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In order to investigate whether the reference frames remaining at rest relative to the expanding system
of galaxies are also dynamically preferred, McVittie's metric describing exactly the field of a singular mass
point in an expanding universe is transformed into a suitably chosen coordinate system. Therefore, it is
found that, in the Newtonian approximation, the potential governing the motion of a test particle is given
by the sum of a Newtonian gravitational potential and of a cosmic potential which is composed additively
by a scalar potential and by the scalar product of the velocity of the test particle and of a vector potential.
Due to it, the total energy of the test particle does not vary if, and only if, it is situated at the origin of a
coordinate frame remaining at rest relative to the expanding system of galaxies. If the force acting on this
particle should vanish, the origin of coordinates must coincide with the center of gravity of a field galaxy,
or of a cluster of galaxies, respectively. If the Hubble "constant" of cosmic expansion varies with the time,
the conservation law of energy does not hold in our neighborhood with infinite accuracy. The existence of
the centrifugal and Coriolis forces, appearing also in the case when a single material body is rotating in an
infinite absolutely empty space, is explained by the hypothesis that this empty space-time is to be con-
sidered for a Minkowski universe, i.e., a world model with infinite total mass and vanishing mean-mass
density. Other exact solutions of the field equations of general relativity with a vanishing matter tensor
which are free of singularities, if they actually occur in nature, are to be considered for "self-excited states"
of the Minkowski universe. This assumption stands in a natural accord both with general relativity, and
with the relativistic formulation of Mach's principle (expressed in the statement: The space-time does not
exist without matter). It agrees also with the investigations of Honl and Dehnen who proved that the
centrifugal and Coriolis forces of correct magnitude appear in every reference frame which is rotating
relatively to the total mass of the world model, and explains the Thirring forces as the result of the simul-
taneous action of the rotating mass of the near-hollow sphere and of the nonrotating distant mass of the
Minkowski universe. From the standpoint of the proposed hypothesis, the cosmological constant is to be
interpreted not as a universal natural constant, but as the 8' multiple of the mean mass density, written
in a geometrical system of units, of a very strange and highly hypothetical form of matter the density of
which, due to creation (or annihilation) of matter should remain constant during the expansion (or con-
traction) of the cosmic space.

INTRODUCTION

Y a careful examination of observations, Newton'
felt compelled to introduce into physics the con-

cept of "absolute space which in its own nature, without
relation to anything external, remains always similar
and immovable, " and in which "absolute, true, and
mathematical time, of itself, and from its own nature,
Rows equably without relation to anything external. "

In his criticism of the principles of Newtonian me-
chanics, Mach' rejected Newton's idea that the pre-
ferred position of the inertial frame of 6xed stars is a
consequence of the fact that this frame remains in a
state of rest or uniform motion in a straight line relative
to the absolute space, and expressed the opinion that
the Newtonian absolute motions are to be considered
as motions relative to the total mass of the universe
(classical formulation of Mach's principle).

The notion of Mach's principle was essentially ex-
tended in the general relativity theory due to the de-

pendence of the metric of the space-time continuum on
the distribution of matter. In his erst cosmological

*Author's address: Praha 2, Na Smetance 16, Czechoslovakia.
~Sir Isaac Pe+tons Mathematica/ Principles of Natural Phi-

losoPhy and his System of World, edited by Dorian Cajori (Uni-
versity of California Press, Berkeley, 1960), p. 6.

E. Mach, Die Mechumk in ihrer En' ickllng (F.A. Brockhaus,
Leipzig, 1897), p. 221 fF.

paper, Einstein' believed that, in the complete absence
of matter, the field equations, supplemented by a new
cosmological term, will have no solution at all. In such
a case, it would be possible to formulate Mach's prin-
ciple into the statement: The space-time does not exist
without matter (the relativistic formulation of Mach's
principle, equivalent to "Mach-principle 3*"of Pirani's
paper). '

