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Transmission of Electromagnetic Waves through Plasma Slabs
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The steady-state properties of circularly polarized electromagnetic waves propagating along a static
magnetic Geld in plasmas characterized by a nonlocal conductivity are considered. The coupled Maxwell-
Boltzmann equations are solved in the presence of short-range collisions for the wave which exhibits a reso-
nance at frequencies near the electron cyclotron frequency. Expressions for the reflection and transmission
of these waves for finite plasma slabs are obtained when the magnetic Geld is normal to the face of the slab.
The expressions are explicitly evaluated and discussed for a wide range of physical parameters. The effect
of temperature in the case of gaseous plasmas, and of degeneracy in the case of metals, on the transmission
characteristics of the incident wave is twofold: At frequency below the cyclotron frequencies the position,
width, and amplitude of the Fabry-Perot transmission resonances, which occur in plasrnas characterized by
a local conductivity are altered; at frequencies above the cyclotron frequencies anomalously large transmis-
sion occurs as a result of a "field-splash" type of resonance.

I. INTRODUCTION

HE properties of electromagnetic waves propa-
ga, ting in a plasma, along a magnetic field are of

considerable interest. In many applica, tions it is sufIi-
cient to characterize the plasma as a single component
electron (or hole) gas immersed in a uniform neutral-
izing background of charge. The conduction electrons
(or holes) in some metals are approximately described
by such a simple model if the effects of band structure
and ion dynamics (phonons) may be neglected. In
general, the neglect of such effects implies that the fre-
quency of the electromagnetic waves is considerably
less than or much greater than interband energies; and
that the wavelength of the radiation is larger than the
lattice spacing and/or cl;aracteristic shielding lengths.
V/ithin this frequency range, the predictions of the elec-
tron gas model will apply to metals having a single light
carrier and a roughly spherical Fermi surface. A gas
plasma, on the other hand, can be described by the same
model when the frequency of the electromagnetic field
is much higher than characteristic ion cyclotron fre-
quencies, but much less than ion and neutral particle
excitation energies.

Cyclotron resonance experiments on gaseous
plasmas, ' metals, -' ' and semiconductors4 have proven io
be extremely useful in determining the masses and
relaxation times of carriers. To date, in experiments in-
volving solids, two types of geometries have been em-

ployed: the so-called Azbel'-Kaner, '' and the Gait'
geometries. The specimen in both cases simulates a
semi-infinite medium. In the Azbel'-Kaner geometry a
static magnetic field parallel to the face of the sample is

' J. L. Hirshheld and S. C. Brown, J. Appl. Phys. 29, 1749
(1958).' J. K. Gait, W. A. Yager, F. R. Merritt, B.B.Cetlin, and A. D.
Brailsford, Phys. Rev. 114, 1396 (1959).' A. F. Ki~, D. N. Langenberg, and T. W. Moore, Phys. Rev.
124, 359 (1961).

B. Lax, J. G. Mavroides, in Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press Inc. , New York, 1960),
Vol. XI, p. 261.' M. Ia. Azbel' and E. A. Kaner, Zh. Eks~erim. i Teor. Fiz. 30,
811 (1956) Ltranslation: Soviet Phys. —JETP 3, 772 (1956)g.

used, and the reQection coeKcient of normally incident
radiation with polarization parallel or perpendicular to
the magnetic field is measured as a function of the in-
tensity of the magnetic field.

In the Gait geometry, ' a static magnetic field perpen-
dicular to the surface of the sample is utilized, and the
reQection of circularly polarized waves propagating
along the magnetic field is measured as a function of the
applied magnetic field. This method was used ex-
tensively for bismuth under so-called "classical skin-
eRect" conditions, that is, where the current is a local
function of the electiic field. It is known that nonlocal
effects (effects due to the 6nite velocity of the electrons)
will modify the propagation characteristics of circu-
larly polarized waves propagating along a magnetic
field and that these modifications will be largest at fre-
quencies near the cyclotron frequencies of the carriers.
The eRect of finite carrier velocity wa, s first investi-
gated by numerous authors interested in the initial value
problem. ' ' Recently, several authors' "have examined
the steady-state boundary value problem for a semi-in-
finite plasma. The conclusions of both groups were that
nonlocal eRects produce two basic changes in the propa-
gation characteristics: a shift in the cyclotron resona, nce
frequency (Doppler shift) and an additional damping
(Landau, or resonance, damping).

