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Nuclear Magnetic Resonance Line Shapes Resulting from the Combined
Effects of Nuclear Quadrupole and Anisotropic Shift Interactions*
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The eRects on the nuclear magnetic resonance line shape of a polycrystalline sample resulting from com-
bined axially symmetric electric quadrupole and anisotropic shift interactions have been calculated through
the second order. The line shape of the central transition of the resonance has been shown to change smoothly
from that characteristic of quadrupole effects (inverse field dependence) to that characteristic of anisotropic
shift effects (direct field dependence) as the magnetic field strength is increased. Methods are given for
determining the magnetic shift parameters —both isotropic and anisotropic (axial) —and the electric quad-
rupole coupling from line shape and shift measurements. An illustration of these methods is given, based
on experimental measurements of the Al' spectrum in polycrystalline PrA12.

INTRODUCTION aged line-shape patterns appropriate to polycrystalline
(powder) samples are given for various relative strengths
of the two effects, and the behavior of various experi-
mentally observed quantities (linewidths, shifts) are
calculated as functions of resonance frequency for some
combinations of values of the quadrupole and shift
parameters typical of those already observed. These
calculations also include in an empirical manner the
effects of a frequency-independent linewidth (nuclear
dipolar, etc.) on the expected experimental behavior.
Finally, a number of experimental cases are considered
which illustrate the method of analysis to determine the
various interaction parameters.

A NUCLEAR quadrupole interaction may occur
simultaneously in conjunction with an anisotropic

magnetic shift in a variety of solids. The noncubic pure
metals, in particular the hexagonal close-packed ones,
afford a considerable number of examples, some which
have already been studied. Among the latter may be
listed Sc,' In, ' Tc,' and the list of possibilities must
include Ti, Zr, Hf, La, and Lu and perhaps others.
Nuclear magnetic resonances (NMR) in intermetallic
compounds may also be expected to exhibit these com-
bined effects. The cubic Laves phase compounds of the
MgCu~ type have provided a number of examples, prin-
cipally involving the Al27 nucleus. 4' Transition metal
borides' and beryllides, as well as other hexagonal and
tetragonal intermetallics may also be included in this
category. Finally, the nuclear magnetic resonance of the
halogen nuclei in the paramagnetic chlorides, bromides,
and iodides of transition metals will, in general, reQect
the presence of both types of interaction. '

In the following sections the theory for these corn-
bined effects is considered in some detail. The separate
cases of quadrupolar and anisotropic shift effects have
been discussed individually at length, both in the journal
literature and in reviews, and only brief recapitulations
of these will be presented here, in order to point up the
differences and similarities that exist between them and
the case in which the two effects are interwoven. Aver-

THEORY

Quadrupoiar Effects Only

The efI'ects of electric quadrupole interactions on the
Zeeman energy of the nuclear magnetic moment were
6rst discussed by Pound, ' who gave formulas for the
levels and transitions to be expected in the case of
single-crystal specimens. Because the electric held gradi-
ent tensor is an intrinsic property of the sample, these
levels and the transitions between them are dependent
upon the orientation of the crystal in the external rnag-
netic 6eld. For polycrystalline specimens, such as are
required in the case of metallic conductors, these results
must be averaged over all possible orientations of the
crystallites. The review article of Cohen and Reif, ' for
example, explains how this averaging is carried out.

In the absence of anisotropic magnetic shift complica-
tions, and for the case of an axially symmetric field
gradient tensor, the expression correct to second order
for the transition frequencies appropriate to a nucleus
of spin I in a single crystal specimen is
v(Ns~ m —1)

+l o(3"-1)(sos—;)+( o'/32") (1-")
&& (L102tw (sN —1)—18I (I+1)+39)p'

—/6m(m —1)—2I(I+1)+3)i . (1)
s R. V. Pound, Phys. Rev. 79, 685 (1950).
M. H. Cohen and F. Reif, in Solid State Physics, edited by F.

Seitz and D. Turnbull (Academic Press Inc. , New York, 1957),
Vol. 5, p. 311.
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Here, v@=3e'qQ/2I(2I —1)h is a convenient measure
of the strength of the quadrupole interaction, and
p, = cos8, where 8 is the angle between the s axis of the
principal axis system of the Geld gradient tensor and
the external magnetic Geld. In this equation, the factor
vo is the pure Zeeman transition frequency (Larmor fre-
quency) in the absence of electric quadrupole interac-
tion. It reQects the fact that the pure Zeeman levels are
equally spaced. The term independent of vp arises from
Grst-order perturbation theory and affects the so-called
"satellite" transitions only. That is, the central, or

&
~& ——'„ transition is unshifted in first order, and

satellite resonances appear, placed symmetrically with
respect to it. In second-order theory, the terms in
vo'/vo are obtained, all of the transitions being affected,
although the satellites are shifted equally in pairs.