In recent years, the relation of general relativity to
Mach's principle was dealt with by many authors. Now
there exist, also, other formulations of Mach's principle'
not as strong as the one stated above. However, re-
cently Brans and Dicke, ' and Honl and Dehnen' pointed
out that an analysis of certain physical situations
seems to testify rather in favor of the absolute space in
the sense of Newton' and Locke. ' On the other hand,
an inquiry into quantum phenomena shows that the
Minkowskian metric, i.e., the "vacuum" of the quantum
6eld theories, cannot be a pure geometrical entity, for

' A. Einstein, S.-B. Preuss. Akad. 142 (1917).' F. A. E. Pirani, Helv. Phys. Acta, Suppl. IV, 198 (1956).
5 C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961).' H. Honl and H. Dehnen, Z. Physik 166, 544 (1962).
r J. Locke, An Essay Concerning baseman Understanding (James

Kay Jun. R Company, Philadelphia), Book II, Chaps. 13-17.
In Chap. 17, Sec. 20 Locke says: ". . . the existence of matter is
noways necessary to the existence of space, no more than the
existence of motion, or the sun, is necessary to duration, though
duration used to be measured by it,"
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it possesses physical properties, too. ' Klein regards the
vacuum as a kind of potential reservoir of all forms of
matter, which state, in spite of its relative character,
may be compared to the absolute space of Newton. "

The aim of the present paper is to show firstly that,
in accord with the classical formulation of Mach's
principle, the reference frames kinematically defined as
remaining at rest relative to the expanding system of
galaxies (which, since Hubble's discovery of the red
shift of spectral lines emitted by distant galaxies,
replaces, in the theoretical considerations, Newton's
inertial frame of fixed stars) are also dynamically pre-
ferred. Thereafter, we shall prove that Mach's principle,
in its relativistic formulation quoted above, stands in
full agreement with all the results of theoretical and
experimental investigations, if we accept that vanishing
of the matter tensor does not yet signify the absolute
absence of rnatter.

In this connection, let us note that Mach and Ein-
stein were the first in the history of modern physics to
reject the concept of absolute space and absolute time,
but in philosophy they had two great predecessors: As
early as the end of the fourth century, Aurelius Au-
gustinus" clearly expressed the opinion that time cannot
exist without created beings (i.e., in the physical lan-

guage, without matter). In 1710, for the first time, and
in 1721 at large, Berkeley" convincingly refuted the
Newtonian absolute space and absolute motions and
proposed (in Sec. 64 of his very interesting dissertation
De Motu) to use, in mechanics, the relative space of
fixed stars and to define motion and rest relative to this
space, because these relative motions and this rest can
be by no means distinguished from the absolute ones.

of notation, the form

ysrsoGs kF')" 4

ds'= —1+ 1+
2c'FG(t) 4Gos)

r = FG (g)//Go, (1.2)

and express the metric (1.1) in the Newtonian ap-
proximation, i.e., assuming

ymo/c'r(&1, r'/4G'(t)«1.

In the "Cartesian" coordinates we find

(1.3)

ds' = —(1—2@/c') (dx'P dy'+ ds') P (c'+24 +2@)dP
(1.4)

where (in the three-dimentional vector notation)

and

4 = p(r, t) —r' Q(r, t),
p(r, f) = ——',H'r', Q(r, f) = Hr, —(1.5)

( G(f)/Go
&(

~

(dr'+ r'dt'f'+ r' sin'Ddt ')
(1+kF'/4Gss

1—(ysrssGo/2C'FG(f) )(1+kF'/4Go')"'-'
C2dt

1+(ysssoGo/2c'FG (t))(1+Ier'/4Gs')'~'

The constant k = +1, 0, —1, corresponding to spherical,
flat, or pseudospherical space. Go is a further constant,
representing in the finite models the maximal mean
radius of the curvature of space. By p we denote the
Newtonian gravitational constant, and by c, the ve-
locity of light. The expansion process is described by
the dependence G(f) of the mean radius of the curvature
of space on the time-like coordinate t.

%e now carry out the coordinate transformation

4= —ymo/r . (1.6)
PREREQUISITES

In this section, we sum up the known relations needed
for investigating the given problems.

