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just the identity transformation; the generalized co-
variant Dirac position operator is just the canonical
coordinate x=q. So the generalized inverse Foldy-
Wouthuysen transformation leaves the Hamiltonian in
the canonical form (4.1) for zero spin. But considerably
more manipulation is needed to get the Klein-Gordon
equation. '

The equations (5.6) can be put directly into the
Schrodinger equation form (5.4) with a six-component
wave function whose components are A and m 'E.' ""
The Hamiltonian for this equation is not Hermitian
but is pseudo-Hermitian in the appropriate indefinite
metric. "From our point of view, the Schrodinger equa-
tion with the Hamiltonian (5.3), which is obtained by
the generalized inverse Foldy-Wouthuysen transforma-
tion from the canonical Hamiltonian (4.1), is more
nearly the spin 1 analog of the Dirac equation. Whether
it will be more useful remains to be seen.

Various authors have developed the transformation
which connects the canonical Hamiltonian (4.1) directly
to the Schrodinger equation form of Eqs. (5.6) with the

~2 E. M. Corson Tensors, Spinors, and Relativistic Wave Equa-
tr'ops (Hafner Publishing Company, New York, 1953), especially
Secs. 26(b) and 39(d) (i)."K.M. Case, Phys. Rev. 95, 1323 (1954).

wave function whose components are A and m E.' "
This is not a unitary transformation but is pseudo-
unitary in the appropriate inde6nite metric. "From our
point of view, it appears as the combination of the
generalized inverse Foldy-Wouthuysen transformation
and the manipulations (5.5). This transformation does
not have all of the properties of the Foldy-Wouthuysen
transformation and cannot be put to all of the same
uses. For example, if we use it to transform the position
operators x which appear as the independent variables
in the equations (5.6) to the representation in which
the Hamiltonian has the canonical form (4.1), we get
an operator" which does not satisfy the last of Eqs. (B),
the condition for Lorentz covariance.

Finally, we want to point out that we have exposed
several simple features of the spin 1(2 situation which
are not shared by spin 0 or 1. In particular, the inverse
Foldy-Wouthuysen transformation for s = 1/2 gives us
the local invariant Dirac equation. The analogous
equations for s= 0 and 1 are not local.
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The Born series for a quantum-mechanical Green function is studied. A prescription is given for making
"best" use pf the in fprmation contained in the 6rst few terms of that series, and, in particular, for calculating
bound states or resonances from them. This prescription is based on heuristic convergence arguments whose
fprmal steps are somewhat reminiscent of renormalization group methods. The present considerations may
be applied tp potential scattering as well as to quantum 6eld theory. They are expected to be valid for low-
energy phenomena and 6nite-range forces. The prescription is tested, using only the erst two Born terms,
in the case of a nonrelativistic particle moving in a Yukawa potential: For well depths producing a single
shallow bound state, the usual effective-range results are closely reproduced, and, in some ways, improved
upon.

1. INTRODUCTION

'HE problem of replacing the quantum-mechanical
Born (or perturbation) series by a more con-

vergent expansion is already a well-studied one. Its
importance arises from the fact that many cases of
great physical interest cannot be treated by means of
that series. Bound-state and resonace problems fall in
this category whenever the unperturbed problem yields
only a continuum of noninteracting states. This is

*Research supported by the National Science Foundation.
t Present address: Atomic Energy Research Establishment,

Harwell, England.

precisely the situation one must face in relativistic field
theory. The current experimental results with strongly
interacting particles only emphasize the need for im-
proved calculational procedures in this area.

Among the many existing approaches' ' to the ques-
' See, for example, P. M. Morse and H. Feshbach, Methods of

Theorefscal Physr'cs (McGraw-Hill Book Company, Inc. , New
York, 1953), Part II, Chap. 9.

s For recent approaches see M. Rotenberg, Ann. Phys. (N. Y.)
21, 579 (1963),and its bibliography. Rotenberg's method, like the
present one, is based on a regrouping of the Born terms, designed
to accelerate convergence. His "regrouped" Eq. (59), in particular,
should be compared with our formulation, in which a true re-
grouping only occurs as an intermediate step.

