPTION
COEFFICIENT

We turn now to the calculation of M(ce„) using a
perturbation expansion technique, and then resumming
al/ diagrams (terms) which contribute to the conduc-
tivity for quantum (classical) plasrnas, under the condi-
tion that the number of particles in the Bohr (Debye)
sphere is large, the frequency is high compared to the
collision frequency, and the wavelength of the incident
deli, is taken to be infinite. Thus in resumming the dia-

' A. I.Larkin, Zh. Eksperim. i Teor. Fiz. 37, 264 (1959}Ltrans-
lation: Soviet Phys. —JETP 10, 186 (1960)j.' A. Ron and N. Tzoar, Phys. Rev. 131, 12 (1963}.

The function M(u), defined in Eq. (10) is periodic in I,
i.e.,

M(m+P) =M(u),

and, thus, its Fourier transform. with respect to I is

Here or, is the phonon frequency spectrun1 as a function
of its mornenturn q, C, is the coupling between an
electron and a phonon of mornenturn q, and e„ is the
kinetic, energy of the electron having momentum p.
Here up~, ap and bq~, b, are, respectively, the creation
and destruction operators for electrons and phonons,
which obey the usual commutation relations.

The basic rules for the perturbation expansion of
M(pp„) and their diagrammatical representation are
given essentially by tuttinger and Ward, ' with the
addition that here we also have an electron-electron
interaction via a phonon. The essential ingredients of
the perturbation expansion are the free electron propa-
gator given by

and indicated diagrammatically by a solid line; and the
Coulomb and phonon interaction lines, respectively,
given by dotted and dash-dotted lines. We represent a
Coulomb interaction by means of its matrix element
4z.e'/k' and a phonon interaction by means of the pro-
duct ~Ck~'Di(n ), where ft and n are the momentum
and "complex energy" transferred by the interaction,
and D&(n ) is the free phonon propagator given by

Di(n .) =2cvg/(n„' —cvP) . (19)

The coupling term& ~Ci~'=2vre'k pep '&u~cp~ '(&pp —re(),
between two electrons via a phonon is considered to be,
for degenerate semiconductors, of the order of e', and
of long range because of the k ' term. Here co~, co~,

respectively, represent the frequencies of the longitudi-

' R. Balescu, Phys. Fluids 4, 95 (1960). Many references con-
cerning quantum and classical plasmas can be found here.
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e,(-.) =
(2')'

fn+ai2 f—u c(2—
dp

&I+~i 2 &u—C/2 &m

(21)

FIG. 1. The class
of diagrams which
contribute to the
high-frequency con-
ductivity. B,(n„)=47re'/g'+

~
C, ~'D, (o,.) .

(22)

We now calculate 3/I, (~„) for our symmetrical model
by summing all the diagrams given in Fig. 1 and obtain

(24)

nal and transverse optical vibrations and eo represents
the lattice static dielectric constant. (See Ref. 3.)

In order to determine the diagrams (terms) which
contribute to the absorption coeScient at frequencies-
high compared to the collision frequency and wave-
lengths long compared to the Bohr (Debye) radius, we
must recognize the three parameters of the system; the
number of particles in the Bohr (Debye) sphere, the
strength of the electron-phonon coupling and the num-
ber of excited phonons which is merely a measure of
the crystal temperature.

For the practical case of degenerate semiconductor at
low temperature one may assume a weak electron-
phonon coupling and small number of excited phonons.

However, for the sake of generalization, we erst
solve the symmetric problem in which the dielectric
function of the medium is affected by the presence of
the phonons. Furthermore, we assume that the number
of particles in the Bohr (Debye) sphere is mech larger
than one and thus plasma eGects are dominant. This
results in strong shielding of the Coulomb potential
as well as the phonons via the effective field of the
medium. We therefore find that the Green's function
M, (~ ) for this problem is approximated by the diagram
given in Fig. 1. However, at low temperature and weak
electron-phonon coupling (i.e., the case of degenerate
semiconductor) our Green's function 3E(~„)should have
only one-phonon interaction and, thus, is given by the
first-order term in the expansion of3II,(co„) in the phonon
propagator.

In Fig. 1 the wavy line represents the effective poten-
tial shown in Fig. 2 and given by

where E'» '(n&„) corresponds to the ith diagram of I'"ig. 2.

&&G~ 0 ~+~ +o' )G '(«+a' )

XG, ,(«—~ )G,(«—~.),

(25)

X- Z G.(l-)G.0 —-)G.-, (l —-)
p

1x-2 G. 0- )G, 0 —-)6, —,0 —--),

(2o) X-p G, (gv)G, («+~.)&, +,(«+~.,).

