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from these measured quantities.

(fd) (Xl X2) El(/1) E2($2)

The mean life 7, characteristic of the decay process,
is then obtained as a solution of Eq. (AI).

Let 8 be the standard statistical uncertainty on (fd).
This may be expressed directly in terms of measured

quantities, viz;

P (Ql —+2)2
=& L((f )')—((f ))'+((f )—(f ))'j

+& D(f.)')—((f ))'+((f )—(fd))'7, (A3)

where ((t,)2)—= the mean of the squared lifetime of all
events observed during the ith interval T.
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The photoproduction of pions, p+E ~ ~+1V, is examined from the standpoint of the Regge pole hypothe-
sis and the Mandelstam representation. The asymptotic behavior of the forward scattering amplitudes is
determined in terms of the Regge trajectories of the y+~ —+ E+S channel. The p, P, and co trajectories are
included in the description of the photoproduction of neutral pions, whereas only the p and ~ trajectories
contribute to the photoproduction of charged pions. In the case of backward scattering, asymptotic rep-
resentations of the scattering amplitudes are controlled by the trajectories of the p+X —+ x+E channel by
crossing. Finally, generalized Pomeranchuk relations are established for the differential cross sections in
the forward and backward directions for the various charge con6gurations of the photoproduction channel.
In particular, we have the following interesting results: (1) The differential cross sections for v+p ~ m+2.+
and y+n —+ p+2. are asymptotically equal in the forward and backward directions; (2) the differential
cross sections for p+p —+ p+w and y+n —+ n+vr are asymptotically equal in the backboard direction.
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ITH the exception of selection rules, the under-
lying physical principles of elementary-particle

physics are currently being expressed in terms of
analyticity properties of transition amplitudes in a
manner consistent with unitarity. In fact, for strongly
interacting systems, the principle of maximal analyticity
in linear momentum has been frequently invoked. ' The
resulting description, i.e., the Mandelstam representa-
tion and unitarity, is incomplete at least to the extent
that the behavior of the scattering amplitude at infinity
remains undetermined. Complex angular momentum
may be useful in this respect since Regge' has shown
that the meromorphicity and asymptotic boundedness
of the partial-wave amplitudes continued to complex
J provide boundary conditions for the scattering ampli-
tude at infinity. Although Regge's work is for potential
scattering and relativistic proofs of certain aspects of
this program are still lacking, it is desirable, neverthe-
less, to investigate the consequences of this approach
since the equations obtained for the scattering ampli-
tudes are simple in form and are subject to experimental
veri6cation.

These and other considerations have led us to examine

*Supported in part by the National Science Foundation.
' S. Mandelstam, Phys. Rev. 112, 1344 (1958).' T. Regge, Nuovo Cimento 14, 951 (1959).

a process in which both strong and electromagnetic
interactions enter, namely the photoproduction of pions.
The basic assumption is that the particles mediating the
strong interaction correspond to certain Regge tra-
jectories in the complex J plane.

Our main purpose is to demonstrate the existence of
generalized Pomeranchuk relations for the photoproduc-
tion of pions. These relations do not necessarily pertain
to total cross sections of particle and antiparticle re-
actions, as did the original Pomeranchuk theorems.
Instead, it is recognized that the fundamental mecha-
nism responsible for the Pomeranchuk theorems, namely
a dominant Regge trajectory, may also be the author of
other asymptotic symmetries. Wagner and Sharp, ' 4 for
instance, have discussed such asymptotic relationships
between the differential cross sections for the direct and
crossed channels of several reactions. For photoproduc-
tion the equality of the differential cross sections for the
direct and crossed channels is guaranteed at all energies
by invariance under charge conjugation. We, therefore,
turn to the particular charge configurations present in a
given channel, and it is found that they satisfy asymp-
totic symmetries of this type.

The general plan of the paper is as follows. In Sec. II,
the basic kinematics are outlined and the amplitudes

3 W. G. Wagner and D. H. Sharp, Phys. Rev. 12&, 2899 (1962).' W. G. Wagner, Phys. Rev. Letters 10, 202 (1963).
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satisfying the Mandelstam representation are intro-
duced and related to the angular momentum expansions
of channel II, y+7r ~N+¹The notation and results
of Ball' are used extensively. In Sec. III, we summarize
the approach that allows a description in terms of com-
plex angular momenta. In Sec. IV, we discuss the poles
of the eigenamplitudes for channel II. Asymptotic
expressions for the scattering amplitudes are obtained
in Sec. V.

II. KINEMATICS

Associated with this problem are three reactions:

is given by
T —

g (+)T(+)+g (—)T(—)+g (o)T(o)

and
(2 4a,)

T(+,—,o) P O g (+.—.o) (2.4b)

where gz(+)=bt)s, g()( )= s/rt), rsj, gt)'()=rt, )and P is the
isospin subscript for the pion. The 0„'s are the gauge
invariant spin matrices used in Refs. (5) and (6)7:

Op=ivy'ey E, (2.5a)

Os ——4iys(t —1) '(P eQ E PEQ—e), (2.5b)

y+N) ~ z.+Ns,
p+w ~N)+No,

os= —&s(v eQ K—v KQ e)

04———Vs(y eP K yKP—e),

(2.5c)

(2.5d)
and

y+Ns ~ 7r+Nt,

which we designate as channels I, II, and III, respec-
tively. Since channel III is the charge conjugate of
channel I, if the subscripts are interchanged, it is not
discussed in detail in this section. Conservation of
four momentum in channel I is written as

