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the identification of T4' with the mass density, and
admitting in our relativistic treatment that the total
mass of the universe might depend on the mean radius
of curvature of its space."We may interpret this de-
pendence either as the creation of matter possessing
invariable gravitational properties, or as a variation of
the gravitational properties of matter (in the sense of
mutual action of matter proposed by Einstein)" the
total quantity of which remains constant in the uni-

3' Consequences of the assum tion that the mean-mass density
varies as the function p=p~(G~ G)'+", p& being the density at the
radius GJ, and n a real constant, are investigated in J. Pachner,
Acta Phys. Polon. 23, 133 (1963).

verse. The latter variation is caused by the variation
of the mass of matter, in contra-distinction to the
hypothesis of Dirac" who assumed a dependence of the
gravitational "constant" on the radius of the universe.
Whether such variations do occur in our universe or not,
only experience can decide. The recent observations of
Ambarzumian, "who found that the central regions of
certain galaxies are the sources of an intensive emana-
tion of matter, indicate that such a possibility can-
not be tt priori excluded.

"P.A. M. Dirac, Proc. Roy. Soc. (London) A165, 199 (1938).
ee V. A. Ambarzumian, VoProsy kosmogonii, tom VIII (Moscow,

1962), pp. 21—23.
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An examination is made of the consequences for the quantum mechanics of spinning particles of equations
characteristic of Lorentz-covariant position variables. These equations are commutator analogs of the
Poisson bracket equations that express the familiar transformation properties of space-time events in
classical mechanics. For a particle of zero spin it is found that the usual canonical coordinate is the unique
solution of these equations. For a particle with positive spin there is no position operator which satis6es
these equations and has commuting components. For a particle and antiparticle there is a unique solution
with commuting components which is valid for all values of the spin and reduces for zero spin to the canonical
coordinate. For spin —, this is the Foldy-Wouthuysen transform of the position operator of the Dirac equa-
tion. A generalization of the inverse Foldy-Wouthuysen transformation, valid for any value of the spin,
appears as a unique unitary transformation which takes this generalized Dirac position to the canonical
coordinate. The application of this transformation to the canonical form of the Hamiltonian gives a gen-

eralization of the Dirac equation Hamiltonian. This is developed and compared with the literature for spin 1.
It gives a nonlocal equation as the spin 1 analog of the Dirac equation.

I. INTRODUCTION

' 'HIS paper is an attempt to answer some questions

suggested by a recent study of special relativistic
invariance in Hamiltonian particle dynamics. '' This

study has emphasized two distinct aspects of relativistic
invariance. The first of these is the symmetry of the
theory under the inhomogeneous Lorentz group, re-

Qecting the principle of special relativity that the laws

of physics should be invariant under transformations

of reference frames. This symmetry is guaranteed by
postulating the existence of ten infinitesimal generators

H, P, J, I, for time translations, space translations,

space rotations, and pure Lorentz transformations, re-

~ Supported in part by the U. S. Atomic Energy Commission.
$.0n leave of absence from the Atomic Energy Establishment,

Trombay, Bombay, India.
'D. G. Currie, T. F. Jordan, and E. C. G. Sudarshan, Rev.

Mod. Phys. BS, 350 (1963).
2D. G. Currie, University of Rochester Report NYQ-10242

(to be published); and thesis, University of Rochester, 1962
(unpublished).

spectively, satisfying the bracket equations

LP, ,P.]=o, CP, ,H]=0, P„H]=o,
Cf')ft]= e'tAJA ~

p;,K;]=e;,,Ks,

CK;,K;]= —e;;sJs,

P;,P;]= e'ssPA,

CK;,H]=P„
CK;,Pg,]= os I,H

e P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949).