3A method of circumventing the convergence difIj,culty of
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tion, some, like the Fredholm or Feenberg methods, '
while successful in potential problems, have not so far
been readily applicable to relativistic field theory. In
the latter context we should only like to mention the
renormalization group method4 as possibly having some
relation to the ideas suggested here. As far as could be
ascertained, however, neither that method nor (in
general) its results coincide with ours. Nevertheless,
a common starting point is the recognition that a re-
normalization constant (or a coupling constant) may
be specified in a continuously infinite number of ways
by stating the numerical value of some Green function
at a chosen point in momentum space (the "renormal-
ization momentum").

The present article, which is only intended as an
exposition of the method, will be confined to potential
scattering for definiteness of presentation. It will be
readily apparent, nevertheless, that the arguments are
of wider generality.

2. THE BORN SERIES

Since the method to be presented makes use of the
standard Born series as a starting point, we brieRy
review this expansion to establish a notation.

Consider an integral equation of the type

energy-momentum space, satisfies the integral equation

G(e,P,&)= —(2~)'b(P —il)+g(2~) '

d'kLE —(2m) 'k2+ie$ '

X W(q —k)G(k, y,E) . (2.4)

This provides a detailed instance of (2.1).
The Born series for G consists of the Taylor expansion

G—Q gnG
n=o

Whether or not this series converges, it may be used to
define the sequence of functions G„. We have, in fact,

G„=E Go. (2.6)

3. MODIFIED BORN SERIES

In order to find an expansion for G with optimized
convergence properties we now proceed in two steps.
First, we merely replace one Taylor expansion by
another. For this purpose we select a new expansion
parameter ) which will be considered a function of g,
and vice versa:

G(s) = Gp($)+g(EG) (s), (2.1)
Now

g =g(~) (3.1)

i&+ (2m)
—'V2$ —gViP=0 (2.2)

where G(s) is a single unknown function of a finite set,
s, of continuous variables s~, s2, ~ ~, and where E is a
given linear operator which maps G into some other
function EG. The function Gp(s) is also given; the real
parameter g is adjustable. For the purpose of avoiding
undue generality one may think of gE as being the
integral operator associated with a certain Schrodinger
equation and incorporating certain boundary condi-
tions; G is Green's function for the problem. The
variables s might be positions, momenta, etc. , according
to the representation chosen. For example, let

n 0
(3.2)

This form is obtained if, as we assume, g can itself be
expanded as a Taylor series in X. We somewhat
specialize this series to be

g=) (1+P g X"),
n=1

(3.3)

where the g„are numerical coefficients to be chosen
presently.

It will be advantageous to rewrite (3.2) as

be the Schrodinger equation considered. Let G=Gp+Gi Q X"A„,
+=1

(3.4)

p(r) = (22r)
'' d'p e'2'W(p) . (2 3)

Then, the retarded Green function, suitably defined in

where the functions A„are now independent of any
arbitrary multiplicative number (or function) entering
into the definition of G. We consider regions of the
variables in which Gi does not vanish. Inserting (3.3)
into (2.5), we find

bound states and resonances has been suggested by S. Weinberg,
Phys. Rev. 130, 776; 181, 440 (1963).He attempts to replace the
problem by a physically equivalent one where each resonance and
bound state is already made to occur in the unperturbed problem
as a "particle" in its own right.

N. N. Bogoliubov and D. V. Shirkov, Introduction to the
Theory of QNuntised Fields (Interscience Publishers, Inc. , New
York, 1959), Chap. VIII.

Ay=i,
A 2 G2/Gi+gl

A 2= Gp/Gi+2giG2/Gi+g2, etc.
(3.5)

We can now enforce the rapid convergence of the new
series (3.4) for all values of X at some chosen point s= o.
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We only have to choose g&, g&, ~ such that

Ag(0) =A3(0) = =0.
Explicitly,

(3.6)

Then
G()=|G()—Go()]/G () (3.8)

G() =~(.)+~ (-)(G.()/G ()+g (-)]
+~'(~)Ã3(~)/Gi(~)+2gi(~)

~G2(~)/Gi(~)+g2(~)]+ " (3 9)

If this rearrangement is to accomplish anything, not
all values of 0. are equally suitable. This may be seen
as follows: Since the constant g is real, its variation
truly represents a single degree of freedom. Conse-

quently, there is no loss of generality in assuming that
X is real in (3.1). Equation (3.3) then shows that the
g„must be real. We then see from (3.7) that all the
G„(o)(e)~1) must have the same complex phase. This
only happens in certain regions (to be called constant-
phase regions) of the variable a, if at all. For example,
in energy-momentum space we must not consider values
of 0 corresponding to a physical scattering process,
although subthreshold real energies are usually all

right. ' Similarly, if partial-wave amplitudes are con-
sidered, we must take 0- to correspond to a real energy
lying between the left- and right-hand cuts. ' These
remarks will be illustrated at a later stage.