In the case of a polycrystalline sample, the expres-
sions corresponding to (1) are those that give the fre-
quencies at which the intensity maxima in the averaged
resonance line shape occur. As shown by Cohen and
Reif, for example, intensity maxima for the satellites
will always occur for 8= 90' (+=0), so that for the poly-
crystalline sample, satellite resonance peaks will appear
at

v (m —+ m —1)= vo —~ vo (2m —1)—(vo'/16vo)
m/2

X l 3m(m —1)—I(I+1)+$). (2)

In addition, other intensity maxima will arise at other
values of 8 or p when the second-order frequency de-
pendence of the satellites is tak.en into account. These
additional satellites are important only in the case of
large quadrupole coupling and large spin. '

It is clear that although the satellites are asymmetri-
cally placed with respect to the center point of the en-
tire resonance pattern because of the second-order con-
tribution, the spacing between corresponding opposite
satellites always has a constant value. Thus, for ex-
ample,

v ( +m1 +—-+ m) v—(m ~—m —1)= ,'vo(2m -1) . (—3)

Finally, because of the particular orientation de-
pendence which the central transition acquires in second
order, the averaged expression for it possesses two
maxima. ' These correspond to p=O and p'=5/9, and
the frequencies at which these maxima occur are given
by

"(o~ —o)= »+ (vo'/16») LI(I+1)—-') (4)

"'(-', ~ ——',)= vo —(vo'!9vo)l I(I+1)——.'j. (5)

In addition to these maxima, a small discontinuity or
"step" appears at v=vp. When dipolar broadening
effects are taken into account this step is very much
smoothed over so that it is only rarely discernable ex-
perimentally. The spacing between the two peaks (4)
and (5)—in eifect, the "width" or splitting of the central

transition —is inversely proportional to the Zeeman
frequency vp,

hv= vi —vi = (25voo/144vo)l I(I+1)—q$. (6)

In a paramagnetic substance the pure Zeeman reso-
nance frequency vp will differ from its value in a dia-
magnetic (reference) environment by an amount which
is usually expressed as the paramagnetic shift (Knight
shift in the case of a metal),

for measurements made at constant magnetic Geld

strength, and by
Z= (IIs—IIo)/IIo

for measurements made at constant resonance fre-
quency. For the case of resonances in polycrystalline
samples in which electric quadrupole effects are also
present, so that (2), (4), and (5) describe the location
of the resonance peaks, this shift may be measured by
locating the true center of the resonance pattern using
(4) and (5), and determining the shift of this point from
the diamagnetic standard resonance. Since the resonance
pattern will usually be observed at a number of fre-
quencies to verify the quadrupolar effects, an alternative
and convenient means of measuring the shift is to
measure the shift of the midpoint of the two peaks of the
central transition. Since these two peaks coalesce into
one at infinite field strength (frequency), this "average"
shift will extrapolate to the true shift at inhnite held.
In fact, this average shift is inversely proportional to
the square of the resonance frequency:

P V —Pg

Pp —P~ 7 Vq

,l I(I+1)——:j (9)
vg 288 vg'

To summarize, if electric quadrupole effects only are
present, the nmr of a nucleus in a metallic conductor or
paramagnetic solid will be characterized by

(a) A set of 2I 1satellite reson—ances symmetrically
disposed with respect to the true resonance center in the
limit of inhnite magnetic held strength. The spacing
between corresponding satellites is constant, independ-
ent of the magnetic field strength, and measures the
strength of the electric quadrupole interaction.

(b) A central transition whose splitting varies in-
versely as the resonance frequency. The frequency de-
pendence of this splitting may also be used to determine
the quadrupole interaction.

(c) An average shift which is proportional to 1/v~'.
The infinite held extrapolated value of this shift is the
shift of the true resonance center. In addition, the slope
of the E, versus 1/v~o plot provides an additional meas-
urement of the quadrupole interaction.
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v'= vo(1+2') . (12)

The notation v' and v" corresponds to that used in the
quadrupolar case, in that v' is the high-frequency side
of the resonance when E;„and E, are both positive.
Because the resonance intensity depends inversely on
the coefficient of the (3p' —1) factor, ' which is relatively
small in the anisotropic shift case, this step is usually
observable. Steps also occur in the 6rst-order quadrupole
pattern LEq. (2)j, but because then the coefficient of
(3p' —1) is so large, the height of the steps is very small,
and these are not readily detectable.