In this paper we will be concerned with the eRect of
finite random velocity of the carriers on the transmission
characteristics of transverse waves incident on thin
electron-gas slabs. The finite velocity of the carriers
arises from thermal motion for the case of gaseous
plasmas and from the degeneracy of the fermions (elec-
trons) in metals at zero temperature. We will refer to
these finite velocity effects as finite temperature effects,
where the temperature characterizing the metal is a de-

6 A. G. Sitenko and K. N. Stepanov, Zh. Eksr)crim. i Teor. Fiz.
31, 642 (1956) (translation: Soviet Phys. —JETP 4, 512 (1957)g.

7 T. Pradham, Phys. Rev. 107, 1222 (1957).
8 I. B. Bernstein, Phys. Rev. 109, 10 (1958).
~ P. B. Miller and R. R. Haering, Phys. Rev. 128, 126 (1962)."P.M. Platzman and S. J. Buchsbaum, Phys. Rev. 128, 1004

(1962); hereafter referred to as I.
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generacy temperature (k Tr =Fermi energy). We were
motivated to investigate this problem by a number of
recent experiments" " on microwave transmission
through thin slabs of bismuth, indium antimonide, and
antimony.

In Sec. II, the solution of the coupled Maxwell-
Soltzmann equations in the presence of two boundaries
is reduced to the solution of a problem in an in6nite but
periodic medium. This "equivalent infinite-medium
problem" is then solved using a Fourier series expansion
of the fields. The method of solution is simila, r to that
used by Gould" and others" in the plasma-capacitor
problem. In Sec. III, we explicitly evaluate the expres-
sions for the transmission coefFicients for a wide range
of physical parameters.

The transmission through a dielectric slab will ex-
hibit a series of geometric or Fabry-Perot type of reso-
nances when the slab thickness L is an integral number
of half-wavelengths. We will show that for frequencies
below the cyclotron frequency the effect of temperature
is to shift these resonances, to decrease their amplitude,
and {to a lesser extent) to broaden them. We will also
show that for frequencies above the cyclotron fre-
quency, the effect of temperature is to greatly (seven
to eight orders of magnitude) enhance the amount of
transmitted power and to produce a single large "field-
splash" type of resonance in this power plotted as a
function of slab thickness.

II. SOLUTION OF THE COUPLED MAXWELL-
BOLTZMANN EQUATIONS

Consider a one-component electron gas uniformly
6lling the space bounded by the planes z=O and z=L.
The electron gas is immersed in a uniform static mag-
netic field Bo oriented in the positive s direction. We
wish to compute the reflection and penetration proper-
ties of a transverse, circularly-polarized wave normally
incident from the left. Without loss of generality, we
assume that the wave has a monochromatic time de-
pendence and is of the form E=E(s)e '"'.

In general, as a result of the random velocity of the
electrons, the plasma conductivity is a nonlocal integral
operator. That is to say, a field with a P component at
some point r' in the plasma produces a current with an
~ component at another point r in the plasma with
magnitude 0 p(r, r', oo)Ep(r'),

J (r,to) = a. p(r, r', co)Ep(r')dr'.

in general, is a function of the vectors r,r' separately,
and the integral in Eq. (1) extends only over a
bounded region. The exact functional dependence of
a. p will be determined by the geometry of the medium,
the nature of the electron trajectories on impact with
the boundary, and on the configuration of the external
fields. Under such conditions Fourier transform methods
do not simplify the analysis. However, if the electrons
are specularly reflected from the bounding surfaces and
if the magnetic field is normal to the boundary, then,
and only then, we will show that the finite medium
problem is equivalent to an infinite medium excited by
a periodic array (with period 2L) of current sheets
(see Fig. 1). In this "equivalent infinite-medium
problem" the electric 6eld is even and the rf magnetic
field odd about the planes z=O, L, 2L,