K+P) =Q+Ps, (2 1)

where K, Pt, Q, and Ps refer to the y, Nt, v, and

N2, respectively. In the barycentric system we have
the relations, K= (K,k), P) (—K, E) [M——'+k']"')——
Q=(Q o)= Lqs+17'is) and Ps (—Q Es Lq'+——M'7'~s)——
where k= ~K[ and q= ~Q[. For channel II, Pt and Q
have negative components so that I'y = —I'y and
Q'= —

Q refer to the outgoing antinucleon and the in-
coming pion, respectively. The constraint expressed by
Eq. (2.1) can be written in terms of the physical
variables of channel II as

K+Q'=P)'+Ps, (2 2)

' J. S. Ball, Phys. Rev. 124, 2014 (1961).' G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345 (1957).

whereE=(K, k'), Q'=( —K o)=Lk"+1j'") P '=(—Ps,
E=PP'+3II )'') Ps (Ps E=LP +Msg'——t') and k' P
are the magnitudes of K, Ps, respectively.

We define a transition matrix element T in channel I
by the equation

S=i(2or) s8(K+Pt —
Q

—Ps)
XM(4EyEsko)) ~ u(Ps) Tu(Pq) (2.3a)

and in channel II by the equation

S=i(2z) s8(K+Q' P)' P,)— —
&(M(4E'k'o)) "'u(Ps) v(P, '), ( .3b)

where u(Ps) is a positive energy Dirac spinor, v(P, ) is
a charge conjugate spinor, v(P, ') =Ou r(P, '), C~—„r("—&

= —y„, and C~= —C. Chew, Goldberger, Low, and
Nambu' have shown that the most general form for T

where e is the photon polarization vector, P= -', (P&+Ps),
and t is defined by Eq. (2.6b). The 8„'s are those ampli-
tudes which have been shown by Ball to be free of
kinematical singularities. They, therefore, admit of a
Mandelstam representation and are functions only of
the variables s, I,, I, which we define as

s= —(P,+K)' (2.6a)

t= —(Q—K)',
u= —(Ps—K)'.

(2.6b)

(2.6c)

The satisfy the relation s+u+t= 2M'+1. The physical
interpretation of these variables in the barycentric sys-
tem of the indicated channel is given below:

s= (Eg+k)'= (Es+(d)s, (2.7a)

(2.7b)

(2.7c)

t= 1—2o)k+2qkz,

I=M' —2E2k —2qks,

for channel I, and for channel II,
s =M' 2Ek' 2pk'z'—, — (2.8a)

t = (2E)'= (o)+k') ' (2.8b)

u= M' —2Ek'+2pk'z', (2.8c)

where z=Q K and z'=Ps K are the cosines of the
production angles for channel I and II, respectively.

We define the 2)(2 spin matrices, 5 and G, by means
of the following scalar products:

Mu(Ps)Tu(P)) =4)r(s)"'xt(Ns)5x(N)) (2.9a)

The matrices O~ are related to the matrices M„of Refs.
5 and 6 as follows: 01=&1, 02=2(t —1) 'M2, 08= —M3, and
04 = —3E3III—~M4.

'W d 6 G I th tv(v)= —
(&) h 1d b di Eq.

(2.9b) when v(Pq') corresponds to an antinucleon spinning up and

x(N)=(0), h th ti 1 i ti i ad

for channel I, and for channel II,
Mu(P, )Tv(P, ') =4~(t)'('xt(N, )Gx(N, ), (2.9b)

where the x's are Pauli spinors. ' The differential cross
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—2(s"'+M)
Bs—Bs+s 84 . (2.13d)

t—14

a=Q L„'Z. (2.11a)
The angular momentum decomposition of these

amplitudes is found as in Ref. 6 to beand

section for channel I is simply related to 5 as follows: q'(s"' —M) (Ei+Ml "'
S4——

do/dfl=(q/p)g!Xt(X, )px(X,)!' (2.10) 8s./s EEs+M)

and similarly for channel II. We choose to write F and
G in the forms X

G= Q L."G, (2 1 1 b) +1 Q {[(J s)M J—1/2+Es—1/2]p s+1/2
J=i/2

+[(J+2)MJ+1/2+Es+1/2]p J'—1/2) y (2 14a)
where L„~ and L "are dined as in Ref. 5 to be,

I y
=zo"' 6

A A

Lsr ie XQ——s,

L,»=P, c,
L»= je'P2P2'XX&,

Ls'=e Q(r KXs,
A

L4'=io" QQ s)

Ls —zir 'PsX t )

L4Ir=~ E

+ Gs I ~ (2.12b)
(t-4M')'/'

Substituting Eqs. (2.4b) and (2.11b) into Eq. (2.9b)
and using the linear independence of the L„», we obtain

8 =[16 gt/(t 1)](G+G—),
(t 4M')"—'

I
Gi+ G4

(t—4M')'/' ( 2M+Qt

{(J+s)MJ—i/2P J'—1/2

+Ms+1/2P J+1/2} y (2 14b)

~$ Z {[Es—1/2 Ms—1/2]p J+1/2
J=3/2

+LEJ+i//2+M I+i//2]p s i/2), (2.14c)

+4 2 {[MJ—1/2 EJ—1/2]p s—1/2
&=3/2

[E&+i/s+Ms+i/2]P /+i/2}, (2.14d)

where Mg+I/2 and .Ez+&/2 represent transitions between
initial and final states of parity (—1)s+»s.