Neglecting the Van Vleck dipolar linewidth, " the
width of the resonance peak due to the anisotropic shift
is given by the spacing between the intensity maximum
at p, =0 and the step at p=1,

Qva~= v —v = 3gvo= 3Eaxvgg,I IX (13)

The intensity maximum at p, =O lies on the low-fre-
quency side of the resonance if E, is positive and on
the high-frequency side if E, is negative. Similarly, the
step at p= 1 lies on the high-frequency side of the reso-

'~ N. Bloernhergen and T. J. Rowland, Acta Met. 1, 731 (1953)."J.H. Van Vleck, Phys. Rev. 74, 1168 (1948).

Anisotropic Magnetic Shift Only

B/oembergen has discussed in detail the erst-order
efI'ects of an anisotropic shift tensor on the resonance
line shape in a metallic conductor or paramagnetic sub-
stance in the absence of electric quadrupole effects."
For the present, we need only consider the results
appropriate to the case of an axially symmetric shift
tensor. All of the 2I+1 pure Zeeman levels are shifted
by an equal amount in first order, with the result that
only a single resonance appears, whose frequency in a
single crystal is given by

v= v()$1+E (3)a'—1)/(1+E;„)$. (10)

Here as before, p=cos8, where now 8 is the angle be-
tween the s axis of the principal axis system of the shift
tensor and the external magnetic field direction. In
addition, E;„and E,. are the isotropic and axial com-
ponents of the shift tensor, respectively. v() represents
the pure Zeeman frequency including the isotropic shift
contribution, i.e., v() ——v~(1+E~„). In most cases the
isotropic shift is suQiciently small that the distinction
between E and E /(1+E;„)is not needed, but in the
following we shall employ the notation a=E /(1+E;.o).
The angle-dependent factor is seen to be identical with
that which occurs in the first-order quadrupole shift of
the satellite resonances.

In a polycrystalline sample, the intensity maximum
occurs at 8=90' and the frequency at this point will be

vrr= ve(1 —a) .
Besides this single maximum in the resonance shape,
there now also appears a discontinuous step corre-
sponding to )a= 1(8=0' or &)= 180').

nance if E, is positive and on the low-frequency side
if E, is negative. The isotropic and anisotropic shift
parameters can be determined by measuring the shift of
either v' or v" and the width Av,„.

Summarizing, the line shape of an NMR line in the
case of anisotropic magnetic shift eGects only is
characterized by

(a) A width which is directly proportional to the
resonance frequency or 6eld.

(b) An asymmetric appearance which provides an
indication of the sign of the axial component of the shift
tensor. For the actual appearance of the theoretical
shapes, see Ref. 10.

Combined Nuclear Quadrupole and
Anisotroyic Shift Effects

Neglecting nuclear dipolar and exchange interactions
of the Van Vleck type, "the Hamiltonian for E nuclear
spins and e conduction electrons in an external magnetic
field Hc in the s direction is written":

fk

H =Ho(')+P PH()(L, (')+25,('))+H() &")

+g gvoHQ (i)+g Q H'(v) (14)

Here, FIO~'& represents the Hamiltonian for the conduc-
tion electrons in the 6eld of the ion cores. Ho("& repre-
sents the Hamiltonian for the ion cores. The two terms
involving IIO are the Zeeman energies of the conduction
electrons and the nuclei. The term P;,H'"&') describes
the noncoulomb interaction of the e conduction elec-
trons with the 1V nuclei. This latter will be approxi-
mated by including only the magnetic dipole and elec-
tric quadrupole parts of the interaction, that is, by

2g&&PI(i). I,( )

II'(ij)—

-S(').I(i) 3(g('). r,,)(i(i).r,,)-—2gPOP
. .8 . .5rij rij

16m
+ g)aoPS(') I(&')8(r; )

3

The electric quadrupole moment operators Q, and elec-
tric field gradient components (vE)s are defined by
Pound. '

In Appendix A it is shown that the second-order con-
tribution of the anisotropic shift portion of II'('» is
negligibly small, and that the second-order contribu-

"F.J. Milford, An). J. Phys. 28, 521 (1960}.
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tion resulting from interference terms between the
anisotropic shift and quadrupole interactions vanishes
identically. With this result, the nuclear Zeeman levels
are obtained by adding together the expressions for the
anisotropic shift (6rst order) and for the nuclear quadru-
pole interaction (second order). The transition fre-
quencies in which we are interested can be obtained in
a similar manner by adding together the expressions for
the separate interactions.