which are characteristic of the inhomogeneous Lorentz

group. ' ' (We choose units in which It= c= 1. The sum-

mation convention is used for the indices i, j, k=1,2,3.
In classical mechanics the brackets are Poisson brackets.
In quantum mechanics they are corrnnutators divided

by i. This riotation is maintained throughout the

paper. )
The second aspect involves the explicit transforma-

tion properties of space-time events and gives the
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equations
Ex;,&&j=~;&,

jJ;,x;)= e;;gxs,

Lx;,E,f=-', (x,Lx;,e7+ Lx;,aux, ), (B)

to be satisfied by Cartesian particle position variables
x. In classical mechanics Eqs. (B) are necessary and
suScient conditions for the time-dependent values of
the position variables to transform in the familiar
manner of space-time events under space translations,
space rotations, and pure Lorentz transformations. ' In
particular, the last equation, which is the least familiar,
is equivalent to the Lorentz transformation formula.
The first two of Eqs. (B) have a similar meaning in
quantum mechanics, but the status of the last equation
in quantum mechanics is not so clear. ' Equations (A)
and (B) have been used to prove theorems that there
can be no interaction in a classical mechanical system
of two or three particles. ' ' These theorems have dealt
only with particles of zero spin.

In the present paper we seek to determine the role of
Eqs. (B) in quantum mechanics, especially the role of
the last of Eqs. (B) in the quantum mechanics of par-
ticles with spin. To begin, we confine our attention to a
single free particle of positive mass m and spin s; we
take H, P, J, K to be the Hermitian operators which
are generators of the irreducible unitary representation
of the inhomogeneous Lorentz group which is character-
ized by mass m and spin s. We work with canonical
forms for these generators in terms of canonical co-
ordinate, momentum, and spin operators q, p, and S
and look for operators x satisfying Eqs. (B).

In Sec. II we find that for zero spin Eqs. (B) have a
unique solution for x. With the canonical forms for II,
P, J, K, this is just the canonical coordinate x=tl. It is
essentially the same as the position operator found by
Newton and Wigner' and also agrees with various
definitions of Pryce. ' For zero spin it is no problem to
find a satisfactory position operator satisfying our con-
ditions (B) for relativistic covariance. The solution is
simple and has been found by a variety of approaches.

In Sec. III we find that for positive spin Eqs. (B)
have a one-parameter family of solutions for x. All of
these solutions fail to satisfy the equations

Lx;,xs)=0. (C)

~ J. T. Cannon and T. F. Jordan, University of Rochester
Report NYO-10263 (to be published).

~ Y. D. Newton and E. P. %igneI, Rev. Mod. Phys. 21, 400
(1949).

s M. H. L. Pryce, Proc. Roy. Soc. (London) A19S, 62 (1948).

Since it is desirable for many purposes to have a position
operator whose diA'erent components commute, we

conclude that it is not possible to have a completely
satisfactory position operator satisfying the conditions

(B) for relativistic covariance for a single particle of
positive mass and positive spin. This is again in accord
with findings of Newton and Kigners and of Pryce. '

In Sec. IV we expand the scope of our investigation
to include antiparticle as well as particle states. Equa-
tions (B) and (C) then do have a solution. It is the.
Foldy-Wouthuysen transform' of the operators x that
appear as independent variables in the Dirac equation.
This turns out to be a solution of Eqs. (B) and (C) for
all values of the spin, not just for spin 1/2. It reduces
to the canonical coordinates x= q for zero spin. Further-
rnore, it is the unique solution of Eqs. (B) and (C)
having these properties. Equations (B) and (C) lead
us in a rather unique manner to operators x which
generalize the canonical position for zero spin and the
position operators of the spin-1/2 Dirac equation to
any value of the spin.

The generalized Dirac position operators lead us, in
turn, to a generalization of the Foldy-%outhuysen
transformation~ which is valid for any value of the
spin. The generalized inverse Foldy-Wouthuysen trans-
formation appears as the essentially unique unitary
transformation which takes the generalized Dirac
position operator to the canonical position x=g while
leaving the canonical forms for P and J unchanged.

In Sec. V the generalized inverse Foldy-Wouthuysen
transformation is applied to the canonical form of the-
Hamiltonian operator to provide a basis for the syn-
thesis of invariant wave equations in the spirit of
Foldy. s For spin 1/2 the transformed Hamiltonian.
operator reduces, of course, to the Dirac equation
Hamiltonian. Although this is entirely expected, our
work to this point could be viewed as a derivation of the
Dirac equation from the fundamental principles formu-
lated in Eqs. (A), (B), and (C). We are led to the
Dirac equation by a logical series of steps beginning
with solutions of Eqs. (A), (B), and (C).

