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Polarization Conductivity in p-Type Germanium*t
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The ac conductivity 0-„of p-type Ge was measured over the frequency range of 10' to 10' cps and in the
impurity conduction temperature range of 1.2 to 4.2'K. Doping by transmutation insured a constant donor to
acceptor concentration ratio of 0.4. The acceptor concentration ranged from 3X10" to 2&(10"jcc.The
observed frequency and concentration dependence of ap, l=o-„—gd, can be understood on the basis of the
polarization model of Pollak and Geballe. The observed temperature dependence can be understood by
considering the interaction between ionized donors and electrons. From the absolute magnitude of O.p, l, the
Bohr radius of the acceptor wave function is found to be about 74 A, in good agreement with that found
from dc measurements.

I. INTRODUCTION

MPURITY conduction has been studied extensively'
~ - since its discovery in SiC in2 1946 and in Ge in
1950. At low-impurity concentrations this conduction
process results from charge exchange between neighbor-
ing majority impurity sites due to a small overlap of
the localized wave functions of the individual majority
impurity centers. Since charge is transferred only from
occupied to unoccupied majority centers, charge
exchange requires compensating minority impurities.
The fractional number of majority impurities which
are ionized at T=O K is the compensation ratio E; it
is the ratio of minority to majority impurity concentra-
tions. The conductivity due to this process is very
small and can be observed only at low temperatures
when there are a negligible number of carriers in the
conduction and valence bands.

Consider, in particular, a compensated p-type semi-
conductor. Impurities are ionized as the donor electrons
go into the lower lying acceptor states. The charged
impurities set up random fields in the crystal which
cause local fluctuations in the energy levels of the
acceptors. These energy differences impede the motion
of the electrons as they drift through the crystal from
acceptor to acceptor under an applied dc electric field.
This gives rise to the observed temperature dependence
of impurity conduction. 4

The ease with which an electron tunnels between two
acceptors depends on the distance as well as the energy
separating them. Both the spatial and energy separation
of adjacent acceptors in the path of the electron vary
from point to point in the crystal because the impurities
occupy random lattice sites. The statistics of following
an electron through such a crystal is very complicated.
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Hence, dc measurements offer no direct measure of
the tunneling process between individual acceptor pairs.

However, even if an electron is confined to two
acceptors and cannot support a dc current, it will
contribute to an ac current. The average fraction of
time it spends on each acceptor will depend on the energy
difference of the two states. An applied ac field will
alter this energy difference and produce a net polariza-
tion which will lag behind the field because the tunneling
(transition) rates are finite. In general, the part of the
polarization which is out of phase with the field is
measured as a dielectric loss or an ac conductivity.
We will call it the polarization conductivity op
Similarly, the in-phase part of the polarization makes a
contribution to the dielectric constant which we will
call the polarization dielectric constant ep, i.

Pollak and Geballe' (PG) observed in e-type silicon
that the ac conductivity a. , is larger than the dc
conductivity O-d, . They attributed this difference to the
polarization conductivity. Thus,

(Tpo1 = 0'ac &dc ~

(In their notation ~„=o.—op, .) Similarly,

|=pol &ac &Ge ~

PG assumed that the only contribution to the polariza-
tion conductivity comes from pairs; i.e., from electrons
which are confined to only two acceptors. They con-
structed a model which accounts well for the frequency
dependence of a-p, i, but not for the temperature depend-
ence. This made it difficult to compare the concentra-
tion dependence and absolute magnitude of opoi with
theory.

The measurements reported here were made to test
the applicability of the model of PG to germanium,
Germanium has the advantage that it can be doped. by
thermal neutron irradiation to produce p-type samples. '
The compensation ratio E, which is very important in
impurity conduction, ' is K=0.4 for all samples so
produced. Another advantage of doping by irradiation

s M. Pollak and T. H. Geballe, Phys. Rev. 122, 1742 (1961).
J. W. Cleland, K. Lark-Horovitz, and J. C. Pigg, Phys. Rev.

78, 814 (1950).' H. Fritzsche and M. Cuevas, Phys. Rev. 119, 1238 (1960).
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is the guarantee that the impurities will be located at
random. This method of doping is less useful in silicon
because of the difficulty of annealing out the radiation
damage.

IO
X 4
0 I,5 IO cps

50 cps

II. EXPERIMENTAL PROCEDURE

The polarization conductivity op i 0 0$ can be
meaningfully measured only when oz,/on, i(1 (i.e.,
oz, (2o„).This fact limits the temperature, frequency,
and impurity concentration range available for measure-
ment. In Fig. 1, o.q,/op, i is plotted against concentration
for 10' and 10' cps at 1.5 and 4'K. For 6xed frequency,
this ratio increases rapidly with concentration and
temperature because 0.&, increases more rapidly than
0 p i with these quantities. The dc conductivity o-d,

increases even more rapidly with temperature above
about O'K as one leaves the impurity conduction range
and holes are ionized into the valence band (in p-type
germanium). For fixed temperature and impurity
concentration, oq,/on, i decreases rapidly with increasing
angular frequency co, since, as found also in silicon, '
0 pod ~ ~ in germanium.