In the large majority of actual examples encountered
to date, the resonant nuclei occupy sites of axial sym-
metry, so that the electric Geld gradient tensor is axially
symmetric; that is, it can be characterized by a single
parameter q=O'V/Bs'. We shall suppose that the mag-
netic shift tensor is also axially symmetric, and that the
major axes of the two tensors are coincident. This is
sufhciently general for understanding most of the ex-
amples at hand.

The zeroth order, or pure Zeeman, frequency of this
system is just the resonance frequency in the metal or
paramagnetic solid,

vo= v g (1+E;,o) .

As is shown by (1) and (10) for the case of a single
crystal, the first-order quadrupolar and anisotropic shift
corrections have the same dependence upon the angle
0 between the external magnetic field Ho and the s
axis of the principal axis system of the relevant tensor.
Under the assumption that these axes are coincident,
we find for the satellite frequencies in first order:

v(m —+ m —1)= vo(1+ (3p' —1)
fg/2

X [a+-,' (vq/vp) (m ——,')]}. (17)

For a polycrystalline sample, the principal maximum
intensity for the satellites again occurs when p, =0, so
that corresponding to (2), resonance peaks appear at

v(m ~ m —1)= vo f 1—[a+-'(vq/vo) (~—2)]} (18)
m/2

Additional peaks will arise for certain combinations of
the values of the various parameters, but these are only
significant in the case that both v@ and I are large.

Thus, in Grst order, the effect of the anisotropic shift
is to displace all of the satellites by the amount —uvo. In
a suKciently strong magnetic field that the second-order
quadrupole shifts of the satellites are negligible, we may
expect to 6nd their positions determined by (18). The
difference between corresponding satellites is seen still
to be constant and to be independent of E, .

The satellite resonances in a polycrystalline sample
will be correctly described to second order by adding to
(18) the second-order terms from (2). Thus, we now
have

v(~ ~~—1)= vo(1—[a+i(vq/vo) (~—2)]
fÃQ 2

—&'~(vq/vo)2[3m(m —1)—I(I+1)+2]}. (19)

To compute the line shape appropriate to a poly-
crystalline sample, we have, following Cohen and Reif,

P(v—vo)d(v —vp) =P(0)d(0) =-', sin8 do=-', dp,

so that P(v —vo)=gdv/dp~ ', —1&p&1. Now, from

(20),

d(v —vo)/dp= (vq /4vo)p([I(I+1) —4]
X (9p' —5)+24v02a/ vq'} ~ (21)

Again, as in the case of quadrupole effects alone, (4)
and (5), this shape function possesses two singularities.
These now occur at p, =0 and at

5
p=p

9 3vq'[I (I+1)—-3]

1/2

The p, singularities are not distinguishable since v —vo

depends only on p . In addition, a discontinuity or step
in the intensity occurs at p, = 1, as in the pure quadrupole
case. The behavior of the singularities and of the step
as a function of the resonance frequency is seen to de-

pend on the sign of IC as well as on the relative magni-
tudes of E vo and (vq)'/vo.

Because 0&p'&1, the singularity at p,
' must satisfy

t:he condition 0&(5/9 —avo'/6b)&1. This means that
the range of resonance frequencies within which this
singularity will appear is determined by

—8b/3a& vp'&0 for a 0,
0&vo'&10b/3a for a&0.

(22a)

(22b)

By contrast, the singularity at @=0and the step at p= 1
hold for all resonance frequencies. Here, we have intro-
duced the convenient definition, b= vq'[I(I+1) —4]/16.
The resonance frequencies corresponding to the two
singularities and the step are now seen to be as follows:

va= v(p=0) = vo+b/vo avo, — (23a)

vz, = v(y= p') = vo —16b/9vp+-, avo —a'v03/4b, (23b)

vs= v(p= 1)= vog2avo. (23c)

In Fig. 1 we show the behavior of the line shape func-
tion P(v —vo) as the relative strength of the quadrupole
and anisotropic shift interactions is varied from essen-

for the satellite frequencies. The result mentioned above
that the spacing between corresponding satellites is in-
dependent of IC, still applies, and in addition, as in the
case of quadrupole eGects only, the spacing between cor-
responding satellites is independent of (vq/vo)'. In other
words, the relationship (3) still holds exactly.