The amplitudes defined by Eq. (2.11b) can also be
expanded in terms of amplitudes connecting states of
definite parity and angular momentum. Designating
these eigenamplitudes by a&+ and Pz+ and using the
helicity amplitudes of Jacob and Wick, ' we obtain

(t—1)(t—4M') "' G = —Z(J+-')& ()P' (2.15a)

32s+t G2 s Q{GJ (t)[JP 7+1+(J+1)P s—1]2.12d
—(2J+1)as+(t)P"s}, (2.15b)

2M
84— I Gc+

(t—1)(2M+gt) E 2M gt—
The relations between the &„'s and 8 's are obtained G +G P(J+.i)Ps~(t)P~z
similarly and have been shown in Ref. 6 to be (2.15c)

G =-l Z{"+(t)[JP";+(J+1)p",,][(Ei+M)(Es+M)]'/' Bi ,'(s'/'+M)84——
Sx s —(2J+1)az (t)P"z), (2.15d)

t—1
+ (Bs—s84)

2(s"'—M)
(2.13a)

q(s'/' —M) (E&+M) "'
P2= !—Bi——,'(s"'—M)84

8m' (Es+M~

(Bs——',84), (2.13b)
2(s'/ +M)

q(s'/' —M)
[(Ei+M)(Es+M)]'"

where P's means d/dz'P&(s'), etc Some us. eful properties
of the eigenamplitudes, us+(t) and ps+(t), are derived
in the Appendix. Equations (2.15) are valid for ail s'
in E; where E; is the largest ellipse in the complex
s plane with foci at ~1 in the interior of which G; is
an analytic function of s'."

Superscripts (+, —,0) denoting the isospin character
of the quantities in Eqs. (2.11), (2.12), (2.13), (2.14),
and (2.15) have been omitted for simplicity.

Chew, Goldberger, Low, and Nambu' have obtained
crossing relations for the Mandelstam amplitudes.

2(s'/' —M')
X Bs—Bs+-,'A, (2.13c)

t—1 ~aI

9 M. Jacob and G. C. Wick, Ann. Phys. (N. &.) 7, 4O4 ($959)"E.T. Whittaker and G. ¹ Watson, Modern Analysis (Cam-
bridge University Press, New York, 1952).
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They are
8„&'&(stu) = e„&'&8 i'&(I/s), (2.16)

(1—1)
PJ+=

8~'t(2J+1)
ds'

g (+&= tP i/2+2+ 3/2
7

p (—) Xg I/2 1g 3/2

(2.17a) gs+~~,—=

(2.17b)

where e &'&=+1 for Z=(0, +) and tt=i, 2, 4 or for
t'= (—) and tt= 3, and otherwise e„"&= —1. These
amplitudes are related in channel I to the amplitudes
leading to Anal states of total isospin —,

' and —,
' as follows:

XL~,"(1")—(—1)'~, (~, —")$
XLQs+i —Qs-t j (3 3b)

(1—1)(2J+1) '

Sm-'t J(J+1)

and 8„("leads only to states of isospin -', .

III. COMPLEX ANGULAR MOMENTUM

The steps leading to a Regge description have been
discussed extensively for the case of mE and ESscatter-
ing. " "Since the situation here is essentially the same,
we omit certain aspects of these considerations.

Froissart'4 has indicated the appropriate way to
continue the eigenamplitudes into the complex J plane.
Using the orthogonality properties of the Legendre
polynomials and Eqs. (2.15), we find for physical J

Ps
—= (2J+1)—' ds(Pg~, Pg, )Gi—, (3.1a)

p~+= (2J+1) ' dz(P g+t Pg i)(G—3+Gi), (3.1b)

CJ++GJ
(2Jj1) '

J(J+1)
(G4~Gr)L(J+1)Pg i

+JP~+t+(2J+1)PIjds, (3.1c)

where we have written Ps for Ps(s) and G„ for G„(t,s).
Equations (2.12) are inverted and substituted into
Eqs. (3.1). Then we use the 1V-subtracted form of the
Mandelstam representation for the 8„'s:

(—s)~ "8 '(—z't)ds'
8 = P p/, "(t)s'+ s'" s' s

s "8„"(s't)ds'+-, (3.2)., z'"(s' —s)

where 8„""is the discontinuity of 8 across the s, n
cut, s/&

—— P/P, and k!p/, "(1)= L(—c&'//3s')B„(«)), /&. In-
terchanging the order of integrations, we obtain for
J&/V+1

(1—m2)i/2
Pz = ds

S~'1(2J+1)
X t

b"(«') —(—1)'b'(1, —s')j
XLQs+t —Qs ij, (3 3a)

where

X(~L +"(«')+(—1)"+(1, —")](2J+1)Q.
+La~"(ts') —(—1) ag'(t, —s')$

XL(J+1)Q,—,+JQ„,l}, (3.3,)

~,"'(«') = 2M/Ii, "'(~s') ma, —-'(«') j+ ', ta, -'-(«)
+ L/(t 4J!/I') j'/'—8 "'(«') (3.3d)

QJ(z) —~ Q(s)(J)—i/2Ls —(zt 1)&/2)z (3 4)

for s'(1 and real. What is lacking at this point is a
knowledge of the extent of the meromorphy domain for
the eigenamplitudes and their properties in this domain.
For the scattering of two spinless particles of equal mass,
Mandelstam has made considerable progress in this
direction, basing his discussion on the existence, for all

b" («') =(1—1)La,- (&s') —~a,- (1s')~

+218&" (ts'), (3.3e)

and the Qq's are Legendre functions of the second kind
of argument s'.