The measurements were made in decade steps from
10' to 10' cps, and between 1.2 and 4.2'K. This re-
stricted the acceptor concentration to less than 10"/cc.
In silicon these measurements can be made up to about
20'K because of the higher ionization energies involved.

In general, fT„ is very small so it is feasible to treat
the sample as a dielectric and calculate 0-„ from the
dielectric loss. Thus, the samples were cut into disks
and placed between the electrodes of a capacitance cell
as shown in Fig. 2. The dielectric loss was measured with
a capacitance bridge. At the same time, the dc conduc-
tivity was measured with a vibrating reed electrometer.

The temperature was measured with 0.1 % Allen
Bradley carbon resistor which was calibrated against
the vapor pressure of helium using a vapor pressure
bulb.

A. Bridge and Sample Holder
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tions, impedances were formed from series and parallel
combinations of known carbon resistors and high
quality capacitors. The measured conductance agreed
with the calculated value to within 2% over the range
of the bridge in which most of the actual sample
measurements were made.

A sensitive detector for the bridge was required as in
some cases the onset of the nonohmic range of the
sample was as low as 1 V/cm. This should be contrasted
with silicon which can tolerate fields of hundreds of
V/cm. The detector consisted of two amplifiers, an
adjustable filter, and an oscilloscope. This proved
adequate in most cases to realize the full accuracy of
the bridge.

The sample holder sketched in Fig. 2 is a capacitance
cell. It is designed to exclude liquid helium in order to
avoid a change in the capacitance due to the changing

The ac Ineasurements were made with a precision
Schering capacitance bridge. ' The bridge was used in
the substitution mode, which means that readings are
taken with the sample once connected and once discon-
nected at the bridge terminals. In the direct method,
where measurements are made only with the sample
connected, the values of capacitance and loss depend on
all circuit elements in the bridge and, therefore, are
subject to all of their errors. But in the substitution
method, the errors in those circuit elements which are
unchanged are largely eliminated. This is especially
important when the sample has a low loss; i.e., low
conductivity.

The quantities O„and ep, i were calculated from the
exact equations of bridge balance. ' To test these equa-

The General Radio 716-C.' See Appendix A.

Fxo. 2. Sample
holder. H: hole to
permit evacuation of
cell. B: brass spacer
and radiation shield.
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TAsLE I. Sample characteristics.

Sample

A
8
C
D
K

Hall coefBcient
(cm' C ')

300'K 77'K

38 400 32 200
29 900 24 400
16 700 13 300
12 800 10 900
5 840 4 890

E~—&u
(&(10"cm ') (X10"cm ')

1.94
2.56
4. /
5.7

12.8

3.2
4.3
7.8
9.5

21.4

helium level and Quctuations due to the boiling of the
liquid. About 1-cm Hg of helium at room temperature
was admitted to the cell as a heat exchange gas.

To minimize the capacitance and conductance in
parallel with the sample, we used rigid coaxial leads
with an air (or He gas) dielectric and Teflon spacers for
the center lead.

B. Samples

Pure single crystals, whose top and bottom room-
temperature resistivities exceeded 50 and 7 Q-cm,
respectively, were irradiated by thermal neutrons" for
different lengths of time. Following neturon absorption,
different isotopes of germanium decay into gallium,
arsenic, and selenium, respectively. Gallium pre-
dominates and p-type Ge results after the decay is
complete. The crystals were annealed about eight
months after irradiation. "

The Hall coefficient was measured at room tempera-
ture and 77'K and the lower value was used to calculate
Sg—SD. Sg and XD are the acceptor and donor
concentrations, respectively. Since each selenium donor
is doubly ionized and compensates two acceptors, it is
counted here as two donors. E~—E~ may be under-
estimated by about 10% because the magnetic field
used (about 7000 G) is not in the high-field limit. 7 The
results are given in Table I. The compensation ratio E
may not be exactly the same for all samples due to
impurities in the samples before irradiation. This is
most serious for sample A which received the smallest
radiation dose. From the Hall coefficient of the starting
material, we estimate that E deviates from 0.4 by less
than 3% for this sample.

The samples were cut into discs about 2-mm thick
and 1~ cm in diameter. It was necessary to etch them
to eliminate edge conduction which otherwise would
short out the sample. The Rat surfaces were lapped or
sandblasted and then electroplated with gold or
rhodium. A lower impedance contact was obtained when
the surface was sandblasted rather than lapped before
electroplating, but it made little difference whether
gold or rhodium was used. Figure 4 illustrates the effect
of surface treatment on o~,i for sample B.The discrep-

' They were irradiated in the CP-5 reactor of the Argonne
National Laboratory.

"See Ref. 7 for details about the irradiation and annealing
procedures,

ancies for different surface treatments and for different
thicknesses are of the order of 10%.For samples 2-mm
thick, both the ac and dc contact impedances are
estimated to be of the order of 10% of the bulk ac and
dc impedances, respectively.