The exact solution of the field equations of the general
relativity for an expanding world model with a uniform-
and isotropic-mass distribution in which a singular
point represents an isolated particle with mass mo was
found by McVittie. " Integrating his equation for fs(t),
the metric computed by him takes, after a slight change

'See for instance: W. Heisenberg, Acta Phys. Austriaca 14,
328 (1961).

O. Klein in Recent Developments in General Relativity (Perga-
mon Press Ltd. , Oxford, 1962), p. 293."S. Aurelii Augustini Confessionum liber XI, cap. XXX,
(Roma, 1938).

"G. Berkeley, A Treatise Concerning the PrinciPles of Human
Enowledge, Sec. 110—117 (1710). De 3Eotu, Sec. 52—65 (1721).
fTke Works oj George Berkeley (Clsrendon Press Ltd. , Oxford,
1901l, VoL 1j.

"G. C. McVittie, Monthly Notices Roy. Astron. Soc. 93, 325
(1933).

II indicates the Hubble factor of cosmical expansion,

H=H(f) = G/G, (1.7)

and the dot denotes differentiation with respect to t.
The function 4 will be called the cosmic potential, for
it influences the expansion of the material content of
the cosmic space. 0' is the Newtonian gravitational
potential of the central body.

MACH'S PRINCIPLE IN CLASSICAL PHYSICS

The motions of celestial bodies may be divided into
two groups. The motions of stars within a galaxy (with
velocities" in the range from 10 to 100 km/sec) and the
motions of galaxies within a cluster of galaxies (ve-
locities" from 100 to 5000 km/sec) fall into the first
group, being governed by the Newtonian potential. The
recession of galaxies represents the second group of

'3 F. Zwicky, Morphological Astronomy {Springer-Verlag, Berlin,
1957), p. 147.
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motions described by the empirical law,

r'= IIr, (2.1)

V'4 = 4s.y (p —p') (2.4)

and by the condition 0'=0 at the boundary of a suK-
ciently large region of the universe within which the
mean mass density equals the mean mass density p'

of the whole universe.
Kith the help of our Lagrange function we now easily

deduce the equation of motion of a test body:

(d/df) (r' —Hr) = —H (r' —Hr) —grad+ (2.5)

or, after having performed the differentiation,

d'r/dt'= qH'r gradq. — —(2.6)

Here we have used the formulas deduced from Eq. (1.7)

H = —(1+q)H', q= —(d'G/dt')/GH', (2.7)

in which q is called the deceleration parameter. The
numerical values of II and q are determined by astro-
nomical measurements. " In Eq. (2.6) H and q are to

'4 J. Pachner (to be published).
"M. L. Humason, N. U. Mayall, and A. Sandage, Astron. J.

61, 97 (1956); W. A. Saum, ibid. 62, 6 (1957); A. Sandage,
Astrophys. J, 127, 513 (1958); 133, 355 (1961).

which follows from the redshift of spectral lines emitted
by distant galaxies, if we explain this reddening of
photons as a Doppler effect. Assuming H=(10" yr) '
and the present-day radius of curvature of space of
some 10' light-years, we may consider the space to be
approximately Qat to distances of 10' light-years. The
velocity of expansion amounts here to (c/10).

On the basis of these empirical data and of the metric
(1.4) we may apply, in this region of the universe, the
methods of classical analytical mechanics, taking for
the Lagrange function of a test body with mass m (i.e.,
of a star, or of a galaxy, or of a cluster of galaxies) the
relation

L= T—m(@+4'), (2.2)

in which the kinetic energy T is expressed by the
classical formula

(2 3)

The cosmic potential C determined by Eqs. (1.5)
describes the background field created by the homo-

geneously and isotropically distributed matter. In
analogy with electrodynamics it is composed additively
of a cosmic scalar potential q(r, 1) and of the scalar
product of the velocity r' of the test particle and of a
cosmic vector potential Q(r, t). The Newtonian po-
tential 4 takes into account the local inhomogeneities
and anisotropy in the actual distribution of rnatter. In
the case of the world model investigated by McVittie"
it is given by Eq. (1.6). An approximate solution of the
field equations of the relativistic cosmology" shows that
in general it is determined by the Poisson equation

be considered as two "constants" characteristic for the
present epoch of cosmic evolution.

