
PHYSICAL REVIEW VOLUME 132, NUMBER DECEMBER 1963
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The energy levels for the holes in the valence semi-conductors in a constant magnetic Geld are considered
on the basis of Luttinger's theory. The corrections due to the anisotropy of the energy bands and to the
nonzero momentum component along the magnetic field are computed by the second-order perturbation
calculation and are found to be generally small.

I. THE HAMILTONIAN MATRIX

HE general form of the Hamiltonian for holes in
the valence semiconductors in the presence of a

constant magnetic field H has been given by Luttinger. '
It is impossible to solve the Schrodinger equation for
an arbitrary direction of the magnetic Geld. ConGning
the calculations to the case when the vector H lies in
the (110) plane, one can make a transformation of the
components of the momentum operator:

k,= (1/v2) (ktc—ks+kss),
k„= (1/v2) (ktc+ks jkss),
k,= —kts+ksc,

Do+Dl+Ds+D4 ~

The Hamiltonian D, measured in units of fico

= A(cP/rrtc), is determined by the cyclotron resonance
parameters vt, vs, and vs. Writing D in the form (1),
we neglect the spin-orbit coupling, i.e., we take q=0.
Do and D& are given by formula (81) in the Luttinger
paper. ' D3 and D4 contain terms dependent on the
component k3 and vanish when k3 ——0.

The explicit matrix representations of D3 and D4 are

I m& 0

D 3
(2)

0 m2t

—m2 0
0 m2

m3 0
0 781

where s=sine, c=coso, and 0 is the angle between the
vector H and the z axis. Making a corresponding
transformation of the angular momentum matrices,
the J's, we get the following form of the Hamiltonian:

tt= (vs —vs)/2.

II. PERTURBATION CALCULATION

The general solution of the equation

has been given by Evtuhov. ' In his method, the wave
function is developed into an infinite series of harmonic
oscillator functions. Here, we present a simpler but
less general method of solution of this problem by the
second-order perturbation theory.

Treating the anisotropy, proportional to p, , as a
perturbation, we now compute the corrections to the
energy levels (Roth, Lax, and Zwerdling' and Good-
man'). The unperturbed state of the system is described
by the function P,„(k) given by the solution of the
equation

(Do+D )lb.-(k) = .-(k)0.-(k) .

The function f,„(k) has the form

b, '(k)N

(k)
bo„'(k)N„
b,„'(k)tt
bo„'(k)tt.+g

(4)

(5)

where

t&———(3/2)"'ksc (3c'—1)(at+ a),
ts 'k's——'(—3c' 1)+—(1/v 2)ksc[(3c' 5)a—t+ (3c'—1)ag,
ts ——k'sc(3c' —1)—v2k (1—4c'+3c4)at,

where
rat= sk (vt.—2v) ~

ms ——+6v'"ka,
~s= sk'(vi+2v ),
v' =

c $ (3c'—1)'vs+3s'(3c'+1)vs),
v"'= -',L(1+2c'—3c')vs+ (1—2c'+ 3c4)vs),

for e~( —2,
for

for v=0,
for @=1

~

for s+~ 2,

all b,.(k) =0;
b, ,—l.

' ——b, , 1'——b, l' ——0;
b,p' ——b,p' ——0)
b '=0

)

all b, (k)WO.

for every value of rs, if we take

k —= (eH/kc) '"ks—
t2tD4= VEtt
t3

0

t3—tl 0
0 —tl

-t3t t2t

0

t2

tl

' J. M. Luttinger, Phys. Rev. 102, 1030 (1956).

After substitution (5) into (4), we get the following
system of the homogeneous equations for the coeK-

2 V. Evtuhov, Phys. Rev. 125, 1869 (1962).
3L. M. Roth, B. Lax, and S. Zwerdling, Phys. Rev. 114, 90

(&959).
4 R. R. Goodman, Phys. Rev. 122, 397 (1961).
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cients b,„(k):

[(vr+v )(n s)+s»+srk'(v~ 2v ) eq ]bq '
—[3n(n —1)]"v"b ~'—[6(n—1)]"'v"'kb ~'=0

—[3n(n —1)7"v"b.-'+ [(vr —v') (n+ s)—s»

+~k'(vg+2v') —e,„]b s+[6(n+1)]'I'v'"kb '=0
-[6(n-1)]"v"'kb,.'+[(v.-v')(.—:)+-', (6)

+-'k'(v, +2v )-eq.]bq.'-[3n(n+1)]'~'v"bq. '=0,
L6( +1)]"'v"'kb. '—[3 ( +1)]"'v"b '

+L(v +v') ( + l)—l +lk'(v —2v') —,.]b,.'=0.

Here
v"= -', [(3—2c'+ 3c4)vs+ (5+2c'—3cq)vs] .