To test for edge conduction and other spurious
effects, measurements were made on a pure specimen
of germanium whose room temperature resistivity is
54 0-cm. At O'K the conductance at each frequency was
at least an order of magnitude below that of sample A,
the least conductive of our samples, over the measured
temperature range.

In general, the polarization conductivity can be
considered to be complex. Then o.~,i is the real part and
G06p6p i is the imaginary part, where ep is the permittivity
of space. (mks units are used throughout. ) These
quantities are plotted in Fig. 3 for samples A and C at
1.2 and O'K. As found in silicon, o.

p ] of germanium
follows a power law

where s=0.7.
Oppi cc M S (3)

0 p 1 increases slightly more rapidly with concentration than
cr„,~~. The latter is plotted in Fig. 11.

C. Effect of Light

Light can appreciably increase the conductivity of
germanium in the impurity conduction region by
exciting carriers into the valence and conduction bands.
Even room temperature radiation can cause significant
errors because the ionization energy of the acceptors is
only about 0.01 eV. Great care was taken to protect
the sample from light, especially from thermal radiation
which originates at the top of the cryostat and goes
down the coaxial leads.

Despite these precautions, photoconductivity was
detected in sample A by comparing dc measurements
taken in the ac apparatus with those taken in a "light-
tight" sample holder. (The light-tight apparatus is not
useful for ac measurements because of the large capac-
itance caused by the extra shielding. )

However, since valence band conduction should be
frequency-independent except at very high frequencies,
it is clear that there can be little error from light in o.~,i
when o &&o.g„since both ac and dc measurements were
performed in the same ac apparatus. This condition
applies to sample A over our frequency and temperature
range. To estimate the effect of light on a~, i for the
other samples, we note that the photoconductivity
should be proportional to S~—ED, the concentration
of neutral acceptors. On the other hand, we find that
oo, i is approximately proportional to iVD(Xg 1VD)."—
Therefore, o»i/oi;oi„~ Xn is least for sample A which
has the smallest donor concentration. Hence, we
conclude that light has caused no significant error in
o poi

III. RESULTS
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o.p, i for the different samples. This dependence is
stronger at higher impurity concentrations and at
lower frequencies.

IV. THEORY

A. The Model
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The real and imaginary parts of the complex polariza-
tion conductivity are not independent of each other
but are related through the Kramers-Kronig relations.
These imply, for the power law dependence of Eq. (3),"

~~o~p.i= 0,.~ tan-, ms.1

FIG. 3. The real and imaginary parts of the measured complex
polarization conductivity, 0 p $ and coeoep, &, respectively, are
plotted against frequency at 1.2 and 4 K for samples A and C.
The dashed lines are the theoretical curves for GlE'Otp ] as calculated
from o»q using Eq. (4).

Consider an electron which is confined to a pair of
acceptors and tunnels between them at a certain
statistical rate. An applied dc electric field will polarize
the pair in a time which is of the order of the tunneling
time. The time derivative of this polarization is meas-
ured as a current. This is analogous to the response of
a series RC circuit to a dc voltage. Here the current is
given by the time derivative of the charge on the
condenser. The real part of the ac conductance of the
RC circuit is oo'rcj(1+aPr'), where r is the RC time
constant. The conductance increases quadratically with
frequency when car((1 and saturates when ~7&)1.
The conductivity due to many noninteracting acceptor
pairs will be a sum of terms of this form, each term
with the v value of the pair it respresents. Each term
of the sum increases monotonically with frequency;
hence, the total conductivity must increase mono-

tonically with frequency.
The basic assumption of the pair model of PG is that

the polarization conductivity is due to electrons that
tunnel back and forth between two acceptors and not
among larger groups of acceptors. This is valid if each
electron is localized on a pair of acceptors for a time
long compared with the tunneling time between the
two acceptors. The validity of this assumption of
localization is discussed in Part C.

Since an electron can tunnel only from an ionized
acceptor to a neutral one, a pair must be singly ionized
to contribute to the polarization conductivity.

The applicability of Eqs. (3) and (4) is illustrated in
Fig. 3. The dashed lines are the theoretical curves of
coeoeo, ~ as calculated from Eq. (4) and the measured
values of o„~ (actually the solid lines through them).
The agreement between the theoretical curves of
coGOEp ] and the measured points is good. It demonstrates
the validity of the measurements. "Since a-p, & and 6p

are not independent quantities, the discussion will be
conhned to o.„i.

Figure 4 illustrates the temperature dependence of

'3 For our system, the Kramers-Kronig relations may be
epeoo[= —(2/s )J'p 0'po](y) (cps—y ) 'dy, where the principle part
of the integral is understood. /See, for example, J. R. Macdonald
and M. K. Brachman, Rev. Mod. Phys. 28, 393 (1956),Eq. (30').g
This reduces to Eq. (4) when o. qo(co) ~Io'. )Bierens de Haan,
Nouvelles Tables D'INsegrales Defirsies (G. E. Stechert and
Company, New York, 1939), p. 43, Table 17, Eq. (11).g

'4 The Kramers-Kronig relations are used to determine Co, the
capacitance in parallel with the system of acceptor pairs (see
Ref. 5 and Appendix A in the present paper). This does not
materially weaken the assertion that Eq. (4) is obeyed since C0
is the only adjustable parameter and it is determined only at one
temperature (1.2'K).