Let us note that Eq. (2.6) with grad 4=0 agrees
with the equation of motion deduced from the em-

pirical law (2.1). Its right-hand side agrees in its func-
tional dependence also with the intensity g of the
gravitational field computed from Newton's law of
general gravitation under the assumption of a uniform
and isotropic distribution of matter:

g = —(4s-/3)yp'r. (2.8)

Comparing these expressions, we obtain a relation be-
tween both "constants" II and q and the mean mass

density:
qH'= (47r/3)yp'. (2 9)

(r)L/r)t)dt.

Inserting for I. the corresponding expressions we find

A= T+sis(@+0'), (2.10)

Ah=m Hr (r Hr)dt. — (2.11)

From Eqs. (2.5), (2.6), and (2.10), (2.11) we now

conclude:

(1) In a world model with a uniform- and isotropic-
mass distribution (where grad@=0), every point which

remains at rest relative to the expanding material con-

tent of the world may be chosen as the origin of a
privileged reference frame characterized by the follow-

ing two dynaITiical conditions:

(a) The total energy A of a test particle situated at
the origin of coordinates does not vary.

(b) The force acting on a test particle situated at
the origin of coordinates vanishes.

(2) In our universe, where grad +NO, a reference
frame remaining at rest relative to the expanding system
of galaxies (which may be determined by the isotropy
of the observed redshift) fulfills solely the condition (a).
Both conditions (a) and (b) are simultaneously satis-

fied, if the origin of the reference frame coincides with

the center of gravity of a Geld galaxy, or of a cluster of

galaxies, respectively.

'6 C. Lanczos, The Variational I'rinciPtes of Mechanics (Uni-
versity of Toronto Press, Toronto, 1949), pp. 123—124.

For" II—3)(10 "sec ' and q
—1, we get for the mean

mass density a plausible value p'—3X10 s' g/cm'.
The total energy A of our test particle and its change

hA. during the time interval between t~ and t2 are de-

6ned by the formulas"

A=+ (r)L/r). q~) q, L, —
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(3) Jn a universe with II'&0 the total energy A of a
test particle defined by Eq. (2.10) is conserved if and
only if the particle follows the law (2.1) of general
cosmic expansion. '~ Since, in our neighborhood, the
law of conservation of energy does not hold with in-
finite accuracy, the concept of total energy which is
considered as something that should be exactly con-
served" loses much of its importance as a starting
point for physical theories.

R "—
—,'R8„"=—(87'/c') T " (3.1)

into which we insert the metric (1.1) with tttp ——0. We
obtain the following two differential equations for the
function G(t):

(6/cG)'+k (1/G)'= (8iry/3c') T44 (3.2a)

' Compare the relativistic treatment: E. Schrodinger, Ex-
paldirtg Vrtiverses (Cambridge University Press, New York,
1956), pp. 53—64.

"Compare in this connection: A. S. Eddington, Relat&itats-
theorie irt raatherltatischer Behartdlgrtg (Julius Springer-Verlag,
Berlin, 1925), p. 197; A. Trautman, Bull. Acad. Polon. Sci. Classe
III. 5, 721 (1957).

"A. Einstein, Ann. Physik 43, 818 (1916);Ref. 3; A. Einstein,
The Preening of Relativity (Princeton University Press, Princeton,
1953), 4th ed. , p. 100.' See, for instance, H. Dehnen, H. Honl, and K. Westpfahl,
Ann. Physik 6, 370 (1960).

MACH'8 PRINCIPLE IN GENERAL RELATIVITY

In the preceding section, we have shown that, in our
universe, there exist actually certain reference frames
dynamically preferred not only by the nonexistence of
the centrifugal and Coriolis forces, but also by further
effects caused by the recession of galaxies not known in
the time of Mach. In accord with Newton' one can, of
course, object that the existence or nonexistence of the
centrifugal and Coriolis forces decides uniquely whether
a single material body in an infinite absolutely empty
space does or does not rotate relative to Newton's abso-
lute space. Mach as a consistent positivist, considers
this objection to be meaningless and inadmissible, be-
cause nobody is competent to extend the validity of
our physical laws outside the limits of our experiences.
Einstein" tried to explain that effect by the hypothesis
that inertia depends upon a mutual action of matter,
but his attempt was not successful. "