+ ~O~ ~ ~

FxG. 2. The integral equation for the effective interaction.

We now carry out the summation over l and l' by
converting the sums into integrals (see Ref. 5). After
considerable manipulation and using the symmetry
properties under the transformation 0. ~ —n —~„,
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we obtain for M, (po„)

diag

Cg

dqq'
f C, (2o, (po) = o.p(po)+2

X-th(lp )
&q (

+ x)jLDq'(x+~) —Dq'(*)jq X M —
q S q

Cg

(2 )'

XD.( -)LQ. (n-+~-) —Q. n-

X,n, -'. (26)XP', (n )P, (n +u& )]—'.
e

ot suitable for the analytical con-

pp
mma-

'
ll hodd 1o

e
' ' nwe6rsthave oev

edbe use essentia y a m

W ob i h boto carry out t..is summation. We o ai tion
rom the contributioncoefficien w

'
fbi

' t which results rom
Iams ln Fig. 1:

+oo

where

h, (n )=1— , Q. (n-) (31)

o (ro) =o.
p (po)+2-

P +oo

+ ) h (*).(
X q+& M q+& qX q

— +(x)]LDq+(x+po) —D,+(x)j
LQq+(x+~) —Q, (x)]

h,*(x)

X LDq+(x+a&) —D, (x)j 32)

ric function.ist eeh electron dielectric
e the sum over m in the expression

in the same ec
bsor tion coeKcient for the low-(26). We obtain the absorption coe cien

temperature case as

X M q X
Pq (~)

Q'(x).
g2

(33)

li6ed if we express theion 32) can be simp i e i
X [Dq+ (x+(o— Q's in terms of the h's, an w

rincipal values of the integral.where I' stands for the principa va
In Eq. (25)

o =op(~o) —2—

fp+q/2 fy q/2—
djp-

&y+q/~ &p—q/2

(28)

dx coth(-,'px)

D,+,x) =
(x+se)' —po/,

S,+(x)=1—
4me'

+IC, I'D, (*) Q,'(.) (»

XLD,+ (x+po) —D,+(x)$

XLDq+(x+ po) —Dq
—

(x)$,

of 3f, (/o ) expanded in a power
suitable approxi-interaction is a s

h hi h-f
and low-temperature case. is

= o.p(po) —2 dg qs)C, /2

+00
1 +dx coth(-,'Px) D,+(x po 22 Im

/V(ro„) =
3GD + (2qr)' q/22p ~

XD.(n-) LQ. (n-+~) —
Qq n

+ 2 111 q
2'I D+(x)—2i Im

h, (x+ro)

D,+(x)-

h, (x)
. (34)

XL&.(n-) h. (n-+~-)j (30)

V and G. M. Eliashberg, . ' . '
eor.~~Fiz.

1' an . . ' r Zh. Eksperim. i Teor. FIz.'0 V. I. Perel' an
41, 886 (1961) Ltrans ation:

»s defined by Eq. (33) for a degenerate

) h l ihunderstanding that Bq(x is t e c
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(33) and ls given by

where f(u) is the one-dimensional Maxwell-Boltzman
distribution.

Since the last term in Eq. (34) is purely imaginary
and does not contribute to the absorption, our final
result for the resistivity R(co) =real part of 1/0 (~) is

R(u)) =- P ~+oo

4x
dx cnth (-,'Px)

X ImD,+(x+~) Im
8, (x)

+Im ImDq+(x) . (36)
8, (x+co)

Our result for E(co) is complicated and cannot be
evaluated analytically. Moreover, in order to evaluate
the integral in Eq. (36) we must know the energy spec-
trum of the phonons as a function of their momentum.
We hope to submit a computation of Eq. (36) for real
semiconductors in a future communication.

IV. DISCUSS&Om

In this paper we have derived a general expression
for the absorption coeKcient of electromagnetic waves
by a plasma-phonon system. Ke have restricted our-
selves to applied fields of high frequency and long wave-
length and we have properly accounted for collective
effects. Our approximation rests on the fact that the
phonons are weakly coupled to the electrons and our
results are given in Eq. (32) for the case where the popu-
lation of the phonons is smaller than that of the elec-
trons, and by Eq. (27) for the more general case, i.e.,
the number of the phonons is comparable to that of the
electrons.

We now compare our result for the high frequency
conductivity with that given in Ref. 3. The proper in-
clusion of the collective efrects gives rise in the right-hand
side of our Eq. (32), to the factors L8, (x+o&) 8,(x)$ '
or t 8,(x+~)8,*(x)j ' which do not appear in the result
given in Ref. 3 (their Eq. (A16)7. These factors modify
the expression for the absorption coeKcient to represent
the screening effect due to the self-consistent field.
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