We now introduce the even and odd eigenamplitudes"
which will be used in the continuation to complex J.
We let Ps, ,+ represent Eq. (3.3b) for even J and Ps e+

represent Eq. (3.3b) for odd J.This removes the (—1)s
factor. as, .+, as, /&+, P~, , and PJ,p are defined similarly.
When we wish to indicate explicitly the isospin nature
of the eigenamplitudes, we write Pg, ,+ &", where
i=(+, —,0) and similarly for the others.

We define P.+ "'(Jl) P + &"(J/) u + "&(Jt), and
cp+ /'& (Jt) to be the continuations of Ps, P &"(/),
Pj,o+ "'(t), as, .+ " (1), and as, o+ "'(t), respectively into
the complex J plane. "Although Eqs. (3.3) have been
derived for physical J and J&/V+1, they will represent
the continued functions, P, , e+(Jt) and a, ,e+(Jt), for all
values of J and t for which the integrals converge.
Accordingly, P„e+(Jt) and a, , /&+(J1) will be holomorphic
in J for these values of J and t, except possibly at the
zeros of the denominators of Eqs. (3.3). They are also
asymptotically bounded in this domain, as can be seen
by using the relation"

» V. Singh, Phys. Rev. 129, 1889 (1963).
'2S. C. Frautschi, M. Gell —Mann, and F. Zachariasen, Phys.

Rev. 126, 2204 (1962).
"Y.Hara, Progr. Theoret. Phys. (Kyoto) 28, 1048 (1962).
i4 M. Froissart, Phys. Rev. 123, 1053 (1961).

"See K. Bardakci, Phys. Rev. 127, 1832 (1962) and E. J.
Squires, Nuovo Cimento 25, 242 (1962).

16A. Rrdelyi et al. , in Higher Transcendental Functions,
(McGraw-Hill Book Company, Inc. , New York, 1953), Vol. 1.
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J, of the left-hand discontinuity in t of the partial-wave
amplitudes. '~

It is not the purpose of this paper to improve on the
status of such problems. Instead, we assume that the
eigenamplitudes have the desired properties (asymp-
totic boundedness and analyticity, except for Regge
poles, to the right of some line ReJ= —), ) )0) and
perform the standard operations necessary to convert
Eqs. (2.13) into sums over Regge pole contributions plus
background terms (line integrals). For instance, we

hand that 8~(st) can be written as

a,= 16~«1'(t—1)-&(—-')P(2J+1)P,+P', (s'), (3.5a)

FIG. 1. Trajectories
for the strongly inter-
acting process, a+9 —&

c+d.

ST.}

a,= 16~-'t't'(1 —t)-' P(2J+1)P. +(s)
a, J'

X[8'J(s')—oE'z( —s')], (3 5b)

where o is the signature and s[P's(s') —oPs(—s')] is a
projection operator for even J if o is even (a=+1) and

for odd J if 0 is odd. This sum can be transformed into
a contour integral in the complex Jplane using Cauchy's
theorem:

Qt o dJ(2J+1)
S,=16~

2(1—t) 2i c sin7r J
XP.+(J)s[J".(") o&'.( —")], (—3 6)

where C is a path encircling the real axis from J=1
to J= ~. Deforming the path, we obtain

t
a,= 16~ P ~~a, ,[2~(o)+1]

2(1—t)

t'background

2 sins-u(o)

where n(o) and E &,&
are the poles and residues, re-

spectively, of p,+(Jt) Similar exp.ressions may be ob-

tained for the other Mandelstam amplitudes. The next
step is to let s' and s approach infinity for fixed t. It is

important to realize that this could not have been done
in Eq. (3.5) or (3.6). These equations are valid only for
z' within one of the ellipses denoted by E;. In fact, the
contribution along the infinite semicircle which has been

dropped in going from Eq. (3.6) to Eq. (3.7) does not
vanish for large s' as it does for s'(1. Equation (3.7),
however, is valid for arbitrarily large s' if the Regge
trajectories are bounded. This follows from recognizing
that the background term is the product of a s "factor
and a Fourier integral of the form

g(Im J')f(—&+i ImJ', t) exp[i ImJ lns], (3.8)

» S. Mandelstam, Ann. Phys. (N. Y.) 21, 302 (1963).

which vanishes as s —+ ~ by the Riemann-Lebesgue
theorem if a path, Rej= —), is chosen such that the
integrand is bounded along it.

We mention in passing, that Eq. (3.6) is really not
correct for t&4 since the Regge poles migrate to the
real axis for t below threshold. The contour C may
therefore enclose some Regge poles as well as the poles
of CSC(s.J). However, these are easily included, and
the form of Eq. (3.7) is not altered as long as all the
Regge poles with Rem& —X are included in the
summation,

IV. REGGE TRAJECTORIES IN CHANNEL II

In nonrelativistic Schrodinger theory, the angular
momentum poles of an eigenamplitude have a simple
physical interpretation; if Rem(E) passes through zero
or a positive integer at an energy E=E', then there
exists a solution to Schrodinger's equation of energy
E' which describes a bound state if E'&0 and a shadow
state" if E'&0. To make this interpretation applicable
to relativistic strong interaction physics, the concept of
a bound state or resonance is defined in the conventional
manner. Figure 1 illustrates this definition; X can be
any composite particle or resonance whose quantum
numbers are such that 8, I, P, 6, C,"S, and charge are
conserved at each vertex. This definition is readily
extended to include reactions in which more than one
type of interaction participates. For example, both
strong and electromagnetic interactions are present in
the photoproduction of pions and Fig. 2 illustrates the
definition used in this case; at the Xbc vertex, 8, I, I',
G, C, S, and charge are conserved as before, but at the

' T. Regge, (see Ref. 2). Although the shadow state, real E and
complex J, is not identical to the resonant states of Breit and
Wigner, real J and complex F, they may be identified for our pur-
poses since they both induce a resonance type behavior into the
physical eigenamplitudes.