The quantity e corresponds to the Landau magnetic
quantum number; the quantity q numbers the solutions
of the secular Eq. (7).

From the normalization of the function Pq, we get
the following condition for the coeRcients b, (k):

(b..')'+ (b.-')'+ (b.-')'+ (b.')'=1.
The eigenvalues e,„are given by the solution of the

secular equation (compare Wallis and Bowlden, '
Suffczynsio', ' Elliott, McLean, and Macfarlane'):

(Vr+V') (n —5)+s»
+-', k'(v, —2v') —eq„
—[3n (n —1)]'"v"

—[6(n —1)]'~'kv'"

[3—n (n 1)—]'~'v"

(Vr—V') (n+ s)—s»
+s k'(vr+2v') —q q.

0

[6(n+1)J"kv'"

—[6(n —1)]'~'kv'"

(Vr —V') (n- s)+ s»
+-',k'(vg+2v') —e,
—[3n(n+1)]'"v"

[6(n+1)]Uqkv"'

—[3n (n+1)]"'v" =0. (7)

h r+V') (n+5) —5»
+-', k (v —2v') —,.

The perturbation is described by the Hamiltonian

D'= D~+Dq,

which is proportional to p. Corrections to the energy
eq„(k) can be obtained from the standard formulas of
the perturbation theory. The first order correction
vanishes identically because Dj and D4 have no diagonal
matrix elements in the Dq+Ds representation.

The second-order correction is

l(n, q, k ID~yD4I ~ p
e,„&sl (k) = Q P

man p e,„(k)—e„(k)

The summation over the intermediate states goes over
all ladders and all values of e which combine with the
level under consideration.

The only nonvanishing matrix elements of the
Hamiltonian parts D~ and D4 are:

(n, q, k ID, I
n+4, p, k)

= -',%3p, (3c'—1)(c'—3){[(n+1)(n+2)J"
Xb~, ~q'bq '+[(n+2) (n+3)]'~'b„, ~4sbq„'},

(n, q, k
I
Dy

I
n+3, p, k)

= -',v3psc(3c' —5){[n(n+1)]'~'b„~,'b, „s
—L(n+2) (n+3)]'"b. 'b,.'}

(n, q, klD, In+2, p, k)
=-',V3ps'(3c' —1){s'[3n(n—1)]'I'b„~s'bq„'

—q[ (n+1)(n+2)1'"b. ~s'b, '
—-', [3n (n+1)]'iqb~, ~s'bq '
+-', [3(n+2) (n+3)]"'b,, ~s'bq '

(n+s)bp, n+2 bqtP (+n2) y,bn+2 bqe }&—

(n, q, klD, In+1, p, k)
= -',V3psc(3c' —1){(2n —1)b„,~i'bq~'

—(2n+3) b„~rqb«'+ , [n (n 1)]'~'b„,—~r'bq~'

[(n+—1)(n+2)]'"bn ~r'bq-'}

(, q, klD, ln —1, p, k)
=—',&3psc(3c'—1){[(n—1)(n —2)]"'b „~'bq„'

[n(n —1)]'~'b— 'bq„'+(2n 3)b„,„Pbq-„'
—(2n+1)b, , „~'bq '},

(, q, klD,
I

—2, p, k)
=—',&3ps'(3c' —1)P~[3 (n —2) (n —3)]"'b„„s'bq

'
—-'[3n, (n —1)Jt'b „ssb
—-'[3 (n —1)(n —2)]"'b „ssbq '
+-', [3n(n+1)]'"b, „s'b „',q

—(n —$)b, n ssbq' (n —s)—b, . s4bqn'},

(n, q, klD, ln —3, p, k)

=s~i c( c'—5){[(n—2)(n- )]0'4=s'b. -'
—[n(n —1)]'~'b„, sqb,.'},

(n, q, klDgln 4 p k)
= ~~%3p(3c' 1)(cs—3)—{[(n—2) (n —3)]'is

)&b~, „ 4'bq„'+[(n —1)(n 2)]"'b„ 4—'b, '}, ,

(n, q, klD4ln+3, p, k)
= (')'"ijksc(3c' 5)—[(n+1)"'b —s'b

+( n+)2" ,b, ~ bsq4],

' R. F. Wallis and H. J. Bowlden, Phys. Rev. 118, 456 (1960).
'M. SuGczynski, Proc. Phys Soc. (London. ) 77, 1042 (1961).
7R. J. Klliott, Y. P. McLean, and G. G. Macfarlane, Proc.