We shall now try to prove that all the discrepancies
between the empirical facts and the ideas of Berkeley"
and Mach' disappear, if we consider the Minkowskian
metric, which by the limiting process c~ ~ falls into
the Newtonian absolute space with a Euclidean metric
and into the Newtonian absolute time, not as a "pure
nothing" in the sense of Newton' and Locke' but as a
gravitational field created by the uniformly and iso-
tropically distributed infinite mass of the universe with
a vanishing mean-mass density.

For this purpose, we start from the field equations
of the general relativity theory:

T44 $44pP (G)

The well-known condition

TA";„=0,

(3.3a)

(3 4)

guarantees the compatibility of Eqs. (3.2a, b) and gives
us a formula determining the functional dependence
of T„" (tt/4) on G:

T "=8 "Lp + (G/3) (dp'/dG) j, (tt/4) . (3.3b)

A special world model is the finite Friedman universe
defined by the condition that its total mass M is
constant and finite:

M= 3f0= a finite const. (3.5)

The mean-mass density at the maximal expansion of
the space follows from Eq. (3.2a):

(3 6)

Since the universe has at this moment the volume
2~'Go', its total mass 3fo is given by the formula

3Ip ——2sr'Gp'(pp) p= (37rc'/4y)Gp.

Combining Eqs. (3.6) and (3.7), we find

p ) (27src'/1 2y8)s(1/sM'p)'.

(3 7)

(3.8)

It follows that a world with a vanishing mean-mass
density must have an infinite total mass. Correspond-
ingly, Eq. (3.7) shows that the volume of the world
would contract to zero, if the total mass contained in
it vanished.

A short discussion of the foregoing well-known rela-
tions shows thus, that there exists only one static
world model LG=O, G(t)=Gp= po, k=+1j. Its mass
density, total mass, and the components of the matter
tensor are determined by Eqs. (3.6), (3.7), and (3.3a, b),
respectively:

p'=0, 3f= 00 T "=0. (3 9)

The world models satisfying the conditions (3.9) are
called Minkowski universes. The Minkowski universe
with the Minkowskian metric is considered to be in its
ground state, because, as a limiting case of the Friedman
universe, it corresponds to a uniformly and isotropically
distributed matter. There are known, of course, further
exact solutions of the field equations (3.1) with vanish-

~~ R. W. Lindquist and J. A. Wheeler, Rev. Mod. Phys. 29,
432 (1957),"J.Pachner, Acta Phys. Polon. 19, 663 (1960);Ann. Physik 8,
60 (1961).

2(d'G/«')/"G+ «/'G)'+~('/G)'= (8~~/") T '
(i=j =1, 2, 3). (3.2b)

The investigation of the lattice universe introduced
by Lindquist and %'heeler" and developed further by
the author" shows that the component T4' of the
matter tensor is to be interpreted as the mean-mass
density p' in the cosmical space:
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Pote added irt proof. It follows (1) that it was an
unproved assumption to suppose that in the absolute
absence of matter the space-time can further exist and
possess the Minkowskian metric, and (2) that the po-
tential reservoir of all forms of matter (in the sense of
Klein's considerations)' is in fact the gravitational 6eld.
Mach was thus in the right when he refuted an un-
critical extension of the validity of the known physical
laws over the limit of our experiences.

ing matter tensor which are free of singularities. As an
example, we -refer to Robinson's gravitational wave, "
a special case of which is the "anti-Mach metric" of
Oszvath and Schucking. '4 The existence of these solu-
tions does not contradict our hypothesis that the
space-time cannot exist without matter: We have to
consider these solutions as the "self-excited states" of
the Minkowski universe. Since not all solutions of, for
instance, the potential equation of electrostatics, and
not all elementary particles compatible with signer's
classification" are realized in nature, a similar question
now arises as to which of the self-excited states can
actually exist in our universe. "