Once the equivalence between the two problems is
established, the boundary value problem is easily
solved. The "equivalent in6nite medium" is trans-
lationally invariant; in it the conductivity o p(r, r,&o)

depends only on the difference of vectors r and r' and
the integral in Eq. (1) extends over all space. In this
case, the integral relation Eq. (1) becomes an algebraic
relation in Fourier space. That is to say,

~o

))

It It

Jo J
A

II

Jo
A'

The solution of the "boundary-value problem" is
uniquely speci6ed by the values of the rf magnetic field
at the bounding planes z=0 and z=L and by the wave
equation satis6ed by the electric field in the region
0&z&L. The strength of the current sheets at the
planes z=0 and z=L in the equivalent infinite medium
are 6xed to give the correct values of the rf magnetic
field for the "boundary-value problem. " Since it is
sufFicient to express all results in terms of the unknown
strength of the rf magnetic field at the plane s=0 (a
simple scaling factor), we need only a single condition
on the fields to determine the strength of the current
sheet at the plane z=L. This condition is supplied by
the requirement that there exist only an outgoing wave
at this surface. This fixes the ratio E(L )/H(L ) in the
"boundary-value problem" to be equal to (po/eo)'I', the
impedance of free space. The subscript on L indicates

The fact that the relation between current and field is
an integral one complicates the solution of the bounda, ry
value problem. In the presence of boundaries o (pr, r', &o),

"G. A. Williams, Bull. Am. Phys. Soc. 8, 205, 353 (1963);
J. Kirsch, ibid. 8, 205 (1963).

"A. Libchaber and R. Veilex, Phys. Rev. 127, 774 (1963).
'3 R. W. Gould, Bull. Am. Phys. Soc. 8, 170 (1963).
'4 F. L. Shure, Bull. Am. Phys. Soc. 8, 17 (1963}.

Fro. 1. The equivalent in6nite medium with current sheets Jo
at the planes (2n)L and current sheets 1& at the planes (2a+1)L,
where e is an arbitrary positive or negative integer.
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A represented by infinite Fourier series;
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FIG. 2. Plot showing
the equivalence of the
path ABCO in the
boundary value problem
with the path A'CO in
the equivalent in6nite
medium problem. where

E(s)= Q a„cosk~,

J,(s)= g b„c osk„s,

that the ratio E(s)/H(s) is to be evaluated as s~I.
from below.

Consider an applied delta-function Geld at the point A
(Fig. 2) in the "boundary-value problem. "The equiva-
lent Geld (the field which is equal to this localized field
on the interval 0(s(L) in the "equivalent in6nite-
medium problem" is a symmetric periodic array of
delta functions (see Fig. 1). Also, there is a one-to-one
correspondence between paths involving some number
of refiections in the finite medium and a direct path in
the periodic equivalent infinite medium. To see this,
consider the contribution to the current at the point 0
from electrons which start out with velocity v at
point A' in the infinite medium. Their contribution to
the current in the finite slab is zero. However, when the
magnetic field is perpendicular to the surface and specu-
lar refIection exists, electrons starting out from point A
with velocity v and following the path ABCO give an
equivalent contribution to the current. Thus, the
equivalence between the currents is established for this
special geometry.

The rf magnetic fields in the equivalent infinite
medium are equal, by construction, to those in the
finite medium. The electric field satisfies the same wave
equation for the region 0&z&1, since the current in-
duced in both media for equivalent fields are identical.
We then conclude from the uniqueness of the problem
that the solutions to the two problems are identical on
the range 0&z&L.

For the equivalent infinite medium, and for a right-
handed, circularly polarized wave $E,=E,+iE„7, we-
must solve the scalar "Helmholtz-like" equation,

b„=$H(0+)+H(L~) cosk„L)/L.