FiG. 4. For the
various samples, 0.pol
is plotted against T
at 10' and 10 cps.
Three different meas-
urements are shown
on two different slices
from sample B to
illustrate the eftect
of surface treatment:
~—1.1 mm thick,
rhodium plated on a
sandblasted surface.
0—1.9 mm thick,
rhodium plated on a
sandblasted surface.
X—1 9 mm thick,
gold plated on a
lapped surface. ]
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j(t)=11 (5)

We now outline the model of PG using the terminol-

ogy of a p-type semiconductor.
Consider a cube of unit volume containing one

singly ionized acceptor pair. Denote the acceptors by
i and 2. I et 6 and r be the energy and distance sepa-
rating them, and let 8 be the angle between the line joining
the acceptors and the applied field. (0 and r will be re-
ferred to as the energy and size of the pair, respectively. )

The current in the Geld direction is given by

tant). The local conductivity of a pair is proportional
to its polarization divided by the local field acting on it.
Also, on the average, the local field is the same for all
active pairs I Eqs. (26) and (27)). Hence, the local
conductivity is additive.

The present calculation gives the local conductivity
and this will be designated with the superscript L,.
The calculation of the local. conductivity in terms of the
measured conductivity is discussed in Part B.

Then, after integrating Eq. (12) over 0, the local
conductivity is given by

where (taking acceptor 2 as the origin)

p=er cosofi (6) 0 pol
L

12kT'

rsdp(r, d,)
(13)

(ter+ 1/air) cosh2 (6/2k T)
The probability fi that the electron is on acceptor 1
is given by the solution of

fi+f2=1,
fi= lfrsif2 —~isfi)

(7)

where 8'~2 and S'~~ are the transition rates.
The response of this system to a dc electric held 8

which is turned on at t=0 is

where
(9)

(10)

is the relaxation time of the pair.
The difference, fi(0) —fi(~), is determined from

Boltzmann statistics from 6 and the change in 6 due to
8. In the limit of small 8

j(cp) esr2 cos'8
Re

8(tp) 4kT cosh (6/2kT) 1+@Br
(12)

where j(ei) and 8(&p) are the Fourier transforms of j(t)
and 8, respectively.

In generalizing to the physical situation of many pairs
in the unit volume, PG assume that there is no interac-
tion between pairs; i.e., that the 6eld acting on a pair
is the applied field, unaffected by the field produced by
the polarization of the other active (singly ionized)
pairs. Then the total conductivity is a sum of contribu-
tions from all active pairs. This assumption is valid in
Si where the conductivity and, hence, the polarization
in the crystal is very small. Even in Ge, where the
assumption is not valid, the local conductivity (the
conductivity in terms of the local field) is additive.
This follows from the fact that the total polarization
of the crystal must be a sum of the polarizations of
each of the pairs (assuming that only pairs are impor-

er cos0
fi(o) —fi(~)=

4kT cosh2 (6/2kT)

The current j(t) follows from Eqs. (5), (6), (9), and
(11).The frequency response of the pair is given by

where dp(r, h) gives the density of singly ionized
acceptor pairs of size r and energy A.

Since dp(r, A) is unknown, the integral cannot be
evaluated in the general case. Therefore, PG just
considered the high-temperature case and reduced the
double integral over r and 6 to a single integral over r
which can be evaluated. This gives the correct fre-
quency dependence of o-p, &L but not the correct tempera-
ture dependence over the accessible temperature range.
Unfortunately, valence band conduction (conduction
band conduction in their case) becomes important
before the high-temperature region is reached. However,
to a good approximation, the double integral can be
replaced by two single integrals, giving us some insight
into the temperature dependence.

We write dp(r, h)=H(h, r)dh N(r)dr, where N(r)
gives the concentration of singly ionized acceptor pairs
of size r, and H(h, r) gives the probability that the
energy of such a pair is A.

As will be seen shortly, v is an exponential function of
r but is independent of t) to first order in 6/2kT. This
strong dependence on r causes the term (cur+1/e&r) '
in the integrand of Eq. (13) to behave as a 5 function.
Equation (13) becomes

where

8 GO
" r'N(r)dr

&pot = ~(&&rmax)
12k' p &a&r+1/ter

(14)

Be(T,r, ) = H(h, r,„)cosh—2(6/2kT)dh, (15)

"Because of the small but finj.te inQuence of its numerator, the
r integrand (Eq. 14) is maximum when ~r)1 rather than air 1

(Fig. 6).

r,„being defined as the value of r which maximizes
the r integrand.