Our inference that the Minkowski metric cannot
belong to an infinite absolutely empty space-time con-
tinuum agrees with the relativistic formulation of
Mach s principle stated in the introduction, and will be
further strengthened by considering the metric field
due to the smoothed-out matter of a finite mass which
is uniformly and isotropically distributed over a finite
volume. The field equations (3.1) give us two quite
different solutions: If we admit the existence of the
space-time continuum, i.e., the existence of, at least,
one metric with detg„„(0, only in the region occupied
by matter, we obtain Friedman's oscillating model of a
finite universe. However, if the space-time may exist
also in the domain where all the components of the
matter tensor vanish, we find the inner and outer
Schwarzschild solution. Since McVittie s metric (1.1)
with G(t)=Gp= po becomes identical with Schwarz-
schild's outer metric written in isotropic coordinates,
the uniqueness of the solution will be reinstated if we
ascribe the Schwarzschild field to an isolated mass-
point situated in the Minkowski universe.

The investigations of Honl and Dehnen'" proved
that the centrifugal and Coriolis forces of correct mag-
nitude appear in every reference frame which is rotating
relative to the total mass of the world model. If we
now wish to explain why the Thirring forces" are pro-
portional to the ratio of the gravitational radius of the
hollow sphere to its geometrical radius, we must admit
that they result from the simultaneous action of the
rotating mass of the near hollow sphere and of the non-
rotating distant mass of the Minkowski universe for
which the above ratio equals (3sr/4) Lsee Eq. (3.7)$.

ON THE PHYSICAL INTERPRETATION OF
THE COSMOLOGICAL CONSTANT

Before concluding this paper, we have to show how
the cosmological constant is to be interpreted if the
hypothesis that only the matter creates the space-time
continuum (i.e., the gravitational field, for both terms
are merely two aspects of the same physical entity)
should have a general validity.

In the de Sitter universe, the metric field described
by Eq. (1.1) with ntp ——0 and

cosh +1
G(t)/Gp ——~ exp &ct(X/3)" k= & 0 &.

sinh
E.

if H = c(X/3)'ts (4.1)

is in fact created by the cosmological constant (which,
as McVittie" noticed, is a constant of integration).
Since it is certainly absurd that a universal natural
constant might create a physical field, we identify the
cosmological term with the matter tensor:

If we interpret its T44 component, as usual, as the
mean-mass density of matter, we must consider (X/87r)
to be the mass density expressed in a geometrical system
of units. "This mass density should have, however, the
very strange property of remaining constant and being
influenced neither by expansion nor by contraction of
the universe. From this standpoint, the de Sitter uni-
verse with k=o is thus identical with the steady-state
universe.

This interpretation does not contradict Eq. (3.3b)
determining other components of the matter tensor,
but differs essentially from that of McCrea" who as-
sumed (in agreement with the classical interpretation)

P 1=2' s= 2' s = P/cs

and admitted at the same time the existence of a uni-
form negative pressure throughout the space.

Since the creation process, if it actually occurs, is
certainly a quantum process, we should abstain from
every premature classical interpretation of the com-
ponents of the matter tensor, taking for granted only

"G. C. McVittie, General Relatipity and Cosmology (Chapman 8t
Hall, London, 1956), p. 35.

"W. H. McCrea, Proc. Roy. Soc. (London) A206, 562 (1951).

nI. Robinson, Lecture at King College, London, 1956 (un-
published); F. A. E. Pirani, in Recent Developments in General
Relati pity (Pergamon Press Ltd. , Oxford, 1962), p. 89 ff.

'4I. Qszv6, th and E. Schucking, in Recent Developmelts in,
Genera/ Relativity (Pergamon Press Ltd. , oxford, 1962), p. 339 ff."E.P. Wigner, Ann. Math. 40, 149 (1939).' The author likes to recall Infeld's words: "There is little
sense in considering radiation without sources. " (L. Infeld and
J. Plebanski, 3fotion and Relatipity (Pergamon Press Ltd , Oxford, .
1960), p. 166.]