"The eigenvalue G of the charge conjugation operator is an
appropriate quantum number only for neutral states.
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T. 8, E.M.)

FIG. 2. Trajectories
for the process, y+u —+

b+c, involving both
strong and electromag-
netic interactions.

not found in a, because in I= j. transitions c, leads
to final states with even G parity (see Appendix).
Although 6 parity is not conserved in general, it is
conserved at the XXX vertex, as shown in Fig. 2.
Furthermore, the pion trajectory is not present in II(1)
and II(2) because of conservation of C. In fact, P, is
identically zero in these reactions for the same reason.
This means that P, t+& and P, &'& must vanish )see
Eqs. (5.11)$.The two odd amplitudes as+ &" and Pe+ &'&

share the same Regge trajectories" but their residues
may differ. For reactions II(1) and II(2), the p, p, and
o& trajectories are allowed. However, reactions II(3) and
II(4) involve pure I= 1 final states so that the o& and P
trajectories (I=0) are forbidden.

If we let n=l in Eq. (2.16) and use Eq. (2.12a),
we obtain

abX vertex only 8, I', C, S and charge need be con-
served. Again, X must be a composite particle or a
resonance. Observe that if we were doing conventional
field theory, X would not be restricted to only these
multiparticle states which resonate.

For notational convenience we label the four charge
configurations of channel II

y+z'-+ p+p,
y+s."~ n+n,
7+~ ~n+7&

p+z+ —+p+n

as II(1), II(2), II(3), and II(4), respectively. Four
of the eigenamplitudes dehned in Sec. II represent
transitions between states of negative parity and the
other four between states of positive parity. In the
Appendix it is shown that the latter are a,+, p,+, a,—,
and Pe . These can be eliminated. from our consideration
for the following reasons. The ABC,"E~E~,"and the
two vacuum trajectories are the only known S=S=0
trajectories of even parity. They are not permitted in
reactions II(1) and II(2) because of conservation of C
and in reactions II(3) and II(4) because of conservation
of charge.

The four remaining eigenamplitudes corresponding
to negative parity transitions are ap+ Pp+& 8, aild P, .
As before, we must have 8=S=0. At present there
are only Ave known odd-parity trajectories with
8=5=0, the p, g,"o&, vr and i& trajectories. The latter
is excluded for the same reasons as were the even parity
trajectories. Since the p, P, and o& trajectories have odd
signature (spin 1), the only trajectory available to a.
and P, is the z trajectory (even signature); and it is

I) A. Abashian, N. E. Booth, and K. M. Croute, Phys. Rev.
Letters 5, 258 (1960); 7, 35 (1961) and Rev. Mod. Phys. 33, 393
{1961)."G. Alexander, O. Dahl, L. Jacobs, G. Kalbfleisch, D. Miller,
et a/. , Phys. Rev. Letters 9, 460 {1962).

"L. Bertanza, V. Brisson, P. L. Connolly, E. L. Hart, I. S.
Mittra et al. , Phys. Rev. Letters 9, 180 (1962).

V. ASYMPTOTIC SYMMETRIES

A. Forward Scattering

In Part A of this section, we investigate the asymp-
totic behavior of the channel I scattering amplitudes
in the forward direction. For unpolarized nucleons and
photons the relation between these amplitudes and the
diGerential cross section is

(d~/dfl) =(V/&)f I
~il'+

I
~sI'

—2z Re%a*&s+ (1—")Cis
I ~s

I

'+-'
I
~41'

+Re(r,*+4+x,*V,+zS,*+4)gj. (5.1)

If we Qx z at one, this reduces to (do/dQ)=(g/k) ~Ai~',
where A i= Fi+Fs, but then

2(s—M')tit'+(t —1)gt (const)

—(t—1)(t—4M') 'ts (5.2)

and the approximation, E '(z') —& z' ', which leads to
the usual Regge equations, cannot be used. Therefore,
we consider fixed t in which case z' - (1/~)s( —t)'&s

as desired, but we now are approaching the forward
direction of channel I only asymptotically:

(t—1)V's s—M'+1 2t
s— -' 1+—.

q(s 3P) 2qgs— (5.3)

+ J. M. Charap and E. J. Squires, Phys. Rev. 127, 1387 (1962).

Gst &(stu)+G4& &(stu) = —PGs& &(uts)+G4& &(uts) j.
Since interchanging s and I in channel II is equivalent to
replacing z' by —z' and since Es'(—z') = (—1)s+'Ps'(z'),
it is evident that as+ & & and ps+ & & must vanish. We
conclude then that the p trajectory occurs in co+ &') and
Pp+'&'&, whereas the o& and P trajectories are found in
a,+ ~+& and pe+ &+'. The p trajectory is not allowed in
as+ ~+& or Ps+ '+& because these transitions lead only to
final states with zero isospin. '
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Therefore, all the terms in Eq. (5.1) must, be includecl
(not just Ai).