For spin 1 the inverse Foldy-Wouthuysen trans-
formed Hamiltonian gives a Schrodinger equation which
is not local in coordinate space. Further manipulations
are needed to get the local invariant Proca equations.
As far as we know, the nonlocal equation has not pre-
viously appeared in the literature. From our point of
view, it is more nearly the spin 1 analog of the Dirac
equation than is the Schrodinger equation form of the
Proca equations. We note that the Hamiltonian of the
nonlocal equation is Hermitian while that of the Proca
equations is pseudo-Hermitian. We compare the
unitary generalized Foldy-Wouthuysen transformation
with the pseudo-unitary transformation that takes the
canonical form of the Hamiltonian directly to the
Hamiltonian of the Proca equations. The latter does
not have all the same properties as the former. In par-
ticular, its inverse takes the operators x that appear as
independent variables in the Proca equations to opera-
tors that do not satisfy the last of Eqs. (B).

' L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1930).
s L. L. Foldy, Phys Rev. 1.02, 568 (1956).
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II. PARTICLES WITH NO SPIN

Let us 6rst consider a single particle of positive mass
ns and zero spin. From a mathematical point of view,
we are interested in Hermitian operators H, P, J, K
which satisfy Eqs. (A) and generate the irreducible
unitary representation of the inhomogeneous Lorentz
group which is characterized by mass m, zero spin, and
positive energy. ' We are also interested in Hermitian
operators x satisfying Eqs. (B) and (C). A canonical
form for these operators is

(4A) = @(y) ~b(y)d'p. (2 7)

Newton and Wigner work with wave functions nor-
malized according to the invariant inner product

(4,4) = 4 (p)*it (p) (p'+m') "'d'p (2 8)

defined on momentum space wave functions with the
inner product

(pe+ ni2) Ii2

J=qxp,
K= —', (Hq+qH),

(2.1)

(2.2)

(2.3)

(2.4)

(2 5)
x= (y'+m')'"q(p'+m') '"
=q —i(1/2) (p'+m') 'p.

(2.9)

The operators q, which are Hermitian in the inner
product (2.7), are not Hermitian in the inner product
(2.8). The corresponding operators which are Her-
mitian in the inner product (2.8) are

where q and p are an irreducible set of Hermitian
operators satisfying the commutation relations

[qi,q~&=0=[p p~j
(2 6)

[q;,p.3=&;a,
for j, k=1,2,3.

To within unitary equivalence, the operators (2.1)—
(2.5) are the only solution of Eqs. (A) and (B) for a
particle of mass m and zero spin. For, to within unitary
equivalence, there is only one irreducible unitary repre-
sentation of the inhomogeneous Lorentz group with
positive mass m, zero spin, and positive energy; by
making a unitary transformation, we can always put
H, P, J, K equal to the operators (2.1)—(2.4). But,
when H, P, J, K have the canonical forms (2.1)—(2.4),
the only solution for x of Eqs. (B) is the canonical co-
ordinate (2.5).

These simple facts are included as a basis for nor-
malizing our general procedures and for comparison
with later results. We have seen that for a particle of
mass m and zero spin Eqs. (A) and (B) determine the
operators H, P, J, K, and x uniquely up to unitary
equivalence. [Eq. (C) is then automatically satisfied
in this case.$ When H, P, J, K have the canonical
forms (2.1)—(2.4), x is equal to the canonical coordinate
(2.5). All of the equations (B) are necessary for estab-
lishing this relation between the position variable x and
the Lorentz group generators H, P, J, K.

The zero spin case is distinguished by the simplicity
of the solution of Eqs. (A), (B), and (C). In this case
all of Pryce's definitions (c), (d), (e) of position
variables' coincide; they are all equal to the canonical
position x= q when H, P, J, K have the canonical forms
(2.1)—(2.4). The canonical position (2.5) is also the
position operator found by Newton and Wigner. ' If
this is not obvious, it is because of a diGerence in nor-
malization of wave functions. Our operators can be

9 E. P. Wigner, Ann. Math. 40, 149 (1939);V. Bargmann, ibid
48, 568 (1947);V. Bargmann and E, P. Wigner, Proc. Natl. Acad.
$ci, U. S. 34, 211 (1948).