Phys. Soc. (London) 72, 553 (1958).
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(n q klD4I "+2 p k)
=v3p(sksss(3cs 1) (b„,„+srbs,s+b~~+,ssbs„4)

—%2k (1 —4c'+3c4)[n"b „~s'b q„'
—(n+2)"'b. , ~s'4-'I}

(n, q, kiD4~n+1, p, k)
&3—psc(3c' 1)—(k'(b, .+trbs. ' b„,—~r'bq~')

+ (1/&2) kr (3 (n —1))"'b~, „+r'b, '

+ (3(n+ 2))"'b„,~r'b, '—n'"b„, ~i'bq~'
—(n+1)"'bn, -+r'bs-'},

(n, q, k
) D4[ n —1, p, k)

= —v3psc(3c' —1)(k'Lb„,„ t'b, ' b„, r—'b, 'J
+(1/&2)kL(3(n —)) b„, ,'b, '
—(3n)"'b ~ r'b ~' —(3(n—1))"'b „rsb ~'

+ (3(n+1))"'b,, „,'b q„'
—(n —1)"'b 'b ' n"'b —r'b '}

(n, q, kiD4in —2, p, k)
=&3la(sksss(3cs 1)(b~, ~ ssbs '+b~, ~—s4bq s)

—%2k(1—4c'+3c4) [(n—2)'"b, . s'b«'
—n'"b„,„s'bs„')},

FIG. 1. The cor-
rected lowest levels
in four ladders in Ge
for the angle 8=0'.
The full lines show
corrected levels; the
dashed lines show
uncorrected levels.

3

0

3 4

k 0

3 0

(n, q, klD4in —3, p, k&

= (-')'"pksc(3c' —5){(n —2)"'b „,'b „'
+ (n 1)' 'b„„,'bq„'—}. (9)

The other matrix elements of Di and D4 vanish
because the eigenfunctions n„of a harmonic oscillator
are orthogonal for diRerent e's.

III. NUMERICAL RESULTS

distance decreases with increasing e. Ths shape of
these levels is similar to those obtained by Wallis and
Bowlden' and Evtuhov. '

TAzLz l. Cyclotron resonance mass ratios (m, /m)
in Ge for the angle 8=0'.

In order to estimate the corrections due to anisotropy
in valence semiconductors, a numerical calculations
has been made for germanium and silicon for the angle
8 equal to 0', 45', 90'. In these calculations, the
following values of constants Vi, y2, ya, and K which

appear in the above formulas are used: for germanium
(Roth, Lax, and Zwerdling)s

—1
0
1
2
3
4

0.058
0.047
0.046
0.045
0.045
0.045

0.112
0.057
0.047
0.046
0.045

0.200
0.235
0.248

0.234
0.248
0.254
0.258

7g——13.1, y2
——4.15) y3 ——5.5) Ii;=3.23)

for silicon (Stickler, Zeiger, and Heller)'

yg= 4.22, y2= 0.50 ) ps= 1.35, ~= —0.39,

The k dependence of the unperturbed energy levels
is obtained from the solution of the Eq. (7). This
dependence is nearly parabolic for the two light-hole
ladders except of the lowest Landau numbers m for all
considered directions of the magnetic 6eld. More
interesting is the k dependence of the heavy-hole
levels. In one of the ladders, namely in the e& ladder,
there appear minima for values of k diGerent from zero.
For 8=0', the distance of these minima from the
center of the Brillouin zone increases as the Landau
number m increases, while for 8=45' and 8=90', this

J. J. Stickler, H. J. Zeiger, and G. S. Heller, Phys. Rev. 129,
1077 (1962).

TasLz Il. Cyclotron resonance mass ratios (m, /m)
in Ge for the angle 8=45'.

—1
0
1
2
3
4'

0.054
0.045
0.044
0.043
0.043
0.043'

0.130
0.054
0.045
0.044
0.043

0.256
0.310
0.329

0.310
0.330
0.338
0.343

Both the curvature and the cyclotron resonance
masses depend on the direction of the magnetic field
even for unperturbed levels if we take diferent values
for the parameters 72 and 73 in the Hamiltonian
Ds+Ds. The cyclotron resonance masses of uncorrected
levels, i.e., the reciprocals of the separation between e
and n+1 levels, at k=O, are given in Tables I—VI for
diGerent values of the angle 0. In both considered
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TABLE lII. Cyclotron resonance mass ratios (m, /st)
in Ge for the angle 8=90'.

—1
0
1
2
3

0.055
0.045
0.044
0.044
0.043
0.043

62

0.126
0.055
0.045
0.044
0.044

0.243
0.291
0.309

62

0.291
0.309
0.317
0.321

semiconductors, the cyclotron resonance masses of the
light holes change slightly for different directions of
the magnetic 6eld. The departure from the uniform
spacing for low e's occurs in both Ge and Si but is
smaller and decreases more rapidly as e increases in Ge

0 0,'5 k
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j

Pro. 3. The cor-
rected lowest levels
in four ladders in Ge
for the angle 8=90'.
The full lines show
corrected levels; the
dashed lines show
uncorrected levels.

TABLE IV. Cyclotron resonance mass ratios (ra, /m)
in Si for the angle 8=0'.