For this purpose it is convenient to rewrite Eq. (5.1)
in the form

s(do/dt) - —4~(~A1)' —8t'(s) 'Reft*F4

:116(7r) 's'~'(281(') —M84 "&) (5.5)

where only the largest term has been retained. The
relative magnitude of the 8 's is established by consult-
ing Eqs. (2.12) and (2.15). For example, 83 is propor-
tional to G2 which behaves as s ' for large s since we
do not know of any Regge trajectories which belong to
a (Jt). Similarly, it is seen that the other 8„'s are of the
order s ' for large s. We temporarily ignore the 84 term
of Eq. (5.5) in order to simplify the presentation to
follow. If we let s tend to infinity for fixed t in Eq. (3.7),

281('&(st) - 16m. Q )&(')(no)&(no)s «') ' (5.6a)

and substitute this into Eq. (5.5), we obtain

—2t(s)—'L2 Re(F)*82+P)*74+52*53)+
~
$3+ F4

~
']),
(5.4)

where Eq. (5.3) and (do/dt), „'—4s-{s) '(do/dQ) have
been used. We have seen in Sec. III that the Regge
contributions arising in channel II may be continued by
way of the Mandelstam amplitudes into the physical
region of channel I. This enables us to express each
term of Eq. (5.4) as a function of the p, P, co, and x
Regge poles since the 8„'s are given in terms of the
8„'s by Eqs. (2.13).

Consider the first term of Eq. (5.4), for instance.
Although it is related to the 8„'s in a complicated
(algebraically) manner, considerable simplification re-
sults if we conine our attention to large s. Using the
expansion L(E)+M)(E2+M)g"', „'q, „' 2+s and

Eqs. (2.13a) and (2.13b), we have for fixed t,

(0) ~ rt (t)( sap(t) —1/2 (5.7b)

and A»' & vanishes, i.e., there are no trajectories to con-
tribute to A»& ~; the pion trajectory contributes only
to Fa and S4. Equations (5.7) are changed by the in-
clusion of the 84 term only to the extent that the g's
will be different. In particular, R in Eq. (5.6c) will
be replaced by (4M' —t) 'L(2M~ —t)A~+M(t)'i'nR~'j,
where Jt. ' is the residue of a+ at J=n(t). If the t de-
pendence of E and 8 ' is the same near 3=0, then this
replacement is simply —,'R for small t.

We now consider the high-energy contributions
coming from the other terms of Eq. (5.4). We begin by
using Eq. (2.13) to obtain

Re(5')*%2+Pi*F4+ &2*&~) —2s ReA 3*A2, (5.8a)

I
Z,+ r,l':slA4f, (5.8b)

Re(S,'S,) '- —IsA2I' (5.8c)

where

16~(t—1)A 2
——(s)"'82

A4= (2M) '(Ai+2A3 —4M'A2),

16m-A 3
——(s)"'( 81+M84) . —

The latter is not essentially different from A», and, in
fact, Eqs. (5.7) may be used for Aa if new residue func-
tions are substituted in place of the g's. These new
functions, i& ', should defined by Eq. (5.6c) with It
replaced by ~~(4M' —t) ')2M(t)'~'nR '—tR ). The re-
maining amplitude A2 may be conveniently expressed
as

2A2= —s"'(t—1) '(t—4M') 't'Gi+t 'Ag, (5.9)

where Eq. (2.12b) has been used. Since ps (+» =O and
A 3( ' vanishes for large s, Eq. (5.9) implies that
2tH &+')=3 &+') and

Ai")(st) - p i&(')(no)p(no)s '(') ')' (5.6b) -)1 (t)$,s "& ')' (5.10)

where f(n) is the signature factor 2$(n) sinsn=1 —e '
q(n) is the residue function

gr'~'(2pk')~ ')&('&(n) = —t'~'(t —1) 'nR "(2n+1)2N
&&sin(mn) I'(—n) I'(n+-', ), (5.6c)

E ('&(t) is the residue of P+ "'(Jt) at J=n(t), and I'(x)
is a gamma function. We have omitted the sum over
o., because no physical manifestations of these tra-
jectories have been observed. Furthermore, the sum
over no reduces to at most two terms for each value of
(i) if only the trajectories corresponding to the known
"elementary" particles and resonances are included:

Ai(+) - qq(t)&as~4(') "'+)&„(t)&„s"(" "' (5.7a)

where )&. is given by Eq. (5.6c) with It. replaced by
-',&.(t)Lt(t —4M')$'~'.

We de6ne the isospin amplitudes A„», g„~, &„3, and
A ' to represent the reactions y+p~7r'+p, y+~ —)
')r +Np p+p ~ s' +Op and p+s ~ 'ir +p respectively.
We designate these in general by A„~. It has been
shown in Ref. (6) that these amplitudes are related to
the 3„"'amplitudes as follows:

A.» 2= A„&+~ax„«),

A "=%2(A„(')&A„( )),

(5.11a,)

(5.11b)

where the upper sign in Eq. (5.11a) is for A„' and in
Eq. (5.11b), for A ', etc. In this notation the differential
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cross section is given asymptotically by

s(drr/dt)2 ..—42r{ ~A)2[' —2t~A4'('

—Sh ~A2&~2 —4t ReLA2'(A2")*j}. (5.12)