These are the Newton-Wigner position operators. A
similar operation yields canonical forms for H, P, J, K
that are appropriate for use with the inner product
(2.8). The operators H, P, J remain in the forms (2.1)—
(2.3) but K becomes

K=Hq. (2.10)

One can check explicitly that Eqs. (2.1)—(2.3), (2.10),
and (2.9) are solutions of Eqs. (A), (B), and (C) for
H, P, J, K, and x, respectively. For the zero spin case
there is no problem in hnding a position operator x
satisfying the conditions (B) for relativistic covariance
plus the conditions (C) of commuting components.
Every approach seems to lead to the same answer. The
complications occur with the introduction of spin.

H = (y'+m')"'

J=qXp+S,

(3.1)

(3 2)

(3.3)

K= -,'(Hq+qH)+ (H+ m)
—'y XS, (3.4)

where q, p, and S are an irreducible set of Hermitian
operators satisfying the commutation relations

Lq' qi j=0=[p p~),

[q, ,S.&=0=[p;,S,j,
[q;,p~j= &,~,

[S;,Si,f= e,gQ„,

(3.5)

III. PARTICLES WITH SPIN

We consider next a single particle of positive mass m
and spin s, where s may have any one of the values
0, 1/2, 3/2, 2, . The relevant solution of Eqs. (A)
consists of Hermitian operators H, P, J, K which gen-
erate the irreducible unitary representation of the in-
homogeneous Lorentz group which is characterized by
mass m, spin s, and positive energy. ' A canonical form
for these operators is
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for j, k, m=1,2,3. These operators can be defined on a
Hilbert space which is the direct product of the mo-
mentum space wave functions on which q and p are
irreducible, and the 2s+1 component spin vectors on
which S generates an irreducible representation of the
rotation group. This representation is characterized by
the number

s (s+ 1)= S'= Si2+Sf+5 ' (3.6)

To within unitary equivalence, the operators (3.1)—
(3.4) are the only solution of Eqs. (A) for a particle of
mass m and spin s. For, to within unitary equivalence,
there is only one irreducible unitary representation of
the inhomogeneous Lorentz group with positive mass

m, integral or half-integral spin s, and positive energy.
By making a unitary transformation, we can always
put H, P, J, K equal to the operators (3.1)—(3.4).

Now we want to look for operators x satisfying
Eqs. (B) and (C). We do not try to find all possible
solutions. We restrict ourselves to considering only
operators that are linear in the spin variables S. This
means that we find all possible solutions only for the
case s=1/2. We also And the solutions which are valid
for all values of s and maintain their form as functions
of q, y, and S independently of the value of s. In other
words, for s& 1 we find those solutions which can also
be made to be solutions for s=1/2 by simply reinter-
preting S as spin 1/2 operators. fThis is motivated by
the fact that such a solution is the center of interest in
the next section. We also note that the canonical solu-
tions (3.1)—(3.4) of Eqs. (A) are of exactly this type. )
We might overlook, for example, a solution for s=1
which contains terms quadratic in S.

U H, P, J, K have the canonical forms (3.1)-(3.4),
the most general solution of Eqs. (B) for Hermitian
operators x which are of at most linear order in the
operators S is

x= q —aH-'(H+m)-'(p S)y+aS
—m-'(H+m)-'yX S, (3.7)

where a is any real number. For u= 0, this is the position
operator (d) found by Pryce. 6 For any value of u, the
operators (3.7) satisfy Eqs. (B) independently of the
value of s. But for positive s there is no value of a for
which the operators (3.7) satisfy Eqs. (C). For nonzero

spin, and with the canonical forms (3.1)—(3.4) for H,
P, J, K, there is no solution of Eqs. (B) and (C) for
operators x which are of at most linear order in S.

. If we abandon the canonical forms (3.1)—(3.4) for
II, P, J, K, we still cannot find a solution of Eqs. (B)
and (C) which is valid for the case s= 1/2. For suppose
tha, t H, P, J, K, and x satisfy Eqs. (B) for s= 1/2. By
making a unitary transformation, we can put H, P, J,
K equal to the canonical operators (3.4). We thus
obtain a solution of Eqs. (B) with the canonical opera-
tors (3.1)—(3.4) and the unitary transform of x. But
the unitary transform of x must be of at most linear
order in S since higher orders do not occur for s= 1/2.