Because of the peaked nature of the r integrand
(Fig. 6), the major contribution to ap, in comes from
pairs whose size is near r, . For these pairs mr=i."
Since ~ increases exponentially with r, r, decreases
slowly with frequency (Fig. 7). (This is to be expected
since reducing the distance between two acceptors will
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function of its argument (Fig. 5) and because b is a weak
function of 11/2kT. The extent of the effect depends on
the form of H(h, r, ); it is less than 3% for the cases
considered in Sec. V.A. Hence, we use the simpler
procedure of dedning 6 at 6=0.

B. Local Field

To compare theory with experiment, we must be
able to calculate O-p, &~ from measurable quantities.
We have

(25)

where the asterisk signifies a complex quantity. It can
be shown that, when the electrons are localized, '7

(26)
where

TmLE II. Comparison of Rz (the average distance between
acceptors) and r,„at T= 1.5'K.

cd/2z'

(cps)

102
10'
104
105

&max�/o

13.8
12.6
11.3
10.1

~max

1030
940
840
750

Sample

A
3
C
D

EA= (-', ~1VA) '"
(7l.)
900
810
670
620
470

0 pol 0polL ( &pol Spol (&pol trpol

I
1+ + I (30)

(Tgg 3eoe k ITS@ 3Mepeoe

Putting Eq. (29) into Eq. (28) and taking the real
parts of both sides, we find

n = 1+epol~/3eoe ~

g/
Oppi =Oppi /0!

(27)

(28)

The ratio o „l/o„in varies from 1.0 to 1.5 for the present
data. Ilt increases with impurity concentration and
decreases with frequency.

This form for n~ can be made plausible. From the
theory of dielectrics it is known that the field at an
atomic center is larger than the applied field by the
factor n*=1+-', (e„*—e,), where e„ is the dielectric
constant of the material and t., is that of space, i.e.,
unity. Consider a crystal of Ge in which are two
acceptors some 1000 A apart. (This is a typical value
of r, .) Surely they will see the applied field and not the
local held at the center of a germanium atom. Thus, the
dielectric constant of pure Ge does not directly affect
the "local" field at the center of an active pa, ir. To
account for this fact in the expression for n~, e, must be
taken as the dielectric constant of pure Ge, eo,.

The dielectric constnat of germanium is important,
however, in that it reduces the interaction between
active pairs. The term s (e„*—eo,) represents this
interaction and thus must be reduced by the factor
eo, . Hence, Eq. (27).

An alteration in Eq. (27) is required because the
electrons are not completely localized as has been
assumed. In fact, when the electrons are completely
free, the local and applied fields are equal and o.*=i.
A measure of the localization is op, l/o„: When op, l/o;,
=1, 0-~, ——0 a,nd the electrons are completely localized;
when op, l/o„=0, oq, )&op, l and the electrons are free.
Exactly how n* should depend on o„i/a„ is not known;
the simplest form which is correct in the limiting cases
of o.„l/o.,= 0 and 1 is

n*=1+(o,.l/o. .) (sp.le/3so. ) . (29)

'7 This results from the Lorentz field of the charge on the surface
of a uniformly polarized sphere centered about the pair under
consideration. It is assumed that the field produced by all of the
other dipoles within the sphere is zero at the central dipole. This
is true on the average under the assumptions that (1) the dipoles
are points; (2) they are located at random; (3) the polarization
of any other dipole in the sphere is independent of its location
relative to the central dipole. The dipoles may differ in strength
and orientation.

C. Localization Assumptions

There are three assumptions of "localization. " (1)The
acceptor concentration must be sufficiently low that the
acceptor states are localized and interact only weakly
with each other. This requires R~/a) 5, where R~ is the
average distance between acceptors. This condition
applies to all of the samples reported here. (R~ is
tabulated in Table II. a= 74 A.)

(2) The pair model assumes that the ground states
of the acceptors of a, pair are localized and interact only
weakly with each other. This holds when the overlap
of the two wave functions is small, i.e., when r/a)5.
Since for 6xed frequency, only those pairs of sizer, are important, this requirement becomes r, /a) 5.
Table II demonstrates that this condition applies to
our frequency range.

(3) The pair model requires an electron to be confined
to an active pair for times long compared to the tunnel-
ing time. This is the case when the distance from the
pair to the nearest (third) acceptor is larger than the size
of the pair because the tunneling rate decreases exponen-
tially with distance. Since for fixed frequency only those
pairs of size r, are important, the electrons can be
considered localized on pairs when r,. (Eg. This
situation is borderline (Table II) and deviations from
the pair model are to be expected. However, as the
temperature is lowered, the electrons become less
mobile. Hence, the validity of the pair model should
improve with decreasing temperature.