H (0+) and H (L+) are the magnitudes of the rf magnetic
fields at the planes z=0+ and z=I.+, respectively. Sub-
stituting Eqs. (4) and (5) into (2) and solving for the
coefFicient u„, we find

a„=——
l

—
l kpLH(0~)+H(L+) cosk„IjI. Eppi

L2—a„pj
x , (7)

l k '—kp'p(k„, (s)j
where kp ——p&/c. The quantity p(k, ar) —=1+io (k,co)/capp is
the relative dielectric constant of the medium, o(k, pp) is
the Fourier transform of the conductivity for positive
wave number k, and 6„0 is the Kronecker delta.

For a right-handed circularly polarized wave, the
Boltzmann equation may be linearized and solved for
the scalar conductivity o (k,pp). We 6nd' "

21'p
o (k,(o) =

where

I= (~ (u,+i v,)/k. —

The quantity or„ is the electron plasma frequency, v. is
a phenomenological velocity-independent collision fre-
quency, pp, is the electron cyclotron frequency, and fp
is the unperturbed electron velocity distribution
function.

For a Fermi distribution with a Fermi velocity vp,

a'E(s)
+pp ppppE(s)

t9z

fp=3/4~p'i l pl (»
=0; lw f)oi. (10)

+00

+—
d'or

o (s—s', o))E(s')ds'=icvlipJ, (s), (2)
zcoy 3 L1—(o,/o p)']do

Equation (8) becomes after integrating out v and o„

where

+co

J,(s)=-( Q H(0,)S(s—2~L)

+H(L, )~l -(2+1)L]). (3)

The field E(s) and the current J,{)arse conveniently

For a Maxwell distribution,

2ET '~'

fp ~-m e&/2EF

(2~) m
(12)
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Equation (8) becomes is the fractional amount of power which is reflected, and

(2ET) t gto

& tts)

JV 8-eStttz&/2KT

(13)
2f(L,L) ZO--X—

[1+fs(O,L)-f'(L,L)g Z
(20)

The form of the conductivity in Eqs. (11) and (13) in-
cludes self-consistent field effects but does not incor-
porate explicit correlation effects such as exchange.

The outgoing-wave boundary condition E(L )/H(L )
= (tip/pp)'t' permits us to express the Geld E(s), Eq. (4),
in terms of H(0~) alone. That is to say,

(tip)"' 1 H(L+)
&(s)=l —

I H(o+) f(s,L)+
(pp) 2 H(0~)

&[f(L—s, L)+f(L+s, L)j, (14)

where

and
f(O,L)=i cot(kiL) p-'ts

f(L,L)=i[a'ts sin(kiL)$ '

(21)

(22)
where

ki= &'"ko

The impedance using Eq. (18) is

is the fractional amount of incident power which is
transmitted.

If the dielectric constant p is independent of k (the
classical or local limit), the sums over k„can be per-
formed in closed form. Ke 6nd, using a formula given
by Knopp, '5 that

2i [2—3 pg cosk„s
f(s,L,)=——g~ [k„'—kp'p(k„, po)]

(15)
Z cot(kiL) ip-
Zp —cot (kiL)+pe'"

and the transmission coeKcient is given by

(23)

H(Lp) f(L,L)

H (0~) 1+f(O,L)

The form of Eq. (15) is particularly revealing; Z(s) is
generated by three terms. The first arises from the
current at the plane z=o; the other two terms result
from the symmetrically placed image currents at the
planes &L. In the limit I.-+ ~, the last two terms
vanish (i.e., the images recede to infinity). The sum-
mation over e then goes over into an integral, i.e.,

1 ~ 1 +"—Q -+—
I. +=0

T=
( (cos(kiL) —&i sin(kiL)[p't'+ p 't'j) 'js (24)

These are precisely the well-known results for the im-
pedance and transmission coefEcient of a dielectric slab
whose dielectric constant e is independent of k."