More interesting now is the behavior of the shape of
the central transition. In a single crystal sample, the
frequency of the central transition is given by com-
bining (1) and (10) and setting m=~2:

v(k ~ —k) = vo{1+(vq'/16»') [I(I+1)—2]
X (1—p') (1—9p')+a(3p' —1)}. (20)
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tially pure quadrupolar to essentially pure anisotropic
shift character. The relative strength is represented by
the dimensionless parameter r= apoo/b, and the abscissa
is plotted in units of b/vo. Figure 1(a) shows the be-
havior in the case of positive anisotropy and Fig. 1(b)
in the case of negative anisotropy. Qualitatively, these
two cases diBer in the important aspect that for posi-
tive E, , the step moves outside of the two singularities,
passing the high frequency (p=0) singularity at the
frequency voo= b/3a. By contrast, in the case of negative
K, the step moves toward lower frequencies, remain-
ing between the singularities and merging with the low

frequency (p=p') singularity at vo'=Sb/3a. In both
cases, the line shape changes gradually from that char-
acteristic of the quadrupole broadened transition to that
characteristic of anisotropic shift broadening as a func-
tion of the resonance frequency for Axed values of the
parameters E and vg.

The shift of the resonance can still be determined in
the manner described by (9) for the quadrupole effects
only case. Only now, the midpoint of the two singulari-
ties in the line shape is obtained from the expressions
for p~ and pl, ,

4 (&a+&r )= &o—&&o/6 —7b/18 vo —a'vo'/Sb, (24)
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Fzo. 1. The line shape function P(v —vp) for the case of combined quadrupole and anisotropic shift interactions. The parameter
r =av pp/b measures the relative strength of the two interactions, and the examples range from essentially pure quadrupole character at
the upper left to almost pure anisotropic shift character at the lower right. The abscissa, (v —vp) vp, is plotted in units of b/vp (a) Pos-.
itive anisotropic shift, and (b) negative anisotropic shift.

and the average shift is given by

Vo
—Pg 8 76 Q Pg

6 i8vg' 8b
(25)

Here, as in (9), we have taken vs= vtp in all terms ex-
cept the leading one. Equation (25) shows that the
infinite frequency extrapolated value of the average
shift now includes a contribution -K,x/6(1+K; )

from the anisotropy of the shift, but that the slope of
the E, versus vz ' plot is determined by the quadru-
pole interaction exactly as before, provided that the
term in vg' is negligible. In some cases, ' it is more con-
venient to measure the separate shifts of the two halves
of the split central transition, E~ and EL,, de6ned by
KH (vtr vB)/vB Khp a+b/VIp (26)
KI,—(vg —vr,)/v g —K;,—2a/3———

+16b/9vrp'+a'vrp'/4b (27)
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I yG. 2. Beharn. or of the central
transition splittings, »as, »IIz, , and
&vsz for the case of combined quad-
rupole and anisotropic shift inter-
actions. The abscissa is plotted in
units of the parameter r =ayoo/b
which measures the relative strength
of the two interactions, and the ordi-
nate is the product y psy/b

respectively. The infinite frequency extrapolated inter-
cepts of these plots provide two equations in the two
unknowns E;„and E,„, and the slopes of the lines
again give the value of the quadrupole coupling.

Finally, we consider the various "widths" or splittings
of the central transition, which are given by

Ayers= vrr —vs= b/vo 3gpo, (po'—(b/3g), (28a)

=3g po b/po, (b/3—g (po'), (28b)

gysr, = vs v.t,= 25b/9yo—5gyo/3+ gsv—os/4b, (28c)

Apsr, ——ps —pr, =16b/9vo+4gvo/3+ g'yo'/4b, (28d)

where the range of validity of (28c) and (28d) is given
by (22a) and (22b). The behavior of these splittings is
more conveniently represented by the behavior of the
product voA p/b:

vo»ss/b= 1 3r, —
3f 1 )

(r (1/3)
(r) 1/3)

(29a)

(29b)

poAvHz/b= 25/9 —5r/3+r'/4,
(—8/3&&r&0 for r(0)

voAvsr, /b= 16/9+4r/3+r'/4,
(0&r&10/3 for r)0) ..

Here we have used the variable r=gvo'/b. These pro-
ducts are depicted as functions of r in Fig. 2. Negative
values of r correspond to negative E and positive
values to positive E, . The range of frequencies within
which the splittings Av&z, and Ave& are valid is readily
seen in this representation.

To summarize, when both nuclear quadrupole and
anisotropic shift effects are present, the nuclear magnetic
resonance will be characterized by:

(a) A set of 2I—1 satellite resonances asymmetrically
disposed with respect to the true resonance center in the

limit of infinite magnetic field strength. Provided that
third and higher order perturbation contributions are
negligible, the spacing between corresponding satellites
is constant independent of the magnetic field strength
and of the anisotropic shift parameter, and is a measure
of the strength of the electric quadrupole interaction.