Henceforth, the question of localization will refer
only to the third, most restrictive, assumption. )The
three assumptions are not independent of each other;
if (2) and (3) apply, (1) must also apply. j

The pair model breaks down when the electrons are
no longer localized on acceptor pairs and multiple-
tunneling processes become important. In the first
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I I I Istage of this breakdown, the electrons will still be
con6ned to groups of three or more acceptors. Consider
a group of acceptors which is polarized by a dc field in a
time r. (This is an oversimplification because a single
relaxation time cannot adequately describe the response
of a group of more than two acceptors to an applied
field. ) The net dipole moment of this group will, in

general, be larger than that of a pair with the same v,
since a larger dipole moment can be produced in a
given time by multiple transitions than by a single
transition. Since, for fixed 7., the contribution to the ac
conductivity of a pair (or other polar system) is
proportional to the square of the dipole moment LEq.
(12)],we expect groups to make a larger contribution to
the ac conductivity than the pairs they replace.

Since the importance of groups increases with
concentration (for fixed frequency and temperature),
we would expect the concentration dependence of
0-~,&~ to exceed that predicted by the pair model.
Similarly, the frequency dependence s $Eq. (3)] should
be smaller than the theoretical, and should decrease
with concentration. Because multiple transitions be-
come more frequent as T is increased from O'K, s
should decrease with temperature. These deviations
from the pair model are observed experimentally
(Sec. V).

1.5

FIG. 8. Plot of
)(H (A,r) versus 6/6p
with p =r/Rg as a
parameter. See text for
explanation.
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which ionized it. These conditions are best met at low
T and E, and they cannot be expected to yield quanti-
tative agreement with our data.

The results of this calculation are plotted in Fig. 8.
The relevant parameters are

(33)y= r/Rg,
V. COMPARISON VfITH EXPERIMENT

(34)as e'r/eo. Rg'——,
A. Temyerature Dependence and Absolute

Magnitude where R~= (-s7rpfg) '~ is the average distance between
acceptors.

The product Tg'pp& is plotted in Fig. 9 for 10' cps.
Including the factor T emphasizes the role of K, which
is largely cancelled by the T ' term in Eq. (32). [The
temperature dependence of I(bee/T) is small. ) The
Bohr radius a was adjusted so that the theoretical
curve for sample A agreed with experiment at 1.5'K.
This yields

The absolute magnitude of the polarization conduc-
tivity varies as the fifth power of the Bohr radius a
LEq. (21)j of the acceptor wave function, and is a
relatively insensitive function of the other parameters.
Unfortunately, the value of a is in doubt. Kohn and
Schecter" have calculated a value of 43 A by a varia-
tional method. Fritzsche and Cuevas, in fitting their
data on dc measurements with Miller and Abrahams'
theory, "obtained a= 90 A. This last value is somewhat
uncertain due to very complicated averaging procedures
required in the dc theory. Miller" then made further
variational calculations which con6rmed Fritzsche and
Cuevas' result. Because of the uncertainty in a, it will
be treated as a paraIneter.

The temperature dependence of the polarization
conductivity is given by LEq. (21)$

a=74.5 A. (35)

Sample A is chosen as the standard since, as it has the

IO

0 cpaI

E

AX
bI-

IO

C

Fxo. 9. Tempera-
ture dependence of
T 0 pp& for samples
A, 8, and C. The
theoretical curves
are based on H(ri, r)
from Fig. 8 and on
Eris. (21) and (35).

& 'I(& /T)5('-(T', ~-, ). (32)

Unfortunately, R(T,r, ) cannot be evaluated as
II(&,r, -) is unknown. H (h, ,r,„) is calculated in
Appendix I) on the assumptions": (1) The nearest
acceptor to each donor is ionized by that donor and
forms one member of an active (singly ionized) pair;
(2) The energy 6 of the pair is caused only by the donor

A

"W. Kohn and D. Schechter, Phys. Rev. 99, 1903 (1955).
'9 A. Miller (unpublished).
so This approach was suggested by M. Pollak (to be published).

io
0

I I I

2
Temperature ('K)

POLAR I ZAT I ON CON D U CT I V I T Y I N p —T YP E Ge
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lowest impurity concentration, the errors from non-
localization should be the least for it (Sec. IV.C).

The agreement with experiment is good for samples
A and 8, but is poor for sample C, especially at the
higher temperatures. Effects of nonlocalization (Sec.
IV.C) are to be expected for sample C (see Table II).
As anticipated in Sec. IV.C, these effects seem to be
more pronounced at the higher temperatures where the
potential barriers are unable to confine the electrons.
Of course, deviations are still expected at higher
temperatures since the assumptions on which H(h, r,„)
was calculated cease to apply. More convincing evidence
of nonlocalization effects is given in parts 8 and C of
this section.

The advantage in determining a in this way is that
the effect of errors or uncertainties in other quantities
is small because a appears as a'. The least certain
quantities, Z& and P, occur only in definition of b LEq.
(19)). This is fortunate because b occurs only in the
term I(b~/T) which is a slowly varying function of its
argument (Fig. 5). The deformation potential Ei is
uncertain to a factor of 2 since its weighted average
over directions is unknown. The value of P LEq. (17))
is uncertain and very difIicult to calculate on theoretical
grounds, but Miller' estimates it to be of the order of
—,'. An underestimation of b by a factor of 10 would lead
to an underestimation of a by only about 7% by this
procedure.

