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Internal symmetries such as isotopic spin are not necessarily arbitrary constraints to be imposed at the
beginning of a calculation. The bootstrap requirement that all particles be determined as composite states
of one another leads naturally to symmetric solutions for masses and coupling constants.

I. INTRODUCTION
'
QHYSICAI. systems are characterized by quantum

numbers of energy, momentum, spin, and parity,
whose origin is well understood; they arise from assumed
symmetries of space-time. Some systems are also char-
acterized by the internal quantum numbers of isotopic
spin, hypercharge, and, more generally and less exactly,
unitary spin, whose origins are less clear. We believe
that these quantum numbers and the associated sym-
metries are already implied by the bootstrap mechanism
of 5-matrix theory. ' There is no need for additional
principles either inside or outside quantum theory to
explain them.

The fundamental point is this: The internal sym-
metries can be expressed as equalities among certain
masses and among certain couplings. But the values of
these masses and couplings are not inserted into the
theory as initial data; rather they emerge from a self-
consistent calculation. Let us anticipate that in a fully
self-consistent universe there is room for a multiplicity
of particles of the same species, that is, of the same spin
and parity. The formal principles which instruct us how
to determine the masses and couplings of particles of
like species possess a symmetry with regard to these
particles. That such symmetries lead to equality among
the masses and interactions of particles of like species
need not be regarded as a freak accident, but may well
be the preferred possibility.

In the present paper this quite general notion will be
explored only with regard to pion-nucleon interactions
and isotopic symmetry.

II. BOOTSTRAPS FOR PION-NUCLEON SYSTEMS

Imagine that a search is made for the simplest uni-
verse which includes spin —,

' particles, but that the
attempt to construct such a universe self-consistently,
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'The general philosophy of bootstraps has been described in

various papers, for example, F. Zachariasen and C. Zemach, Phys.
Rev. 128, 849 (1962).

in the bootstrap sense, with a single spin ~ particle
fails. Next, one might consider two such particles; call
them nucleons and label them p and m. Space-time sym-
metries require that we consider the antiparticles n
and p at the same time.

Now we ask what additional stable particles must be
considered so that the family of particles as a whole
is closed, i.e., so that each particle is, in fact, a bound
state in one of the channels defined by the family. One
can define, and perhaps even solve, a theory in which no
additional particles are present, and in which each nuc-
leon is a bound state of two nucleons and an antinucleon.
One alternative is to suppose that stable states of nuc-
leon-antinucleon systems, i.e. , m mesons, also exist.
Proceeding to examine all hypothetical systems in
order of their (apparent) simplicity, we may first sup-
pose that there is only one such meson, x', which couples
to both pp and nn. Then p is a bound state of psr' (and
of all channels coupled to pm." as well), tt is a bound state
of ttn', and m' is a bound state of top and ntt. Thus sr'

must be its own antiparticle.
Figure 1 displays the lowest order-force diagrams

(diagrams with a "left-hand" cut) leading to dynamical
equations for the P, e, and Ire bootstraps in this model.
Figure 1(d) is included in the n'-strap diagrams to il-
lustrate that pp and nrt are indeed coupled.

Still another possibility is that p and rt are directly
coupled through "charged" poins and that m' is not
present. Thus we have a sr+ as a bound state of np,
and necessarily, we have its antiparticle m, with the
same mass, coupled to pe. Figure 2 shows the lowest
order diagrams for the various straps.

To test these schemes fully would require calculations
beyond our powers; the most pleasing result would be
that such self-supporting mechanisms cannot exist be-
cause the resultant forces are either repulsive or too
weakly attractive, and that this is the reason that they
do not occur in nature.

Our search then brings us to the observed case of two
nucleons and three pions. The pions are anticipated to
be of like species and, in fact, bound states of a single
spin-parity nucleon-antinucleon partial wave (the ISo
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Only the sign of gp relative to g, is relevant; let g, be
positive so that the sign of gp is also fixed. Of course,
F','= Il &Pd will hold identically and does not constitute
and additional relation. A similar procedure with the
e strap yields expressions for M„, etc. But the e problem
is transformed into the p problem by the following
interchanges of notation in (2.1):

p+-+ n (including M„+-+ M„),
gp~ hp

m'+ ~ x

Then we must have

M.=F.(M.,M„p„po,g.,ho, go),

ho'= Fo (M.,M„p.,po, g.,ho, go),

hogc= Fc(Mn&Myqpcppoygcyhopgo) q

g,'= Fg(M„,M~,p„pp, g.,hp, g p) .