III. EVALUATION OF RESULTS

In order to evaluate Eqs. (18)—(20), some choice
must be made for the equilibrium distribution function
fp(v). Since this work is motivated primarily by experi-
ments on transmission through a metal slab at low tem-
peratures, ""we will consider a plasma with a single,
isotropic, degenerate carrier [see Kqs. (10)—(11)j.
For this choice of the distribution function the dielectric
constant p(k, to) can be evaluated in a closed formo;

and the expression for E(s) becomes
3 Coo trs 1

p(k, co) =1+- (1—ss) ln~
~

—2s, (25)
4 ~kv» ks+1)(17)

[ko kosp(k po)j with
(1 pe,/pe+i v,/p—o)

(v»/c) (k/ko)
(26)

Using the above expression for the dielectric constant,
Eqs. (19)—(21) were evaluated on the computer. The
machine added a Gnite number of terms in the series
de6ning f(O,L) and f(L,L). A mathematical upper
bound was placed on the remaining terms in the series,

Z — f(L L)'
f(0 L)—

Zp — [1+f(L L)j-

The expression for the impedance, the corresponding
reQection coeScient, and the transmission coefficient
may now be written down in terms of the functions
f(O,L) and f(L,L).

where Zo is the impedance of free space,

$—ZZp2

1+Z/Zo

"K.Knopp, Theory and Apptieatiols ojieglite Series (Blackie
gt Son Ltd. , Glasgow, 1948), p. 3'S.

' This simple problem is identical to the problem of the re6ec-
tion and penetration of particles incident on a square vrell potential
in nonrelativistic quantum mechanics. See D. Bohm, QNaltttra
Theory (Prentice-Hall, Inc. , Englewood CliBs, New Jersey, 1951).
p. 243.
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thickness should approximately trace out the depend-
ence of the Geld on distance in the semi-in6nite plasma.

Ke evaluated the transmission coefficient using
Eqs. (15) and (20). Figures 9, 10, and 11 are plots of
transmitted power as a function of slab thickness for
various values of the electron gas parameters for a 6xed
to,/to=1. 0. In all cases the effect of temperature in the
region of interest is to produce a single large "6eld-
splash". The exponential decay of the transmitted
power for small values of the slab thickness is character-
istically followed by an exponential increase of one to

FIG. ii. Plot of the transmission coefhcient T as a function of
sample thickness L for fixed vx/c=0 01, ca„./ca=200, co, c/a=1. ,0
and for several values of v, /ra.

two orders of magnitude followed by an even sharpex
fall-oG. The results of the local theory are plotted for
comparison purposes in Fig. 9. At the point where the
nonlocal theory predicts a maximum in the transmis-
sion, the transmission coeKcient as computed from the
local theory is seven to eight orders of magnitude
smaller. In all cases that we considered, the minimum
in the 6eld splash occurs at a slab thickness approxi-
mately equal to one wavelength in the medium.

The effect of increasing vp/c (Fig. 9) is to increase the
magnitude of the effect, i.e., ratio of maximum to mini-

mum, and to shift the position of the maximum only.
To the left of the resonance, the curves for different
vz/c are extremely close to one another. The effect of
decreasing (&o„/to) (Fig. 10), is to increase the splash
very slightly and at the same time shift the curves as a
whole to larger slab thicknesses and higher values of the
transmission coefFicient. The electron gas clearly
becomes more transparent at lower plasma frequencies,
hence, the increased value of the transmitted power. In
addition, the wavelength in the medium increases with
decreasing plasma frequency, therefore, the shift
towards thicker slab dimensions of the minimum. No
quantitative explanation of the shift of the maximum
as a function of the parameters is overed since the
existence of the maximum is probably due to a co-
herence effect.

The effect of increasing (v,/co) (Fig. 11) is twofold.
It decreases the magnitude of the effect and shifts the
position of the minimum towards thicker samples,
since the wavelength in the material at cyclotron reso-
nance increases approximately as (v,/co)"'.
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