For k=1 this describes y+p —s2ro+p, etc. From Eqs.
(5.7), (5.10), and (5.11) we see that (drr/dh)2 depends
only on the p and x trajectories for k=3, 4, whereas
for 4 =1, 2 it depends on the p, P, and (0 trajectories. Its
explicit dependence on these trajectories is obtained by
substituting Eq. (5.7), Eq. (5.10), and the corresponding
equations for A2 and A2(+ 0) into Eq. (5.12): B„(+'(su) ; J(,r (+)(S)p uaN(s) —1/2

tudes for channel I )introduced in Eqs. (2.14)j have the
appropriate properties for complex J, write Eqs. (2.14)
as contour integrals, and deform the path to allow the
Regge pole contributions to enter. If we let u tend to
infinity and keep only the largest term, we find that
F~ and uF3 behave as u &{') 't", while 52 and uP4 behave
as u 33'~ 'h", where n~ and n33 are the nucleon and
3,3 resonance trajectories, respectively. When Eqs.
(2.13) are inverted it is found that %2 and $4 are always
multiplied by a factor of u compared to F~ and F~. In
particular, we obtain the following results for fixed s:

/ S ) as+no 2 —
S apjap 2—

~F.0(t)l —
I

~&,.(t)—
&So) Sp

S + —2-

aF,.(t)—
Sp

(5.13b)

where the upper sign is for (d(r/Ck)1 in Eq. (5.13a) and
for (d(r/dt) 2 in Eq. (5.13b), etc. The F(h)'s are defined by
the above equations and are functions of s2, 2), 2) ', $„
and t; for example, F (t) =322rt(t+M')

~
2/ f„~' 'so(

They are a measure of the strength of the "coupling of
the trajectories" at the two vertexes of Fig. 1 and may
be determined empirically.

B. Backward Scattering

The high-energy scattering in the backward direction
is controlled by the Regge trajectories of the same
channel (or alternatively by those in channel III). We
do not present a separate discussion of these trajectories
as was done in Sec. IV for the trajectories of channel II
since the situation is much simpler in this case. The
trajectories in channel I are labeled by the quantum
numbers, 8=1, $=0, I= ~, ~, and P= &1.At present
there are only three such trajectories. If we characterize
them by their erst member, they may be called the
nucleon trajectory, the 3, 3 resonance trajectory, and
the trajectory for the 600-MeV 2rp resonance. They are
discussed in detail by Singh et al."

To introduce these trajectories into our description
of backward scattering, it is necessary to carry out the
same kind of manipulations discussed in part A of this
section. We assume that the even and odd eigenampli-

(S)2(ar 1)

+ Z ~,(t)~
—~, (5.13.)

&so)

(d(1 2(ap 1)
h

S ) 2(as 1)

(
—):2 P,(OH +P.(0I —

I

2, 4
'-"

So ( so)

+T„(+)(s)$ uass(s) —1/2 (5 14a)

B„(0)(su) ~ /V (0)(s) tNuaN (s )—1/2

Bss( ) (Su) /Va (—) (s) )NunN(s) —1/2

(5.14b)

Ba(0)(su) p ea(0)~a(0)(u)(NsaN(a) 1/2 (5
—15)

ht ~op

The combinations of these isospin amplitudes appro-
priate for the description of the four charge states of
channel I are given by Eqs. (5.11), and we define the
amplitudes 8„~ for k=1, 2, 3, 4 in accordance with the
definitions of A„2. Expressing the B„2(su)'s in terms of
the nucleon and 3,3 trajectories, we have

1,2(su) . e (0) {t/V (+)~/2(/ (0)5$NsaN 1/2—
g -+oc

+T (+)t22sa» '/'} (5 16a)
and

B„"(Su):@2{)ca(Q „(0)&e„( QT„( ) jpNSnN '/'

&e„( )T ( )$ sa»—'/'} (5 16b)

where the upper sign is for B„' in Eq. (5.16a) and for
Ba in Eq. (5.16b). For large s and fixed u, s behaves
as —1—2u/s, B2"'(su) tends to —-'B,(') (su),
Eq. (5.1) becomes

(d~)

(du)/, '"" S2rs
ReBP(B2")*+g —

~
B.'~ 2 (5.17)

where162rC(=u, 82rC2 ———u, C, =0, and 642rC4 —~4+u2
Substituting Eqs. (5.16) into Eq (5.17), we. find that
the differential cross sections describing backward scat-

+Ta' '(s)b u """' (5 14c)

where E„("(s)and T„"'(s)are the residue functions for
the nucleon and the 3,3 trajectories, respectively. Since
the 3,3 resonance has I=~, the 8„&" amplitude does
not contain a contribution from the 3,3 trajectory Lsee
Eqs. (2.17)$. We now interchange s and u in Eqs. (5.14)
and use the crossing relations, Eq. (2.16), to obtain
expressions for the Mandelstam amplitudes B (')(su)
evaluated in the physical region of channel I, e.g.,



REGGE POLES AND PHOTOPRODUCTION OF PION'

tering in the four charge con6gurations are given by

d(r) (s) (~83 (] s]~++~8s
+F' () —

I

(fu) y 4 so~ s,l

s )&[aN—1]

+F']v(u) —i, (5.18)
s,&

where F3s'(u) =Fss2(u) and Fss'(u) =Fsa'(u).

C. Discussion

On the basis of the preceding remarks we are now
able to make some observations regarding the high-

energy symmetries exhibited by the scattering ampli-
tudes for the various charge states of channel I. If the
dominance of the p over the x trajectory is assumed for
small t, it is clear that for the forward direction the
asymptotic equality of the differential cross sections for
the photoproduction of pions of positive and negative
charge is predicted. More specifically,

l

—):(
—):» (&)(

—
l

(5 &9]

The value of s at which this effect should be noticed
depends, among other things, on the relative magnitude
of F,(t) and F,(t), and there is some indication that
the coupling of the p to 1VE states is small" (compared
to that of the (o for instance). For the photoproduction
of neutral pions, y+p ~ sr'+p and y+m ~ n'+n, we

have two competing trajectories of comparable magni-

tude, the p and (o, and possibly a third, the (t, and we

expect this to delay (relative to the advent of Eq. (5.19))
the appearance of a corresponding asymptotic sym-
metry for this case unless F,(t) is considerably larger
than F,„(t) Land perhaps Fq, (t)j. However, if one of
these two trajectories is even slightly larger than the
other, it is necessary that the differential cross sections
for these reactions eventually display a symmetry of
this type.