We finany observe that, in (3.9), the parameter X

must itself be considered a function of 0-. Indeed, g is

clearly independent of 0-. Since the g„are functions of
0 it follows from (3.3) that such is also the case for X.

4. A SERIES INDEPENDENT OF THE
COUPLING STRENGTH

The second step in the procedure is to abolish, using
continuity arguments, the privileged nature of the point
s=o-. I.et us consider from now on the dependence of

6 N. N. Khuri, Phys. Ilev. 107, 1148 (1957).' R. G. Newton, J. Math. Phys. 1, 319 (1960).

gi= —G2(~)/Gi(~)
(3.7)

g,= —G, (z)/G, (0)+2/G2(o)/G, (o)]', etc.

At this point it should be observed that nothing is
known or assumed about the convergence of the series
(3.3) for g. It only serves the formal purpose of ob-
taining the functions g„(o).

Although (3.4) now converges at o about as well as a
series can (it is reduced to its first two terms), we have
no guarantee that it converges at any sWo-. We make,
however, the working hypothesis that it does converge
in a 6nite, but possibly small region S of s which in-
cludes 0. (S may, of course, shrink as ~X~ increases. )
If s is in S, we now expect the function G to be ade-
quately represented by (3.4), with the A„being given

by (3.5). The dependence of the series on s and o. is
worth exhibiting explicitly; for convenience we define
the function

any function upon, say, s& (or 0-i) only, keeping s2, sa,
(0~, 03, ) as fixed parameters. Dropping the sub-
script 1 for convenience, we shall now speak of the single
variable s (or 0).

We assume a- to have been chosen at a point where
the function G, defined by (3.8), is differentiable. Then,
inside S, the derivative G'(s) is also a convergent series
in 'A. In particular, we can compute

G'(~) —=
t G'(~)].=. (4.1)

as a convergent series from (3.9). Finally, we can elimi-
nate X by the exact relation

The result is
X=G(0). (4 2)

5. SECOND-ORDER APPROXIMATION

If all the terms of (4.3) are neglected, i.e., if the right
side is approximated by zero, we obtain for G the 6rst
Born approximation, the constant of integration playing
the role of the coupling parameter.

The simplest nontrivial application of our procedure
involves the first term of (4.3). To this order,

G' = G'(G2/Gi) ', (5 1)

which may be integrated and solved for G to yield

G=Go+L~ —G2/Gi] 'Gi, (5.2)

where ~ is the constant of integration; ~ ' plays the role
of an effective coupling constant. Comparison with the
Born series shows that ~ ' ~ g as g

—+ 0. To see in what,
sense ~ is a constant, , suppose the derivatives in (5.1)
are taken with respect to s&. Then ~ must be independent
of s~. If the method is to be exploited to best advantage,
the argument should be carried out simultaneously for

G'= G'(Gz/G&)'+O'L(G3/G&)' —2(G2/Gi) (Gp/Gi)']

+W (G4/Gi) 3 (G~/G&) (Ga/Gi)

+L5 (G2/Gi) ' —2Gg/Gi] (G2/Gi)') + ~ ~ ~ (4.3)

where all quantities are evaluated at the same point a
(or s), and where we have included one more explicit
term than in (3.9). By requiring (4.3) to hold every-
where, we eliminate the need for singling out a special
point. Thus, a first-order nonlinear differential equation
has been obtained for the unknown function G(s) in
terms of the known functions Gi(s), G2(s), ~ ~ and their
first derivatives. This equation no longer contains any
coupling parameter. Therefore, the latter can only be
hidden in the constant of integration for G. The pre-
sumed advantage of (4.3) over the Born series is that
the right side has now been expressly designed for opti-
mum convergence in constant-phase regions. In or near
such regions, (4.3) is, in fact, proposed as a substitute
for the Born series. In practice, Green functions have
such an analytic structure, ' ' that the procedure should
lend itself to the calculation of low-energy scattering
and shallow bound states.
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p' =q'= 2mE

and assuming a spherically symmetric potential:

G —+ M(lV E)

(momentum representation),

G —+ E(l,E)

(partial-wave representation). Here

(5.3)

(5.4)

(5.5)

all variables s&, s2, ~ . Consequently, I(: should be a
true constant, in the sense that it should not depend
upon any dynamical variable.

The remarkable fact that (5.1) could be integrated
without detailed knowledge of G& and G2 does not carry
over to higher orders of approximation. Also, to higher
orders it may no longer be possible to treat all variables
s~, s2, ~ on the same footing. A selection will then
have to be made of whatever variable is of greatest
physical interest in the problem considered. In this
article, we do not further discuss the higher-order ap-
proximations, but con6ne the subsequent remarks to
the second-order form (5.2). This form depends on the
representation chosen for G. Consider, for definiteness,
the scattering amplitude obtained from G by specializ-
ing to the energy shell:

a given problem. It is likely, for example, that (5.8) is
more suited to the calculation of bound states, while
(5.7) is indicated in the study of total cross sections.

Although this article will not go into detailed field-
theoretical applications, the following remarks can be
made. In the Lee model, s (5.2) is exact for E f) sca-tter-
ing. (There is no distinction between momentum and
partial-wave representations here. ) A similar result
applies in simple cases of separable potentials. In more
realistic models, it should still be noted that the
coupling renormalization is embodied in (5.2). Consider
the prevalent situation' where

Gs= Gs"*+CGr, (5.11)

G2"g being cut-off independent, while the constant C
diverges for infinite cutoff. It is then sufFicient to make
the difference x-C convergent; (5.2) is applicable with-
out modification.

Finally, consider a case where the analysis of Sec. 3
breaks down: suppose G& —=0. This may happen, for
example, in the XP' model (with isospin) if we consider
the two-particle system with T= 1.Then the first Born
term contributes nothing. By a simple adaptation of
the preceding arguments one can easily derive, to second
nonvanishing order, the formula

(5.6) G=Gs+ t x—-', Gs/Gsl 'Gs. (5.12)

M WP Z, (cose)X(/, E),
L=O

(5.9)

in general, even though

M„=P Ei(cos8)$„(E,E),
0

(5.10)

is the momentum-transfer squared, while / is the
angular-momentum quantum number. The unscattered
amplitude Gs in (5.2) is ignored. In the momentum
representation, (5.2) becomes

M(dP, E) = LxM —Ms/Mt] 'Mt, (5.7)

where M~, M2 are the 6rst two Born terms of 3f, while
similarly, in the partial-wave representation,

E(l)E) —EKN X2/Elf El ~ (5.8)

The constants of integration xxr, rr~ are not a priori the
same. As recent analyticity studies have emphasized, ~

the variable l may be treated as continuous. This moti-
vates us to make a~ independent of l, as well as of E.
It is clear that, if M and X are taken from the approxi-
mations above, then (setting p q= p' cosg)

6. APPLICATION TO THE YUKAWA POTENTIAL

Since the foregoing considerations are heuristic
rather than mathematically rigorous, it is essential to
test them in practice. For this purpose we select the
Yukawa potential model, whose Green function has
manageable Born terms. This model bears a reasonably
close relation, both physically and mathematically, to
field-theoretical interactions. Furthermore, nearly exact
solutions are already available in the literature for
comparison.