Hence, the unitary transform of x must be one of the
operators (3.7). It follows that the different components
of x do not commute; we do not have a solution of
Eqs (C).

For a particle of positive mass there is no solution of
Eqs. (A), (B), and (C) which is valid for all values of
the spin; in particular, there is no solution for s= 1/2.
All of the equations (B) and (C) are necessary to
produce this exclusion. With the canonical forms
(3.1)—(3.4) for H, P, J, K, the operators (3.7) for x
satisfy all except Eqs. (C) and the canonical position
x=q satisfies all except the last of Eqs. (B), the con-
dition for Lorentz covariance. The canonical position
x=q is the same as the position variable (e) found by
Pryce' and the position operator found by Newton and
Wigner. ' These authors have also concluded that it is
not Lorentz covariant.

H= pg(p'+m')'~'= p3W,

J=qXp+S,
K=-', (Hq+qH)+p, (p3H+m)

—'pXS,
= 2p3(Wq+qW) +p3(W+m) 'pX S,

(4.1)

(4.2)

(4 3)

(4 4)

where W= (p'+m2)'~' and where q, p, S, and y are an
irreducible set of Hermitian operators satisfying the
commutation and anticommutation relations

fq, ,q~7=0= fp;,pi),
8~4~1=o= fp~P'~3

,pi]=0= fp;,pi j,
[S,,pp]=0,

fq, ,p.)=~;~,
[5";P'.]=;~.~.,

fp;,pi, 7= 2e;~„p„,

p;ps+pi p;=2&;s,

(4 3)

for j, 4, m=1,2,3. These operators can be defined on a
Hilbert space which is the direct product of the mo-
mentum space wave functions on which q and y are
irreducible, the 2s+1 component spin vectors on which
S generates the irreducible representation of the rota-
tion group characterized by the number s(s+1)=S',

IV. PARTICLES AND ANTIPARTICLES

Let us now extend the scope of our investigation and
consider a particle and antiparticle of positive mass m
and spin s where s may have any one of the values 0,
1/2, 1, 3/2, 2 ~ . The relevant solution of Eqs. (A)
now consists of Hermitian operators H, P, J, K which
generate a direct sum of two irreducible unitary repre-
sentations of the inhomogeneous Lorentz group, both
having mass m and spin s, but one having positive and
the other negative energy. A canonical form for these
operators is
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and the two component vectors on which y are an irre-
ducible set of Pauli matrices. We take pa to be diagonal:

(1 Oq

&0 -1)
This divers from the preceding section only in that

we have doubled the number of components of our wave
functions to allow for the negative energy or antiparticle
states. The fact that, to within unitary equivalence,
there is only one irreducible unitary representation of
the inhomogeneous Lorentz group for mass m, spin s,
and positive (negative) energy means that the canonical
forms (4.1)—(4.4) for H, P, J, K are unique, to within
unitary equivalence, as functions of q, y, and S. Their
dependence on the operators y amounts to nothing
more than the insertion of a minus sign factor in H and
K for the antiparticle states.

Now, in contrast to the situation of the preceding
section, we do have a solution for x of Eqs. (B) and (C)
which is valid for the case s=1/2. It is the operator x
which appears in the Dirac equation. More specifically,
it is the Foldy-%outhuysen repr'esentation7 of the
Dirac equation x which is in accord with the canonical
forms (4.1)—(4.4) for H, P, J, K. In our notation (which
is the same as that of Dirac's book": n=2piS, P= pa),
this is

x=q+p2W 'S—p2W '(W+m) '(y. S)y
+W-'(W+m)-'yX S. (4.6)

With the canonical forms (4.1)—(4.4) for H, P, J, K,
the operators (4.6) are a solution for x of Eqs. (B) and

(C), not only for the case s = 1/2, but for all values of s!
Now let us see to what. extent we have found a unique

solution for x. If we assume the canonical forms (4.1)-
(4.4) for H, P, J, K, we find (after a certain amount of
work) that the most general solution for x of Eqs. (B)
and (C), for the case s= 1/2, is

x=q+piA sinBy+pQ cosBy
—pi(W '(W+m) 'sinB —2m—'B' cosB)(y S)y
—p2(W '(W+m) ' cosB+2m 'B' sinB)(y. S)y
+piW ' sinBS+ p2W ' cosBS

+W '(W+m) 'yXS, (4.7)

where A and 8 are arbitrary real functions of y' and
8' is the derivative of 8 with respect to p'.