—1
0
1
2
3
4

0.212
'

0.193
0.183
0.178
0.175
0.174

0.269
0.231
0.204
0.189
0.181

0.283
0.318
0.342

62

0.335
0.353
0.365
0.372

than in Si. This is conceivable because the relative
anisotropy (ys —ys)/(ps+ps) is larger in Si than in Ge.
The values of nr, /tts are in accord with the experimental
data quoted by Dresselhaus, Kip, and Kittel. ' The

elk y

cyclotron resonance masses of the heavy holes exhibit
pronounced dependence on the direction of the magnetic
field. The character of this dependence agrees with the
experimental data but the magnitude of (m, /m) is
smaller by a few percent than the values given in
cyclotron resonance measurements. '

TABLE V. Cyclotron resonance mass ratios (ta,/m)
in Si for the angle 8=45'.

02 W2

I
I

I'

I
QS-

I

I
I

I
I

I
II

3 ~ /

2.5-

2.

i k o

2-

Fro. 2. The cor-
rected lowest levels
in four ladders in Si
for the angle 8=0'.
The full lines show
corrected levels; the
dashed lines show
uncorrected levels.

—1
0
1
2
3
4

0.181
0.166
0.161
0.158
0.157
0.156

0.342
0.252
0.193
0.170
0.162

0.308
0.390
0.438

0.450
0.470
0.481
0.488

The knowledge of the dependence e,„on k permits
us to estimate the extent of validity of the perturbation
calculation. The second-order perturbation calculation
is 1imited by the condition that in the perturbation
formula the numerators must be smaller than the
energy denominators. An analysis of the relative
position of the energy levels reveals that this condition

TABLE VI. Cyclotron resonance mass ratios (m, /m)
in Si for the angle 8=90'.

k

9 G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368
(1955).

—1
0
1
2
3
4

0.187
0.171
0.165
0.162
0.161
0.160

0.324
0.248
0.196
0.175
0.167

0.298
0.368
0.411

0.420
0.439
0.451
0.457
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FIG. 4. The cor-
rected lowest levels

&in four ladders in Ge
for the angle 8=45'.
The full lines show
corrected levels; the
dashed lines show q-
uncorrected levels.
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is valid for small values of k, so small that they consti-
tute a fraction (0.3—0.5) of a percent of the dimension
of the Brillouin zone for magnetic 6elds as large as
H. = 100 kG. The reason for such a limitation is a strong
mixing of the levels of di8erent ladders, especially in Si.
The second-order corrections were calculated for the
lowest energy levels. From Eqs. (9) it can easily be
seen that the inQuence of the anisotropy upon the
shape of the energy levels will be stronger for inter-
mediate directions between the (001$ and (110]
directions because then all the matrix elements of the
perturbation are di6'erent from zero. In the case when
the vector H is in the $001] or $110j direction, taking
account of the anisotropy does not change the shape
of the energy levels. In both Ge and Si, the anisotropy
corrections due to Dt+D4 lower only the energy levels
and slightly change their curvature. The corrected
levels for these directions are plotted in Figs. 1—3. For
the intermediate angle 8=45', the corrections were
appreciable for the lowest levels in e~+ and e~ ladders
(see Fig. 4). The large value of the matrix element

Tl+ILE VII. Corrected cyclotron resonance mass ratios (m, /m)
for the lowest energy levels in Ge and Si for the angle 8=0'.

eg+( —1)
„+(0)
e1 (2)
&s (1)

0.054
0.119
0.210
0.320

Si

0.276
0.295
0.291
0.341

"jj.C. Hensel and G. Feher, Phys. Rev. 129, 1041 (1963).

(—1, 1, k
~
Dt+D4~ 2, 3, k) of the perturbation and the

small separation between these levels are the cause for
this modification. In Ge, the curvature of these levels
varies not only in magnitude but also in sign, instead
the spacing varies slightly. In Si, where the constant p,

is smaller than in Ge, an analogous calculation gives a
distinct change of magnitude of the curvature for
these levels.

The corrected cyclotron resonance masses are given
in Table VII. They differ from the uncorrected by a
few percent. The only pronounced change in the e~+

ladder in Si follows from the small separation between
the e~, ~+ and e2, 4 levels even for k=0, so small that
in the perturbation formula the numerator is larger
than the energy denominator, i.e., the above mentioned
condition of validity of the perturbation theory is not
valid.

The latest measurements of the cyclotron resonance
parameters yr, ys, ys in Si (Hensel and Feher)M give
for y a value by 40% larger than that used in the
present calculations. Because the anisotropy corrections
are proportional to p', it can be expected that the
corrections for Si will be greater than those calculated
here.

Practical implication which results from the present
calculations is that the form of the ladders resulting
from the matrix De+Ds is entirely satisfactory for
most applications.
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