In the notation of Sec. 2, let

(6.1)

(6.2)

The second-order formulas, (5.7) and (5.8), are the ones
to be tested in this section. To this order, our ambition
should not go further than to fit the case of a single
bound state. More bound states can presumably be ac-
counted for with each higher order of approximation. "

The Coulomb limit p, ~O in (6.1) would be an
interesting case, but, unfortunately, it cannot be
handled owing to the "infrared" divergences which

by de6nition. The inequality (5.9) illustrates what is
meant by the representation dependence of the second-
order approximation. Thus, some judgment must be
exercised as to the representation which is adequate to

' T. Regge, Nuovo Cimento 14, 951 (1959).

s T. D. Lee, Phys. Rev. 4S, 1329 (1954).
~ See, for example, Ref. 3, Chap. IV.
'0 This feature (that the higher the number of levels, the higher

the order of approximation required to account for them) seems
a basic rule of thumb in the present type of approach. This is
another area where precise mathematical results would be
desirable.
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appear in the second Born approximation. We there-
fore restrict ourselves to finite-range forces. For sim-

plicity we then use units such that p, = 1 and m= 2.

A. Momentum Representation, Eq. (S.'7)

In this representation, the constant-phase region
consists of —~&E&0 for lV&~0. We want to investi-
gate physical scattering (E)0). Hence, the best results
should be obtained at small E, i.e., close to the constant-
phase region. Application of (2.6) yields for the first
two Born terms 3I~ and M2 of the scattering amplitude
the expressions given in the Appendix. We shall be
interested in the total cross section o. (The differential
cross section becomes isotropic near threshold. ) Using
the optical theorem,

B. Partial-Wave Representation, Eq. (5.8)

Here the constant-phase region is —~~ &E&0. Equa-
tion (5.8) will be used to determine a single S wave
bound state occurring in that region as a function of o 0,

another physical quantity connected with the positive
end of the region. We first note that the representations
(5.7) and (5.8) for 1=0 coincide at threshold. We may
use this as a consistency criterion to put

(6.12)

In other words, 0-0 is now the same whether obtained
from (5.7) (with or without the help of the optical
theorem) or from (5.8). Setting 1=0,we find the binding

energy as the value of —E for which the denominator
of (5.8) vanishes. Thus, we must solve the equations

o =E "' Im3f(O, E). (6 3) ~sr ——1Vs(O,E)/iV&(O, E) (6.13)
We have

Mi(O, E)= —1,
Ms (O,E)= (8s)—'(1—2A/E) —'(E~&0) .

From (6.3) and (5.7),

~=a-»2 Im
pe+ (8s.)

—i (1—2j/E) —i

or
o = (4n-ssr') 'L4E+ (1+1/8—wlrsr)'7

—'.
In particular, at threshold,

(6.4)

(6.5)

(6.6)

4n./o. e
——8—2.11968@'+ (6.14)

and (6.7) for E= Bas a—function of o s. [The functions

Xi, s (O,E) are given in the Appendix. ) The results are
plotted in Fig. 1 and compared with the essentially
exact results. "The present method does not begin to
break. down until 8=0.20, i.e., fairly close to the "far
end", 8=0.25, of the constant-phase region. In Fig. 1,
the results are also compared with those of the effective-
range analysis, "both in the zero-range limit and with
first-order range connection. Near B=O the latter ap-
proximation is

o'o = (4mxsr ) i (1+1/87TKM) (6.7)
while the present method gives

Eliminating a~ in favor of the more physical 0.0, we
obtain 4x/o e 8 (13/6) B——s"+—

o.= o e(1+L1—2(4~/o o)'~'(os/4s)E) '. (6.8)

If 0 0 is large, this should be compared with the effective-
range formula"

(6.15)

o' = o'o{1+P1—2.1196(4m'/o'o) 7 (ao/4m') E}, (6.9)

where the denominator is written to first order in E;
the coefficient of 00E is written to first order in 00 '~'.

Comparison of (6.8) and (6.9) shows that the zero-
range limits agree exactly, while the first-order range
correction is about twice as large in our method as in
the effective-range method.

We next show that our approximation is unitary at
threshold, i.e., that an integration over angles of the
differential cross section also yields the result (6.6) at
zero energy. Since the amplitude is isotropic we use

.20

.IO

.05

do/dQ= (4n-) '[M(0,0) ['

La factor of (sr)' is due to m= rs7, where

M(0,0) = —(~sr+1/8~) ';
Eq. (6.6) then follows.

(6.10)

(6.11)

.05 .IO .20

FIG. 1. Relation between the zero-energy cross section o.
O and

the binding energy J3 in the case of a Yukawa potential with a
single shallow bound state, according to various approximation
schemes. Concerning the "exact" curve, see Ref. 11.