If we allow operators H, P, J, K that differ from the
canonical forms (4.1)—(4.4) only as functions of q, y,
and S, we will find solutions for H, P, J, K, and x that
are unitarily equivalent to the operators (4.1)—(4.4) and
(4.7). As long as H, P, J, K have the canonical de-
pendence on y, namely, a plus or minus sign factor in
H and K for the particle and antiparticle states, we can

-always put them equal to the operators (4.1)-(4.4) by
making a unitary transformation. In this sense we have U= —p2p '(y S) tan —'(p/m) (4.9)

found a solution that is unique to within unitary equi-
valence for the case s= 1/2.

Further restrictions are necessary if the operators
(4.7) are to be a solution for x of Eqs. (B) and (C) for
values of s other than 1/2. In particular, in order for the
operators (4.7) to satisfy Eqs. (C) for s= 1 it is neces-
sary and sufficient that 8'=0. This implies that 8 is
just a real number. Now p&, p2, and 8 occur in the
operators (4.7) only in the combination

pi sinB+p2 cosB.

If we choose an equivalent set of operators y in which
this combination is called pg and in which p3 is the same
as before, we have

x=q+pQy —p2W
—'(W+m) '(y S)y

+p&W 'S+W '(W+m) 'yXS. (4.8)

With the canonical forms (4.1)—(4.4) for H, P, J, K,
the operators (4.8) for x satisfy Eqs. (B) and (C) for
all values of s. This is the most general solution which is
valid for all values of s and which maintains its form as
functions of q, y, S, and y independently of the value
of s.

The Dirac position (4.6) is the particular case of the
solution (4.8) for which A =0. Of the general solutions
(4.8), the Dirac position (4.6) is the only one which
reduces to the canonical coordinate x=q when S=O.
In summary then, we have found that (assuming the
canonical dependence of H, P, J, K on y) the Dirac
position (4.6) is the unique solution )to within unitary
transformations that change the form of H, P, J, K as
function of q, y, and S from that of the canonical
operators (4.1)—(4.4)) of Eqs. (B) and (C) which is
valid and has the same form for all values of s and
reduces to the canonical coordinate x= q when s=0.

We note that this position operator retains also the
strange properties of the spin-1/2 Dirac position opera-
tor. In particular, it gives a velocity which has no sen-
sible physical interpretation. It is impossible to satisfy
both Eqs. (B) for relativistic covariance and all of the
other properties that one might expect of a position
operator.

We were led to the position operator (4.6) by recog-
nizing that for s=1/2 we had a solution of Eqs. (B)
and (C) by the operator x which appears in the Dirac
equation. We ca,n regain the Dirac equation by making
an inverse Foldy-Wouthuysen transformation7 which
will take the canonical Hamiltonian (4.1) to the Dirac
Hamiltonian. We prefer to state this in a way that illu-
minates the role of the covariant position operator.
The inverse Foldy-Wouthuysen transformation is just
the unitary transformation which takes the Dirac posi-
tion operator (4.6) to the canonical coordinate x=q
while leaving the canonical forms (4.2) and (4.3) for
P and J unchanged. If
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(where p'= p') and if x is the Dirac position (4.6), then'

~iVx~—iV g

~iVp~—iV p

(4.10)

(4.11)

V. THE SPIN —', AND SPIN 1 EQUATIONS

Under the generalized inverse Foldy-Wouthuysen
transformation with the operator {4.9), which is appli-
cable for all values of s, the canonical Hamiltonian (4.1)
becomes

e'vpsWe 'v= W(ps cosL2p '(p S) tan '(p/m)7

+pt sing2p '(p S) tan '(P/m)7}, (5.1)

where again p' =p' and W= (p'+m')'t'.