(b) A central transition whose splitting is a function
of both the quadrupole and anisotropic shift interac-
tions, and tending in general to vary inversely with
resonance frequency at low frequencies and directly
at high frequencies.

(c) An average shift which is mainly proportional
to vg '. The in6nite field extrapolated value of this shift
now contains a contribution from the anisotropy of the
shift tensor. Alternatively, the shifts of the separate
halves of the central transition provide two in6nite
Q.eld intercepts from which the isotropic and axial
components of the shift tensor may be determined. The
slope of any of the E versus v& ' plots provides an
additional measurement of the quadrupole interaction.

Numerical Examples
To illustrate the type of behavior to be expected for

the splitting of the central transition and for the Knight
shift (or paramagnetic shift) of the resonance center, we
show here in graphical form some calculated examples
based on a quadrupole coupling such that b=0.18
(Mc/sec)' and an isotropic shift of +0.80%. These
values are representative of those which have been ob-
served for the Al2~ resonance in the case of the rare
earth —aluminum Laves phase compounds. 4' Various
combinations of the anisotropic shift parameter a and
the intrinsic or dipolar linewidth 0- have been taken with
these values of b and E;„,and the examples are given
only for the splitting Avsr, which is tbe one that is
usually observed.
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Figures 3(a) and 3(b) illustrate the behavior of
d, v~1, as a function of vs ' as given by (28c). Figure 3(a)
shows the case for positive anisotropy, and Fig. 3(b)
that for negative anisotropy. Negative anisotropy causes
Av~g to curve toward higher values at the high-
frequency end of the range, whereas a positive aniso-
tropy causes Av~g to curve downward at the high-
frequency end. The e6ect of the intrinsic line width 0 is
simply to displace the entire curve toward larger values.

Figures 4(a) and 4(b) show the behavior of the pro-
duct vs4v~r, given by (29c) when a constant linewidth
term o. is added. Figure 4(a) emphasizes the behavior
of this product in the vicinity of the ordinate intercept
25b/9, where the eRect of o. is to cause a downward curv-
ature of vshvIr~. Figure 4(b) shows the behavior of
s od v~i over a wider range for some of the larger values
of a. In this case, the contribution from the term in
r'= (ave'/b') in (29c) causes an upward curvature at
high frequencies.

Figure 5 illustrates the type of behavior that may be
expected for the average shift of the resonance as given
by (25) for combined quadrupole and anisotropic shift
eGects. For relatively small values of the anisotropy, the
intercept at infinite frequency is altered by the term
—a/6, but larger values of a have the eRect of intro-
ducing a downward curvature of E, at high fre-
quencies. This downward curving e8ect is independent
of the sign of u, since it depends only on the u' term in
(25).

EXPERIMENTAL ILLUSTRATION
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Inasmuch as a number of examples of the applica-
tion of these ideas to the analysis of the spectra result-

ing from polycrystalline specimens of metals, in par-
ticular, have already appeared, ' ' we include here for
illustrative purposes the example of the spectrum of Ap'
in polycrystalline PrA12, an intermetallic conductor. 4 '
Due to the presence of both temperature-dependent and
temperature-independent contributions to the Knight
shift parameters in this case, the extent of interplay
between the anisotropic shift and quadrupole inter-
actions is also temperature-dependent, providing in one
substance an interesting range of values of the relative
strength parameter r LEq. (29)].

Direct measurement of the satellite spacings (19) of
the AP7 resonance spectrum at room temperature at
three diferent frequencies gives for the quadrupole
coupling, e'qQ/k=4. 56&0.12 Mc/sec. This means that
v@=0.684 Mc/sec, which is relatively small compared
to the typical experimental Zeeman frequencies in the
range 4—16 Mc/sec. Second-order perturbation theory
treatment should still be appropriate.

The presence of anisotropy in the Knight shift is re-
vealed by the splitting Avail, of the central transition in
the manner shown in Fig. 3(b). The experimental re-
sults for room-temperature and liquid-nitrogen tempera-
ture are shown in Fig. 6. At both temperatures the
hv&& plot curves upward at the high frequency end,

g =-g05
cr= 4 kc

I 50-

Cl

50

0.04 0,08 O.I2 O.I6
v.-l (Mc/sec)-'

(b)

0.20 0.24

FIG. 3. Splitting of the central transition, hv~z„as a function
of v0 ' for the case of combined quadrupole and anisotropic shift
effects. The quadrupole coupling constant is such that b=0.18
(Mc/sec) . (a) Positive anisotropic shift values, and (b) negative
anisotropic shift values.

indicating that the anisotropy in the shift is negative
LFig. 3(b)j.The degree of curvature is clearly greater
at 77'K than at room temperature, showing at once that
the shift anisotropy is temperature-dependent.