(2.4a)

(2.4b)

(2.4c)

(2.4d)
n n n p

(c) (d) (e)
From Eqs. (2.3), eliminate go, hp to obtain an equation
of the type

FIG. 1. Lowest order-force diagrams for a system con-
taining only p, n, and w'.

wave). The couplings are specified by the interaction
scheme

M„=P(M~, M„;p. ,p, p,g.).
The same treatment of Eqs. (2.4) yields

M =P(M„,M„;p„pp, g,)

(2.5a)

(2.5b)

gcpn7(++gcnP~ +gopPpro+honn7(, (2.1)

which may be regarded as an interaction Lagrangian
in a field theory, but which the "pure" 5-matrix theorist
will prefer to interpret with statements about singulari-
ties of physical scattering amplitudes. We suppose, in

any case, that (2.1) defines a meaningful dynamical
structure whose self-consistency can be tested by calcu-
lation. The dependence of (2.1) on spin matrices is not
indicated explicitly. The coupling constants will be real

by time reversal invariance. The nucleon masses, M„
and 3f„,are not yet assumed equal, nor are the various
coupling constants. However, CPT requires z+ and +-
to have the same mass p„and the same coupling g, to
pn or np, respectively.

Consider now the dynamics of the P strap, by which
we mean the dynamics of reactions with quantum
numbers of p. Some of the forces are illustrated in Figs.
3 (a) and 3(b). By looking at poles and residues of the
amplitudes for

with the same function W. Sy considering simple models,
of the N/D type, for example, one may convince oneself
that (2.5a), (2.5b) are meaningful equations, not identi-

cal, and for fixed values of p„pp, and g, have a discrete
number of solutions, if any, for 3f„and 3f„. An ex-

ample of such a model is discussed in detail in the next
section. Equation (2.5a) represents a curve in the M„,
M„plane and (2.5b) represents the reflection of that
curve through the line M„=Sf . Where these curves

(a)

pro+ p+-+ pro+ p,
no+ p ~ pr++n,

pr++n ~ m.++n,

(2.2a)

(2.2b)

(2.2c)

and imposing self-consistency, one obtains expressions
for 3f» gp', gpg„g, ' having the form

M„=F (M~,M,p„pp, g.,gp, hp),

g p' Fp(M„,M„,p„po,g„——g p, hp),

g pg, =F,(M pM„,p,„ppg„gp, ho),

g,'= Fg(M~, M„,p„pp g„gp, hp) .

(2.3a)

(2.3b)

(2.3c)

(2.3d)

(c)

FIG. 2. Lowest order-force diagrams for a system
containing only p, n, w+ and x .
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is conserved, of course, regardless of whether go ——+hp
or go= —ho. We shall assume hereafter that M„=Sf„
and go

———ho do emerge from the bootstrap calculations
as has been made plausible. There may well be another
meson, the q, coupled to (pP+riri)/V2. Its presence
would affect the dynamics, but not the symmetry
properties of the odd G-parity states, so that it is ir-
relevant to the subsequent arguments.

The result so far constitutes charge symmetry; to
establish charge independence, we consider the pion
straps. We first define new pion states of definite mass

pc by
2r'= (or++ ir—)/K2,
or2= i(7r+-or-)/V2,

(c)
P P p n

(e)

where
glNrlN1I +g2Nr2N1I +goNr 2N2l

g2

(2.8)

N stands for the isospinor with components P, 22. We
write p~, p~ for the masses of the m', m' although, of
course, p.y= p,2=p, .

From the poles and residues of the amplitudes for

and then rewrite (2.1) in the notation of isotopic
spin:

FIG. 3. Some lowest order-force diagrams for the 3-pion,
2-nucleon system.

Then the following states, in the 'So partial wave, have
negative G parity:

while
rap, (pp —n )/V2, gi22, (2.7a)

(pp+nri)/v2 (2.7b)

has positive G parity. Thus ~+ and m= have negative G
parity, as does x' if go ———ho. G parity of the Lagrangian

intersect there is a possible pair of values M„, 3f . If
either curve goes through the line M„=M„, the two
will intersect there yielding a solution with M„=Sf .
For a large class of functions, the only possible solution
to (2.5a) and (2.5b) is M„=HE„. In this way equality
of the nucleon masses may arise eutlra/ly from a dy-
namical calculation. We have not shown that M„and
M„mist be equal, but that this fact of nature can be
the plausible outcome of the calculation rather than a
freak accident.