e'v(tIXp+S)e '~=tIXp+S. (4.12)

Furthermore, the unitary transformation eiv, with V
the operator (4.9), is essentially the unique unitary
transformation with the properties (4.10)-(4.12).For
any additional unitary transformation would have to
leave q, p, and S unchanged and so could only be a
transformation of the operators y. These statements are
all valid for all values of s, not just for the case s= 1/2.
The inverse Foldy-Wouthuysen transformation, just
like the Dirac position operator (4.6), maintains its
essential properties under a generalization from spin 1/2
to any integral or half-integral spin.

i (r)/r)t)P= HP, (5.4)

with H the operator (5.3), 9 and S six by six matrices,
and lt a six-component wave function. In contrast to
the Dirac equation, this equation is not local in co-
ordinate space. This is not surprising because we expect
that for integral spin a local invariant equation must
involve an indefinite metric. We note that the Hamil-
tonian (5.3) is Hermitian.

If we make the identification

=( i

festly invariant local wave equation we should trans-
form to a representation in which the covariant position
operator is the canonical coordinate. But, as we
presently see, this does not guarantee the desired local
equation. Nevertheless, had we known nothing about
the Dirac equation, we could have found it by the
method just outlined.

Spin 1

For the case s=1, the Hamiltonian operator (5.1)
reduces to

psW —ps2W t(p. S)s+pt2mW t(p S). (5.3)

This gives a Schrodinger wave equation

psm+p, 2(p s)=Pm+e p (5.2)

Spin —,
'

For the case s= 1/2 the operator (5.1) reduces to

F= W '(2W) 't'{m(E+iWA) —p' X (E—iWA)
—m—'v(p' E)}

6= W ' {2W) ' 't{ m( E iWA)—+v X (E+iWA)
—m

—'v(~ E)}

(5 5)

which is the Hamiltonian of the Dirac equation. Here we

have simply regained the familiar Foldy-Wouthuysen
spin 1/2 transformation' which has been the basic
motivation for our more general statements. But in a
certain sense we may regard what we have done as a
derivation of the Dirac equation from fundamental
postulates of relativistic invariance. We began with

the canonical forms for the generators H, P, J, K of an

irreducible unitary representation of the inhomogeneous
Lorentz group with mass m and spin s and looked for
position operators x satisfying the conditions (8) for
relativistic covariance and the conditions (C) of com-

muting components. Being unable to find a solution for
x on the states of a single particle, we enlarged the scope
of our study to include the antiparticle states. We then
found the generalized Dirac position (4.6) as a rather
unique solution for x. The generalized inverse Foldy-
Wouthuysen transformation appeared as the unitary
transformation which changes the Dirac position (4.6)
into the canonical coordinate x=q without changing
the canonical forms (4.2) and (4.3) for P and J. Under

this transformation the canonical Hamiltonian (4.1)
goes into the Dirac equation Hamiltonian (5.2) for the

case s= 1/2. It makes sense that in looking for a mani-

w«nd that the Schrodinger equation (5.4) with
(5.3) is equivalent to the Proca

equations' "
(8/Bt)A = —E—~y,
(&/t)t) E=m'A+~ XB,

g= —m—'y E,
B=vXA,

(5.6)

' P. A. M. Dirac, Principles of Qgantum Mechanics (Oxford
University Press, Oxford, England, 1958)."G. Wentzel, QNantum Theory of Fields (Interscierice Pub-
lishers, Inc. , New York, 1949), Chap. III.

which are local invariant wave equations for spin 1.
[Here we have used the standard Pauli matrices for
9 and the standard spin 1 matrices (5;)I,„=is;s„7.