'~ H. Dehnen, Z. Physik 166, 559 (1962).
's H. Thirring, Phys. Z. 19, 33 (1918); 22, 29 (1921). L. Bass,

and F.A. E. Pirani, Phil. Mag. 46, 850 (1955).H. Honl and A. W.
Maue, Z. Physik 144, 152 (1956). Compare also: Ch. Soergel-
Fabricius, Z. Physik 159, 541 (1960); H. Honl and Ch. Soergel-
Fabricius, ibid. 163, 571 (1961).
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the identification of T4' with the mass density, and
admitting in our relativistic treatment that the total
mass of the universe might depend on the mean radius
of curvature of its space."We may interpret this de-
pendence either as the creation of matter possessing
invariable gravitational properties, or as a variation of
the gravitational properties of matter (in the sense of
mutual action of matter proposed by Einstein)" the
total quantity of which remains constant in the uni-

3' Consequences of the assum tion that the mean-mass density
varies as the function p=p~(G~ G)'+", p& being the density at the
radius GJ, and n a real constant, are investigated in J. Pachner,
Acta Phys. Polon. 23, 133 (1963).

verse. The latter variation is caused by the variation
of the mass of matter, in contra-distinction to the
hypothesis of Dirac" who assumed a dependence of the
gravitational "constant" on the radius of the universe.
Whether such variations do occur in our universe or not,
only experience can decide. The recent observations of
Ambarzumian, "who found that the central regions of
certain galaxies are the sources of an intensive emana-
tion of matter, indicate that such a possibility can-
not be tt priori excluded.

"P.A. M. Dirac, Proc. Roy. Soc. (London) A165, 199 (1938).
ee V. A. Ambarzumian, VoProsy kosmogonii, tom VIII (Moscow,

1962), pp. 21—23.
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Lorentz-Covariant Position Operators for Spinning Particles*

T. F. JORDAN AND N. MUKUNDAt
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(Received 2 July 1963)

An examination is made of the consequences for the quantum mechanics of spinning particles of equations
characteristic of Lorentz-covariant position variables. These equations are commutator analogs of the
Poisson bracket equations that express the familiar transformation properties of space-time events in
classical mechanics. For a particle of zero spin it is found that the usual canonical coordinate is the unique
solution of these equations. For a particle with positive spin there is no position operator which satis6es
these equations and has commuting components. For a particle and antiparticle there is a unique solution
with commuting components which is valid for all values of the spin and reduces for zero spin to the canonical
coordinate. For spin —, this is the Foldy-Wouthuysen transform of the position operator of the Dirac equa-
tion. A generalization of the inverse Foldy-Wouthuysen transformation, valid for any value of the spin,
appears as a unique unitary transformation which takes this generalized Dirac position to the canonical
coordinate. The application of this transformation to the canonical form of the Hamiltonian gives a gen-

eralization of the Dirac equation Hamiltonian. This is developed and compared with the literature for spin 1.
It gives a nonlocal equation as the spin 1 analog of the Dirac equation.

I. INTRODUCTION

' 'HIS paper is an attempt to answer some questions

suggested by a recent study of special relativistic
invariance in Hamiltonian particle dynamics. '' This

study has emphasized two distinct aspects of relativistic
invariance. The first of these is the symmetry of the
theory under the inhomogeneous Lorentz group, re-

Qecting the principle of special relativity that the laws

of physics should be invariant under transformations

of reference frames. This symmetry is guaranteed by
postulating the existence of ten infinitesimal generators

H, P, J, I, for time translations, space translations,

space rotations, and pure Lorentz transformations, re-
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spectively, satisfying the bracket equations

LP, ,P.]=o, CP, ,H]=0, P„H]=o,
Cf')ft]= e'tAJA ~

p;,K;]=e;,,Ks,

CK;,K;]= —e;;sJs,

P;,P;]= e'ssPA,

CK;,H]=P„
CK;,Pg,]= os I,H

e P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949).

which are characteristic of the inhomogeneous Lorentz

group. ' ' (We choose units in which It= c= 1. The sum-

mation convention is used for the indices i, j, k=1,2,3.
In classical mechanics the brackets are Poisson brackets.
In quantum mechanics they are corrnnutators divided

by i. This riotation is maintained throughout the

paper. )
The second aspect involves the explicit transforma-

tion properties of space-time events and gives the