For scattering in the backward direction, the existence
of symmetries such as this depends on the dominance of
the 3,3 trajectory over the nucleon trajectory. If this is
assumed, the following asymptotic equalities are ob-
tained for small u:

(d(r t d(ry

I

—) „ l

—I:r '(~](—)Sp

and

(5.20a)

.- F33' u — . 5.20b

~ S. D. Drell, in Proceedings of the lP6Z International Conference
or( High Er(ergy Physics, CERN (CE-RN, Geneva, 1962), p. 897.

Although the backward scattering in all four charge
states is controlled by the same Regge trajectory, the
asymptotic equality among the differential cross sec-
tions (for backward scattering) is incomplete in that
Faa'(u)WFs3'(u). Contrasting this with the situation
which prevails for forward scattering, we see that the
dominance of the p trajectory in all four charge states
would imply the asymptotic equality in the forward
direction of all four diR'erential cross sections (apart
from a factor of 2).

Equations (5.19) and (5.20) may be regarded as the
generalization of the Pomeranchuk relations to the
photoproduction of pions (in the sense mentioned in
the Introduction). However, this is not the canonical
generalization, which relates to the amplitudes for the
direct and crossed channels. Instead, the individual
charge states are related, and an asymptotic version of
charge independence for forward and backward scatter-
ing is obtained (except possibly for the forward produc-
tion of neutral pions).

In conclusion, we remark that the results obtained in
this paper pertaining to the photoproduction of neutral
pions in the forward direction need no essential modifica-
tion for application to the photoproduction of g mesons.
There is considerable difference however between the
photoproduction of x' and g mesons in the backward
direction. This can be understood as follows: With the
exception of isospin and G parity, the x and g mesons
are described by the same quantum numbers. The same
Regge trajectories will contribute to the forward pro-
duction of g's as to the forward production of m"s since
these trajectories come from channel II, y+rt —+ 1V+1V
or y+sro —+ 1V+1V, and I and G are not conserved at the
vertices involving the g and m', pe and ym'X. On the
other hand, the trajectories which contribute to back-
ward scattering come from the channel, 7+1V~ m +1V
or y+N ~ s]+1V, and I and G are now conserved at the
vertexes containing the g and m'. In particular, this
eliminates the isospin--, trajectories (which are allowed
in backward 7r' production) from the description of
backward g production. This means that the differential
cross sections for the two processes, y+1V —+ 7ra+1V
and y+1V —& rt+1V will display the same energy de-
pendence in the forward direction (for large s and 6xed
t), whereas the differential cross section for sr' production
will have a stronger energy dependence in the backward
direction than the one for backward production of q's
(for large s and fixed u).
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APPENDIX

The eigenamplitudes as+ and Ps+ represent transi-
tions between initial and 6nal states of angular mo-
mentum J.The 6nal states are also eigenstatcs of G, I',
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and C (the latter only for states of zero charge). Their
eigenvalues are obtained below.

The eigenamplitudes are defined in Ref. 5 to be ap+ Pp+

II(k)a II(j)b II(k)a II(j)b
Pe

II(k)a II (j)b

TABLE I. Odd-parity transition amplitudes.

(2'')'/'J(j+1)az+= Tz(+, —,1)~Tz(—,+, 1),
(2pk )i/2LJ(j+1)71/2P~+ T~(+ + 1)+T~( 1)

where

I
G
C

Regge
traj.

0 1 1-1 1 1—1 X

0 1—1 1—1 —1

1
1
X

0 1 1
1 —1 —1
1 1 X

T,P(N), x(N), x(p)7= (),(N),x(N),j( l
T

( l J,qp), x(~)&,

) (A) is the helicity of particles, and we write Tz(+, +,1)
rather than T~(—,', ~i, 1), etc. We now express the nucleon,
antinucleon states of definite helicity

l
J3EX(N)X(N)& in

terms of the states
l
JMI-S&, where I. is the relative

orbital momenta and S is the total spin. Using Eq. (B5)
of Ref. 9, we 6nd that

v2( j,u, a, a) j i/2

=+
( JPI,J,O&+( (J, M, J—1, 1)

(2J+1

p j+1)'/'
(j, ~, j+1,»,2J+1)

J g I/t2

2J+1

The index k may be 1 or 2 in the symbol II(k).
b The index j may be 3 or 4 in the symbol II(j).

We make the definitions
l
a~+)= ( JAE+ )& (

J—3f +&—
and (Pq+) =

l
JJ///I++)&

l
J3f——). Since I' = (—1) +',

C=(—1)~ if applicable, and G=(—1) + + for NN
states, it is clear that these final states,

l
a~+) and (PJ+),

are eigenstates of I' and G with eigenvalues as follows:

&I~ '&=+(—1)'I~ '),
&(Pz+&= +(—1)'(P~+&,

G(~,~&= ~( 1)~—+'(~,+&,

G
(
P~+&= (—1)'+'(Ps+&.

For the neutral reactions, II(1) and II(2), they are
also eigenstates of C:

These results are summarized in Table I for the tran-
sition amplitudes leading to final states with odd parity.