The solid lines in Fig. 6 are least-squares Gttings of the
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TAnLE I. Quadrupole coupling e gQ/b, anisotropic Knight shift
parameter a, and dipolar linewidth 0., of the Al' nuclear magnetic
resonance in polycrystalline PrA12 based on a least-squares analysis
of the splitting of the central transition of the resonance (Fig. 6).
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data points to the equation

hvrrz25, b——/9vp Sav—p/3+-', o, (30)

which is (28c) neglecting the term in vp' (because a is
not very large) and including a finite dipolar linewidth
contribution ~~o-. The equations of these lines are found
to be (in Mc/sec)

at 300'K: hvrrr, =0.633vp '+0.000914vp+0.00754,

at 77'K: Avrrr, ——0.688vp '+0.00366vp+0. 00'/49.
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FIG. 6. Splitting of the central transition hv~z, of the Al27

resonance in PrA12 as a function of vo '. The solid curves are least-
squares ettings to Eq. (30) of the text.

The quadrupole and anisotropy parameters, esgg/h and

a, and the dipolar linewidth 0-, determined in this
fashion, are listed in Table I.

The relative strength parameter r [Eq. (29)j ranges
at 300'K from —0.039 at 4 Mc/sec to —0.62 at 16

FIG. 7. The product v pkv~z, for the central transition of the Al'7
resonance in PrAI2 as a function of v0'. The solid lines are least-
squares 6ttings to vphvrrr, =2ob/9 5ovps/3—

Mc/sec, and at 77'K from —0.142 at 4 Mc/sec to
—2.27 at 16 Mc/sec. This last value approaches the
limiting value of —8/3 of (28c), and the contribution
a'v ps/4b of the cross term in (28c) is then 0.020 Mc/sec.
This should be compared with the total line splitting
Avrrn of 0.105 Mc/sec at this temperature and resonance
frequency (Fig. 6).

The central transition splitting measurements may
also be handled in the manner of (29) by plotting the
product vohv~l. as a function of vo'. This is useful when
the static dipolar width of the resonance is small, as in
the pr'esent case. The experimental data for this example
are shown in Fig. 7.

Inasmuch as the quadrupole coupling is not large com-
pared, to the nuclear Zeeman frequencies employed,
measurement of the quantity X, [Eq. (25)j, provides
a reliable determination of the Knight shift of the reso-
nance. Figure 8 shows the results of room-temperature
measurements of K, at eight frequencies in the range
4—16 Mc/sec. The data are shown plotted both as a
function of vo

' and as a function of vo
' to illustrate

that the approximation that E, vo
' is not a good

one, and cannot be reliably extrapolated to the true
inGnite Geld value of the shift. The quadrupole coupling
determined from the slope of the E,„versus vo ' line
in Fig. 8 is esqQ/k=4. 59 Mc/sec, in agreement with the
values determined from the satellite spacing and from
the splitting of the central transition.

The inGnite frequency intercept of the E, versus
v,

—' line is +0.526%, Using the value of a frorrt Table
I, we have from (25) at infinite frequency:

(31)
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would contribute to a term involving an energy de-
nominator of the order pHo due to the fhp of electron
spins. These terms are small to order gi4/P 10 ' com-
pared to either diagonal Knight shift terms or second-
order quadrupole terms and thus may be neglected.
The same argument enables us to eliminate a number of
terms in the balance of (15), and to write finally,
H'&'» =H'KA+H'q, with

S.oI* 3 (S.ss;3) (L r;2)
H'KA = —2gi43P g

~jr(, ~g'Iq

(A1)

H KA=H KAA+H KAo ~ (A2)

The individual operators are

which will be referred to'as the anisotropic Knight shift
interaction. II @ is the quadrupole interaction and is the
last term of (15).The operator H'KA is diagonal in the
electron spins; it can be further broken down into a
part which is diagonal in the nuclear spin and a part
which is not:

-0.100 0.02 0.04 006
IO~ /P~ (Mc/sec) ~

I

0.08

H KAA= —2gfJoPI~3' P S s(1—3 cosa; )/3r;& ,
3

k=1

H KAo 6gpoP Q S3OLcos8JO

&& (I;, cosg;3+I;„sing;3) sing, 35/r;33.