A similar manipulation of Eqs. (2.3) and Eqs. (2.4)
demonstrates the plausibility, though not the necessity,
that go'=ho' or go= ~ho.

The G transformation is usually defined on nucleons
in such a way that nucleon states are replaced by their
antiparticle states with charges and phases adjusted as
follows:

p iS& p +S&
we have, also,

m' ~ pro (with &tii ~ yp),
gr ~ go&

(2.11)

IJO= fo(pp&p2&ljl&gp&g2&gl&M) &
(2.12a)

go = fo(lio&p2&lji&go&g2&gi&M) ~ (2 12b)

The elimination of gi2 and go2 from Eqs. (2.9) and Eqs.
(2.12) yields equations of the type

go= f(~o,l i, ~2,g2, i('-f), (2.13a)

wi=f(vi&uo &&i2 g2 ~) (2 13b)

we obtain, as before, expressions for p, &, g&' of the type
(we have set cV„=M„=M'):

Iii= f.(pi,yp, lio gi g2 go ~) (2 9a)

gP= fo(I i,yp, yo, gi,gp, go,~). ( b)

Next, change the descriptiori of the nucleons, defining a
new isospinor Ã' by the following two-step process:

(a) an isotopic rotation of the nucleons such that
NriN + N'rpN', N—r2—N~ N'r2N', an—d NrpN' —+

N'riN&. In thr—ee-dimensional isotopic space, this is a
rotation by 180' about the line 2:+s =0, y =0. And then

(b) a G transformation of the nucleons as defined in
(2.6).

Then (2.8) takes the form

g iN'rpN'pr'+ g2N'r 2N'ir'+ goN'riN'ir'. (2.10)

Since (2.10) is formally identical to (2.8) under the
substitutions
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From these, as before, we infer the plausibility of p, p= py.

The same argument suggests that gp'=gi' ———2g,' is a
natural consequence of the dynamics. Then, if gp and

g, have the same sign, the interaction coincides with the
customary isotopic-spin invariant pion-nucleon inter-
action. If gp and g, have opposite signs, this is also
true except we must identify the e states with protons
and the p states with neutrons.

Notice that in order to infer the likelihood of isotopic
invariance, it was not necessary to consider all isotopic
rotations or even infinitesimal ones, but only two permu-
tation operations. This will not be surprising to those
who remember that the original inference of isotopic
spin from experiment rested solely on the equivalence
of pp and rttt forces and the equivalence of pp and prt
forces '

The possibility of bootstrap theories embodying iso-
spin symmetry is, of course, well known. The primary
aim of the present discussion has been to show how dy-
namics may rule out other alternatives.

III. A MODEL

We shall now illustrate how the abstract arguments
of the previous section, involving the 6ctitious particles
m' and m', take form in a simple model calculation.

In the model, we shall deal only with the second half
of the problem. Suppose that the first results (charge
symmetry) have already been proved: namely, M„=M„
and gp= —kp. (We assume the case gp ——+hp has been
disposed of.) It is important to emphasize that M„=M„
and gp= —hp are rot to be considered as postulates, but
are expected to follow from an explicit dynamical
calculation of the nucleon strap. In fact, we could have
constructed a model analogous to the one described be-
low which predicts an explicit form for Eq. (2.5) and
from which, independent of any assumptions on the
pion masses, we could deduce M„=M„and gp

———hp.

We calculate the XX partial wave with the space-time
quantum numbers of the pion by the X/D method, as-
suming that the lowest order exchange diagrams are
suKcient to define the forces (left-hand cuts) which
bind tsp to form s+ )Fig. 3 (f)] and which bind pp and 8tt
to form m' LFigs. 3(c), 3(d), 3(e)].This is, of course, a
very poor approximation dynamically, but is still ex-
pected to contain the symmetries under discussion.
Finally, we approximate the left-hand cut by a single
pole. This pole must lie to the left of the bound-state
poles we seek.

For a given diagram, we shall place the pole at
s s&—4p, ', where p, is the exchanged pion mass, and
san=4M' is the threshold energy squared.