"J.M. Blatt and V. F. Weisskopf, Theoretical EgcLeur I'hyszcs
(John Wiley 8z Sons, Inc. , New York, 1952), Chap. II.

'2 These represent a combination of the results of J. M. Blatt
and J. D. Jackson, Phys. Rev. 76, 18 (1949) on 0, as a function of
g, and of L. Hulthdn and K. V. Laurikainen, Rev. Mod. Phys. 23,
1 (1951) on 8 as a function of g.
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a striking agreement to this order. In contrast, the
agreement between (6.8) and (6.9) was not so good
This may be due to the use of the optical theorem as a
short cut in obtaining (6.8). Integration of do/dQ
should be considerably better, as experience with other
methods indicates.

7. SUMMARY

A method has been presented for making "best" use
of the information contained in the erst few terms of the
Born series. The region of applicability is, loosely
speaking, the low-energy or low-binding-energy range.
If the second Born approximation is given, then the
method merely consists of a completely elementary
algebraic rearrangement of the two Born terms, and is,
therefore, equally applicable to field theory and to
potential theory. The formula, which is of the de-
nominator type made familiar through the Lee model
and the renormalization-group treatment of the photon
propagator, may give rise to bound states or resonances.
It is very successful for the Yukawa potential in the
one-level case. If higher Born terms are to be used, the
method involves the solution of a nonlinear differential
equation in one variable.
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Fro. 2. The function 4ztlt'z(O, E), given by (A7),
plotted against (—E)'".
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The S-wave amplitudes are given by

N„(O,E)= ds M„(2E(1—s), E) . (A4)

We find

N, (O,E)= —(2E) ' ln(4E+1) (E)——,'), (AS)

x+E(2x 1)—
Xln (—1&E&0). (A6)—E(1—x)'+x

N, (O,E)= (8zrE)-' x-'dx[ —E(1—x)z+ x&-'"

Mr ———(As+1) ', (Ai)

APPENDIX: SECOND BORN APPROXIMATION FOR
YUKAWA POTENTIAL SCATTERING

For completeness, we include the relevant formulas
concerning the first Born terms in the case of a Yukawa
potential [Eqs. (6.1) and (6.2)], even though some of
them are well known. In the notation of Eqs. (5.4),
(5.5), and (5.10), we have X=[1+2(—E)'"]—'

7'= 1—2(—E)'" (A8)

This integral may be evaluated in terms of the Spence
function" J.The result is

Nz(O, E)= (16rr) '(—E) sj'

X [L(X')+L (I'z) —2L (XI')]
(—1(E(0), (A7)

where

Mz ———(2zr) ' d'k{[(p+k)'+1j

X[(q+k)z+1][E—kz+ie)) '. (A2)

i' 'd|' ln
I
1—1 I

. (A9)

The latter integral is conveniently evaluated by
Feynman's method" to yield

Mz ——(16') ' d x[-'xA' xE(1 x)'+x]—
X[—E(1—x)'+x] '" (E&0), (A3)

analytic continuations being through the upper-half
I plane in this and all subsequent formulas. This inte-
gral may be evaluated in terms of elementary functions, '
a result not used in this paper. The special case iV=0
is simple to evaluate and yields (6.4).

"J.M. Jauch and F. Rohrlich, The Theory of I'hotoris arid Elec-
trons (Addison-Wesley Publishing Company, Inc. , Cambridge,
Massachusetts, 1955), Appendix AS.

This result is useful in numerical work and is believed
new. Near E=O, Nz(O, E) maybe expanded as a Taylor
series in (—E)'".The leading terms are

4s-Nz(O, E)= 1—2 (—E)'"+(25/6) ( E)+ . (A10)—
A plot of 4rrNz(O, E) is shown in Fig. 2.

Note added in proof. I am grateful to Dr. R. J. Eden
for pointing out to me the interesting similarity of the
second-order result (5.2) to a so-called Pade approxi-

, mant. "It seems unlikely, however, that this similarity
will persist to higher orders.

'4 For simple properties and a tabulation of L(z), see K. Mitchell,
Phil. Mag. 40, 351 (1949)."G. A. Baker, Jr., J. L. Gammel, and J. G. Wills, J. Math.
Anal. and Appl. 2, 405 (1961).