(A3)

FIG. 8. Average Al" Knight shift E» in PrAI2 at room tempera- The shift in energy of the ~th nuclear level wealture as a function of vo~ (bottom scale and solid line) and of
vo ' (top scale and broken line). given by

so that in the present case, K;„=+0.51"/%. In the
same manner, the value of E;„ is obtained at other
temperatures to complete the characterization of the
experimental data in terms of E;„,43, and esqQ/h.
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APPENDIX A

We shall consider the interplay of the Knight shift
with the quadrupole terms. "The S,I,portion of the con-
tact term in (15) simply contributes a small additional
6eld at the nucleus which results in an additional
Zeeman splitting and shift of all the resonances by the
same amount. This is the usual Knight shift. The re-
maining terms in the contact interaction are of the form

or SM+, neither of which has diagonal matrix
elements. In second-order perturbation theory each

/2E = (H'q+H'KAA)

+2 I
(H'q+H'KAo)- I'/(~- ~- ) (A—5)

Here, the dipole-dipole term has been omitted on the
basis of Silver's arguments. '4 The second-order term in
DE can be expanded

~-"'=E( I
(H'q)- I'+2 «(H'q) (H'KAo).

+I (H'KAo)
I j(& —& ) r. (A6)

With respect to (A6), the first question to be resolved
is that of the relative sizes of the second terms. One basis
for accomplishing this is to assume that

(H q)mm' Py (H KAO)mm' (H KAA)mm

and that in the cases of interest, 42=P2/hvr, . Then,

P2 2P~ ~2 P2 2P3 P4

+ + = + + . (A&)
hvr, hvr, hvr. hvr. (Irvr, )' (hvr)'

With p/Irvr«1, it is clear that the second and third
terms give contributions which are small compared to
the first. This justifies neglecting these terms if the

"F.J. Milford (unpublished). '4 A. H. Silver, J. Chem. Phys. 82, 959 (1960).
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assumption that (H'KAO)mm' (H KAd)m can be veri-
fied. It would be equally useful to establish that
(H KAO)mm' ((H KAd)mm

To investigate this point we now assume axial sym-
metry for the electron distribution. Let the coordinates
x, y, s be so chosen that the s-axis is the symmetry
axis. An arbitrary point is specified by the coordinates
r, 0, 4. Furthermore, let the axes $, g, i be such that
H p is along t and makes polar angles 8, 4 with the x, y, s
coordinates. Choose $ to lie in the x, y plane, making
an angle 4 —pr/2 with the x axis.

In terms of these coordinates one may, following
Bloembergen and Rowland, "write

H'KAd= gIdppIb p—Sri, (1—3 cosp8, q)/r, i,
'

For the oG-diagonal part B ~gp we have

H KAp=6gppp g SrpI~j cos8jp sin8;q cosp;q/r;q', (A11)

plus a similar term involving I». Changing variables to
O, 4; 8, @ gives

H'KAO=6gldpP g SriIps P sinO~[cosC sing —sinC cosP$

X[sin8 cosP sinO' cosC

+sin8 sing sinO& sin4~+cos8 cosO~). (A12)

Again taking PP as given by (A9), one finds

= —2g&OPIr, Q Q (—1)'Sri
L=2

(Ag) (H'KAP)mm ~ r 'g(r)[A+ (C—A) cos'8j

XI'p'(cosO')I'p '(cos8), '"~ &&/r, pP,

where the s subscript on the spin operators has been
changed to f in order to agree with the coordinates in-

troduced above. Continuing with the assumption of axial
symmetry, one may assume that the electronic wave
functions have the form

XsinO~[cosC sing —sinC cosPg

X [sin8 cosP sinQ~ cosC+sin8 sing sinO sinC

+cos8 cosO)r' sinO~drdO'dC . (A13)

It is convenient to do the C integration first, and this
leads to

P*P=r'g(r)[A+ (C—A) cos'O~j
(H'KAO) rg(r)dr [A+ (C—A) cos'8j

t'A9

if only s and p states are included. Then, as Bloembergen
and Rowland have shown, "

16m
(H KAd)mm= gppHOXpQ(3 COS'8 —1)(C—A)

15
(A10)

X rg(r)dr

=Fhvo(3 cos'8 —1),
where the last equality defines F.

X [sin8 cos4 sing sinO~

—sing sin8 cosQ sinO'j sin'O~dO'

=0.

(A14)

The same argument applies to the term involving I».
As a consequence of (A14), the second-order energy

shift (A6) reduces rigorously to the second-order
quadrupole shift alone.