Then the Born amplitude for the process

t+( )=&()/D( ).
We use the following unitarity condition

Imt+= (s—st)&~t+~' for s)st.
Then, in the usual way

E(s)= ttt+(s),

(3.3)

(3.4)

(3.5)

D(s) =1—

We define

" (s' —s,)~(V(s')
ds .

s —s s —s~

s„=(s,—s„)&,

s= (s,-s)*,
&+

——(s,—t, )'*.

(3.6)

(3.7)

(3.8)

(3 ~)

Substituting (3.5) into (3.6), we have'

D(s) =1 gp'gt (s+z )-'—(» )-'] (3.10)

The output amplitude t annihilation graph, Fig. 4(d)]

ls

where 8 is some other kinematical factor. The x+ mass
is determined by the condition

D(tt, ') =0, (3.12)

(a) (c)

where s is the square of the center-of-mass frame energy,
s„=s&—4pp' is the pole position for neutral pion ex-

change, and A is some kinematical factor. A may, in

principle, be a function of the exchanged mass, but we

lose little generality by taking it to be a constant. A

must be positive to produce an attractive force. The
full amplitude is now represented by

is given the form
p+8~ p+n (3.1)

ttt+ (s) =gp'A/(s —s„), (3.2)
' B. Cassen and K. U. Condon, Phys. Rev. So, 846 (1936l.

FIG. 4. Annihilation graphs in the N37 straps.

e G. F. Chew, S Matrt'x Theory of Strortg-Irtteracttons (W. A.
Benjamin, Inc. , New York, 1961), p. 53.



OR I G I N OF I N 1'E RNAI S YM M ETR I ES 1835

and the per, coupling by TABLE I.Self-consistent solutions to model bootstrap equations.

g'~ = &—(t')/D'(t ') (3.13) (i o/2~)' (~./2~)' g
2

where D'(s) =dD(s)/ds. The explicit solution is

s+ ——s„(go'A —2s„)/(gp'A+2s„), (3.14a)

3.0

3.5

8.0

0.36
0.68
0.42
0.60
0.80

0.36
0.21
0.42
0.35
0.80

4.0
3.6
2.76
2.80
0.75

4.0
2.9
2.76
2.57
0.75

g '~=go'As+/s- (3.14b)

In this way the charged pion parameters are deter-
mined from the input H parameters. We can now add
them to the input information to calculate output values
for pp' and gp'. All four quantities will then be deter-
mined by a reciprocal bootstrap mechanism.

The x' strap is a two-channel problem. We label the
pp and nn channels 1 and 2, respectively, and obtain,
for the Born amplitude t~", the matrix

gP AD (s,) gp'A
X(s)= (3.20)

s sc s—s

D(s) =1—s—s„"(s'—si) ~Ã(s')ds'
(3.21)

Now we can calculate the amplitude in this channel
by the same X/D method, again normalizing D to 1 at
s„.We write To(s) =)V(s)/D(s), and the solution is

—gp'A —g,'A
Then

s —$ s —$~

tulip(s) =
$—$~ $—Sc

—g,'A —gp'A
(3 15) D(s) = 1 gPAD(s, )L—(s+z,) ' (s„—s,)

——'j—
+goPAL(s+s )

—'—(2s„)—'j (3.22)
where

~ $—Sc $—S~ s,= (s,—s,)&. (3.23)

Here, s, =s&—4p.,' is the position of the pole due to
charged pion exchange. Because we have assumed the
nucleon masses already equal, t&" and all matrices which
are functions of t&P can be diagonalized by an energy-
independent matrix U:

1 1 1
U=U —1)

' (3.16)

reducing this problem to a single-channel one also. We
have —g,'A gp'A

Tulip(s) = Utiio(s) U '= s sc s—sn

g,'A gp'A

$—Sc $—S~~

(3.17)

In the original representation the output matrix con-
tains the x' pole in the form

g
p

g 2)
t- '(s) =

s —t o'& —go' go' &

In the new representation, this becomes

B)0 0 q—T-'()=
s—t o'EO 2go&J

(3.18)

(3.19)

Thus the H is coupled only to the antisymmetric com-
bination nn —pp. Since A )0, this is the only consistent
result; T&' is attractive in this channel only.

By setting s= s, in (3.22), we obtain a linear equation to
determine D(s,). The bootstrap conditions are

D(tip') =0,
2g"~=~(.")/D (.").