The generalized inverse Foldy-Wouthuysen trans-
formation by itself does not take us to local invariant
equations for spin 1; it gives us a Schrodinger equation
(5.4) with the Hamiltonian (5.3). The further manipu-
lations (5.5) are needed to get the local invariant
equations (5.6). This is not surprising. The same sort
of thing happens for zero spin. For zero spin the gen-
eralized inverse Foldy-Wouthuysen transformation is
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just the identity transformation; the generalized co-
variant Dirac position operator is just the canonical
coordinate x=q. So the generalized inverse Foldy-
Wouthuysen transformation leaves the Hamiltonian in
the canonical form (4.1) for zero spin. But considerably
more manipulation is needed to get the Klein-Gordon
equation. '

The equations (5.6) can be put directly into the
Schrodinger equation form (5.4) with a six-component
wave function whose components are A and m 'E.' ""
The Hamiltonian for this equation is not Hermitian
but is pseudo-Hermitian in the appropriate indefinite
metric. "From our point of view, the Schrodinger equa-
tion with the Hamiltonian (5.3), which is obtained by
the generalized inverse Foldy-Wouthuysen transforma-
tion from the canonical Hamiltonian (4.1), is more
nearly the spin 1 analog of the Dirac equation. Whether
it will be more useful remains to be seen.

Various authors have developed the transformation
which connects the canonical Hamiltonian (4.1) directly
to the Schrodinger equation form of Eqs. (5.6) with the

~2 E. M. Corson Tensors, Spinors, and Relativistic Wave Equa-
tr'ops (Hafner Publishing Company, New York, 1953), especially
Secs. 26(b) and 39(d) (i)."K.M. Case, Phys. Rev. 95, 1323 (1954).

wave function whose components are A and m E.' "
This is not a unitary transformation but is pseudo-
unitary in the appropriate inde6nite metric. "From our
point of view, it appears as the combination of the
generalized inverse Foldy-Wouthuysen transformation
and the manipulations (5.5). This transformation does
not have all of the properties of the Foldy-Wouthuysen
transformation and cannot be put to all of the same
uses. For example, if we use it to transform the position
operators x which appear as the independent variables
in the equations (5.6) to the representation in which
the Hamiltonian has the canonical form (4.1), we get
an operator" which does not satisfy the last of Eqs. (B),
the condition for Lorentz covariance.

Finally, we want to point out that we have exposed
several simple features of the spin 1(2 situation which
are not shared by spin 0 or 1. In particular, the inverse
Foldy-Wouthuysen transformation for s = 1/2 gives us
the local invariant Dirac equation. The analogous
equations for s= 0 and 1 are not local.
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The Born series for a quantum-mechanical Green function is studied. A prescription is given for making
"best" use pf the in fprmation contained in the 6rst few terms of that series, and, in particular, for calculating
bound states or resonances from them. This prescription is based on heuristic convergence arguments whose
fprmal steps are somewhat reminiscent of renormalization group methods. The present considerations may
be applied tp potential scattering as well as to quantum 6eld theory. They are expected to be valid for low-
energy phenomena and 6nite-range forces. The prescription is tested, using only the erst two Born terms,
in the case of a nonrelativistic particle moving in a Yukawa potential: For well depths producing a single
shallow bound state, the usual effective-range results are closely reproduced, and, in some ways, improved
upon.

1. INTRODUCTION

'HE problem of replacing the quantum-mechanical
Born (or perturbation) series by a more con-

vergent expansion is already a well-studied one. Its
importance arises from the fact that many cases of
great physical interest cannot be treated by means of
that series. Bound-state and resonace problems fall in
this category whenever the unperturbed problem yields
only a continuum of noninteracting states. This is

*Research supported by the National Science Foundation.
t Present address: Atomic Energy Research Establishment,

Harwell, England.

precisely the situation one must face in relativistic field
theory. The current experimental results with strongly
interacting particles only emphasize the need for im-
proved calculational procedures in this area.

Among the many existing approaches' ' to the ques-
' See, for example, P. M. Morse and H. Feshbach, Methods of

Theorefscal Physr'cs (McGraw-Hill Book Company, Inc. , New
York, 1953), Part II, Chap. 9.

s For recent approaches see M. Rotenberg, Ann. Phys. (N. Y.)
21, 579 (1963),and its bibliography. Rotenberg's method, like the
present one, is based on a regrouping of the Born terms, designed
to accelerate convergence. His "regrouped" Eq. (59), in particular,
should be compared with our formulation, in which a true re-
grouping only occurs as an intermediate step.

3A method of circumventing the convergence difIj,culty of