There is further uncertainty in this value of a since
the frequency dependence of 0~,&~ is not exactly as
predicted. The measurements at 10' cps give a value of
72 A for a.

B. Frequency Dependence

The frequency dependence of 0.~,&~ is given by
rE' (21))

a,.iz ~o)I(bu/T)3e(T, r .). (36)

The observed frequency dependence of 0.~,&~ obeys a
power law sufficiently closely to justify writing Eq. (36)
as

(37)
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FIG. 10. Temperature
dependence of s for sampj. es
A, B, C, andD.

In the high-temperature limit, s2=0. This follows

from the normalization of H(h, r,x):

H(h, r, )dh= l. (41)

In the general case, K(T,r, ) is very complicated and

s2 has not been evaluated. However, we expect s2 to be

positive and to increase with decreasing temperature.
Decreasing the distance between two acceptors will,

on the average, decrease the energy difference between

them. Thus, by decreasing r,„,increasing the frequency
shifts H toward lower 6 (see Fig. 8). Hence, because of
the cosh' term in Eq. (15), K increases with frequency.
Therefore s»0. Lowering the temperature increases
the effect of the cosh' term, and hence, increases s2.

Similarly, increasing the impurity concentration will,

on the average, increase the energy of a pair of given

r,„.Thus, s2 increases with concentration.
The average value of s over the frequency range is

plotted in Fig. 10. s=0.75 in excellent qualitative
agreement with the theory. Also, as expected from the
discussion of s~, s decreases with temperature.

Quantitatively, s should never be below about 0.8.
Yet, it is seen to be about 0.7 at O'K. Also, contrary to
the discussion of s2, s decreases with concentration.
These discrepancies are probably due to the nonlocaliza-
tion of electrons (Sec. IV.C).

Small discrepancies may also result from the form of
the local field correction LEq. (29)) being incorrect.

where
S=Sr+St,

d 1nLI(bar/T))
si=1+

d inn)

s2 —— InX(T,r, .) .
d in@)

(38)

(40)

~ ND(N~ ND)3C (T,r,„).—

In the limit of high T, this reduces to LEq. (41))

(42)

C. Concentration Dependence

The theoretical concentration dependence of the
polarization conductivity is )Eq. (21))

Figure 7 shows si plotted against ~b/T. It is independ-
ent of concentration. For our frequency range, s&=0.8.
It is a slowly varying function of its argument, increas-
ing by about 0.01 with T over the measured temperature
range and decreasing by about 0.02 as the frequency
increases a decade. This variation is less than the
experimental errors.

O,.iz ~N~(Nz Nn) . —(43)

As the temperature is lowered, the concentration
dependence is expected to fall. The argument is similar
to the discussion of s2 in part B.Increasing the impurity
concentration will, on the average, increase the energy
of a pair of given r „. This causes 3C(T,r „) to
decrease with concentration.
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The temperature is "high" when it is higher than
To=do/2k. To—6'K for sample A at 10' cps, and is
higher for the other samples. The high-temperature
limit is never reached. Hence, we expect the concentra-
tion dependence to increase with temperature but to
always be less than quadratic.

With frequency and temperature as parameters, the
product To~, ~ is plotted against ED($~ ED—) in
Fig. 11. (The factor T is included to separate curves of
different temperatures. ) The solid lines denote the
quadratic dependence on concentration, and the
dashed lines are drawn to connect points of one temper-
ature where necessary for clarity. As expected, the
concentration dependence increases with T. However,
contrary to the theory, the experimental data rises
slightly more rapidly than quadratic with concentra-
tion. This is particularly noticeable at O'K between
samples B and D. This suggests that the electrons are
not completely localized (Sec. IV.C); i.e., that there are
interactions of higher order than pairs which are
important.

VI. SUMMARY AND CONCLUSIONS

The ac conductivity of low-concentration p-type Ge
samples was measured in the frequency range of 10' to
10' cps and in the temperature range of 1.2 to 4.2'K.
This is the impurity-conduction-temperature range
where charge is transported by tunneling from acceptor
to acceptor. The frequency and concentration depend-
ence of the polarization conductivity Op ] 0 od,
can be understood on the basis of the pair polarization
model of PG, ' but deviations are observed suggesting
that interactions of higher order than pairs are impor-
tant in the polarization process. Allowance was made for
the fact that a pair responds to the local and not the
applied electric field. It was shown that the integration
over all pairs can be replaced by the product of separate

integrals over the energy 6 and size r of a pair, respec-
tively. A calculation of the probability H(h, r) that a
singly ionized pair of size r will have an energy 0
accounts qualitatively for the observed temperature
dependence of the polarization conductivity. From the
absolute magnitude of the polarization conductivity,
the Bohr radius of the acceptor wave function was
estimated to be about 74 A.