(3.24a)

(3.24b)

Thus, sp can be found explicitly by solving a quadratic
algebraic equation, and then gp' follows directly by in-
serting tip' ——s,—sp' into (3.24b).

Equations (3.14) and (3.24) form four bootstrap
equations for the four unknown quantities. If values of
gp' and pp exist such that the solutions to Eqs. (3.14)
have the properties

(3.25)pc= pp)

g
2 2g 2 (3.26)

tJ o
=Po(V o,go),

go =go(P o,go),

define curves in the gp, p, p plane. The intersections,
if any, of the p, p=pp and gp=gp curves give the self-
consistent values of pp, gp, and then p,„g, are given by
(3.14). For 8= 1 and the three choices A =3.0, A =3.5,
A = 8 (in units such that s, = 1), the curves are given in
Figs. 5(a)—(c), and the self-consistent values in Table I.

one finds by direct substitution that Eqs. (3.24) are
automatically satisfied, so that these values are, in
fact, solutions to the whole problem. They are precisely
the "natural" solutions which embody isotopic spin
symmetry.

To carry out the calculation, we take input values
po, g, , find ti„g, from (3.14), and then calculate output
values pp, gp from (3.24). The self-consistency conditions,
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8.0

A =3.0
2

Qo

4.0—

I p=Po

go-go
go=go

40

2
Qo

3.0—

A =3.5

0.8

A=SA)
2

Qo

0.7—

3,0
0,2

I

0.4 0.6

(p, /2M)'

(a)

0.8 1.0
2.0

0.2 0.4 0.6
(p,o/2M)'

(b)

0.8 1.0
0.6

0.2 0.4 0.6
($L /2M)

(c)

0.8 ).0

Fio. 5. The two self-consistency conditions for po and g0'.

The curves p, 0=pa may have more than one branch. In
each case, the "natural" solution, embodying isotopic
symmetry, is found, and in two of the cases, a second
nonsymmetric solution is also found.

For very small values of A, no solution exists. There
are apparently no values of A for which a nonsymmetric
solution exists and a symmetric solution does not in
this model, although there is no logical reason why this
could not happen.

Other models embracing the features of this one may
also be easily constructed. For example, given the exist-
ence of three pions, we infer from the bootstrap principle
that pion pairs may form vector mesons, that is, p
mesons. Since Bose statistics do not allow a vector
state composed of two like pions, only three p mesons,
built from the three pairs of unlike pions, can appear
in such a theory. One can also build pions from ~p
states, thus providing a crossed strap to enclose the
system. From the x strap, one obtains symmetric equa-
tions for the charged and neutral pion masses which, in
various calculational schemes (such as the one described,
or, alternatively, the determinantal method), have equal
pion masses as the only solution (without the necessity
of assuming all p masses equal). Turning to the p strap
and using the now known equality of the ~ masses, one
can derive in the same model the equality of the p masses
and the correct isospin relations among the coupling
constants consistent with isospin one for both the pion
and the p meson.

In conclusion, the bootstrap principle, which we would

term "well understood, " provides the key to many
properties of nature which heretofore have not been
understood, not even philosophically. Let us emphasize
again the salient points. First, either the number of
particle types, with their various spin-parity assign-
ments, which exist in nature is uniquely determined,
or at least the possibilities are greatly restricted. Second,
equality of spins and parities among a set of particles
is not merely consistent with equality of masses, but
may well glorurItee equality of masses in some cases.
Thus, the remarkable fact that some physically dis-
tinguishable particles have equal masses (or at least
equal apart from electromagnetic effects) is explainable
in terms of principles that are already well understood.
Third, certain ratios among coupling constants may also
be guaranteed, and these, together with the mass
equalities, de6ne the relationships of an internal sym
metry, such as isospin symmetry. 4 Fourth, several

specific models support this view but also suggest that
one cannot prove the necessity of isospin symmetry
without rather detailed studies of the dynamics.

If this kind of argument is extended to, say, unitary
spin, then the surprising thing in connection with
strong interaction symmetries is not that they exist,
but that they are broken. This Inay be a difFicult

dymumi ca/ problem.

' R. H. Capps LPhys. Rev. Letters 10, 312 (1963)j has shown
that, if mass equalities are assumed, the bootstrap principle im-
plies the full SU3 symmetry for interactions of pseudoscalar mesons
and vector mesons.