The selectivity to pair size may make ac measure-
ments useful in the study of other transport phenomena
involving impurity conduction. The validity of the
pair model can be improved by extending the measure-
ments to higher frequencies, keeping the concentration
fixed. Similarly, by increasing the frequency, one can
extend the concentration range for which the pair
model applies. For a given concentration, the minimum

frequency for which the pair model applies canbe
defined by r =E~. This frequency follows from
Fig. 7 or can be calculated from Eq. (23) by setting

/max +A/&.

APPENDIX A

The quantities O„and envoi are calculated from the
exact equations of bridge balance. For the Schering
bridge using the substitution method, the conductance
G and capacitance Cb as seen by the bridge are given by

F ' C'(D D')—
G= 2m'

oF-
oo 1+(F/Fo)'(D+Do)'

(44)
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tration dependence
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lines denote the
quadratic concentra-
tion dependence t Eq.
(43)] and the dashed
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where C is the capacitance of the standard capacitor
and D is the reading of the dissipation factor dial.
C' and D' are the corresponding quantities when the
sample is disconnected (at the bridge terminals). Fo
is the setting of the "range selector" switch and is
chosen close to the applied frequency Ii. Do=0.03 for
our bridge. '

These equations follow from the exact equations of
balance" under two assumptions: (1) the insulation
resistance of the standard capacitor is independent of
the capacitance setting. This is valid since the standard
capacitor has an air dielectric. (2) The dielectric loss of

2' AC Cupac~tarlce, Dielectric Corlstunt, amd Loss Characteristics
of E&lectrical IrIsulatimg Materials, D 150-54T (ASTM Standards on
Electrical Insulating Materials, American Society for Testing
Materials, Philadelphia, Pennsylvania, 1954), p. 103.



STUART GOL IN

the bridge's dissipation factor capacitor can be ignored.
This is valid when F/Fp & 1, which applies in our case.

Then 0, and e„i follow the equations

o-„=Gg,

e,.)
——(Cp —Cp)g/ep,

(46)

(47)

where eo is the permittivity of space and g is the
geometry factor. Co is the circuit capacitance in parallel
with the sample plus the lattice capacitance of the
sample. Co was estimated from the Kramers-Kronig
relations using the second of two procedures outlined

by PG.'

APPENDIX 8
We now calculate the probability II(h, y) that a

singly ionized acceptor pair of size r has an energy
difference 6 between its members. The assumptions are:
(1) The nearest acceptor to each donor is ionized by that
donor and forms one member of an active (singly
ionized) pair; (2) the energy 0 of the pair is caused only
by the donor which ionized it.

Consider a donor D and two acceptors A and A~ as
shown in Fig. 12. Let A be the nearest acceptor to D.
The distance between 2 and A~ is dered to be r. A~

may be anywhere on the sphere of radius r outside the
sphere of radius R. H(h, y) is the probability that 6 is
the energy difference between A and A&.

corresponding to R=R&. It is given by —coso,
=y/2R when y/2R &1. However, if y/2R) 1, then
O,„=w. Both cases are represented by the expression

—cos8, =min(1, y/2R); (50)

P(B,R)dh = P, (8—)d8= —sin8d8 sin8d8. (51)

(The minus sign accounts for the fact that d8/dd, &0.)
By solving Eq. (48) for cos8 and taking differentials,
one finds

sin8d8=—R'eo, (ye') '(1 Reo,g/—e') 'dD. (—52)

Using Eqs. (52) and (50), Eq. (51) becomes

P (A,R) =R'eo, Lye'(1 —Reo,h/e')'
&&min(2, 1+y/2R)) '. (53)

R, of course, is not fixed. The probability of R
occurring is given by the Poisson formula

P2(R)dR=3R'R~ 'dR exp[—(R/R~)'), (54)

where R~ ——(4~X~) '~P is the average distance between
acceptors. Then the desired probability is

i.e., —cos8,„is 1 or y/2R, whichever is less.
For fixed R, the probability that the energy of the

pair will be 6 is

~max

6= (e'/eo, )LR '—R —')
= (e'/eo, )[R ' (R'+—y'+2Ry cos8) ' '] (48)

a(s,y) =
min

Pp(R)P(E, R)dR.

For 6xed 6 there is a maximum and a minimum value
of R which will satisfy Eq. (48) corresponding to 8=0
and 4r, respectively. (This should be clear from the
geometry of the problem. ) They are given by

R~„x=xpLy +4e y/eoeg] ~ —xy

R~;.= —',y+e'/eo. h —-', $y'+ (2e'/eo, h)'$" (49)

We introduce the parameters

hp ——e'y/eo, Rg',

y= y/Rg,

x=R/R~.

(56)

(57)

(58)

Using Eqs. (49), (53)—(58), we get out Anal expression

For fixed R, there is a range of 6 corresponding to
a range of 8. There is a maximum value of 8, 0, ,

a,II(s,y)

where

x4 exp( —x')dx
(59)

(1—yah/Ap)' min(2, 1+y/2x)

Fzo. 12. Diagram used in calculation of
H(LL,y). See text.

The integrand does not contain a singularity since
yx,„h/hp &1.

The integral was evaluated numerically and the
results are shown in Fig. 8,


