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Energy-Flux Operator for a Lattice*f
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A systematic derivation of the energy-Aux operator for a three-dimensional lattice is given. The treatment
is based on the general expressions for the energy Aux which are valid for all phases of matter; a short
derivation of these expressions, making no restrictions to two-body forces, is presented. The average energy
Aux is transformed to the phonon representation, and it is shown that the diagonal contribution from the
harmonic forces has the familiar form Zk, Ek,keek, vk, . There are, in addition, nondiagonal contributions to
the energy Qux, even in the harmonic approximation. The significance of these corrections is discussed. The
contributions to the average fiux from the anharmonic forces and from lattice imperfections are also treated.
Finally, the problem of forming wave packets of the plane-wave normal modes to obtain an expression
for the local energy Aux is considered.

operator for three-dimensional lattices is given, and the
limitations of, and corrections to, (1.1) are discussed.
The treatment is based on the general expressions which
give the energy Aux in terms of the particle variables
and which are valid for all phases of matter. ' ' ' For
completness a derivation of these formulas, making no
restriction to two-body forces, is presented in Sec. 2.
The results are then transformed to the phonon repre-
sentation and in Sec. 3 the usual expression (1.1) is
obtained as the diagonal part of the harmonic contribu-
tion to the average energy Qux. Nondiagonal contribu-
tions to the Aux from the harmonic Hamiltonian are also
obtained. In Sec. 4 the contribution to the energy
Qux from the cubic part of the anharmonic Hamiltonian
is calculated, and the effects of lattice imperfections are
discussed. The problem of forming wave packets of the
plane-wave normal modes in order to describe a local
property, e in this case the local energy Aux, is treated
in Sec. 5.

The corrections to expression (1.1) for the energy flux
give rise to changes in the formulas determining the
thermal conductivity. A discussion of these changes will
be given elsewhere. "

After completion of this research it was learned that
work on the same problem was being carried out by
Maradudin, " Magid, " and Choquard. " Their results
are less complete than those obtained here, since they
do not start from as general a point of view but begin
with models limited to a lattice. In particular, they do
not obtain the contributions Sso and ),S4' discussed in
Secs. 3 and 4.

1. INTRODUCTION

'HE theory for the lattice contribution to the
thermal conductivity of solids is usually based on

the Boltzmann equation for phonons. ' ' In this theory,
which was first presented by Peierls, 4 and also in the
more modern approach utilizing correlation functions, ' '
it is necessary to know the functional dependence of the
energy-Aux operator' on the dynamical variables of the
system. For a lattice these are the creation and annihila-
tion operators for phonons. The form usually used for
the Qux in a lattice is' '

S= V 'Q tVs,Atot„vx, ,
ks

where Xk„cok, and vk, are, respectively, the number
operator, frequency, and group velocity of the plane-
wave normal mode with wave vector lr and polarization
index s, and V is the volume of the system. This result
was obtained by Peierls' who considered in detail a
linear chain with nearest neighbor interactions and then
generalized to three dimensions. The validity of (1.1) is
generally accepted, although no rigorous derivation of
it has been given for the three-dimensional case.

Here a systematic derivation of the energy-Aux
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2. GENERAL EXPRESSIONS FOR THE
ENERGY FLUX

The local energy-flux operator s(x) can be obtained by
requiring that it satisfy the equation for energy
conservation"

equal the total energy H, it is stipulated that

ds A(x—q,)=1. (2.6)

Ii(x q;)—=rr si'E 'expL —jx—q l'/P). (2.7)

One desires for calculational purposes that the function
h(x —q,) be inathematically well behaved; a possible
choice is"

where H(x) is related to the energy-density operator
P(x) and the Hamiltonian of the system H by

H (x) = (ih)
—'PH(x), H).

On combining these expressions one gets

7' s(x) = (i/h)LH(x), P).

(2.2)

(2 3)

Lq,',p,')= ih5 "8;;

Pp', p') =(V',S')=0,
(2.8)

The momentum and position operators p; and q;
obey the commutation relations

In this section the above result is used to obtain the
expression giving the energy flux as a function of particle
variables "

To proceed further, explicit expressions for the
Hamiltonian and energy density are needed; it is
desirable that they be defined as generally as possible.
Here a Hamiltonian is assumed of the form

(2.4)

where y; is the momentum, m; is the mass, V; is the
potential energy associated with the ith particle, and
the summation is over all the particles in the system. It
is assumed that the V; are functions of the position
variables q; only; each V, depends on the position
variables for all the particles with which particle i
interacts. The separation of the potential energy of the
system into the parts V, is somewhat arbitrary, but a
natural choice usually suggests itself in any given
problem )see, e.g. , (3.18), (4.7), and (4.19)).

When treating the transport properties of a system
one uses variables which describe the average properties
of small regions containing large numbers of particles.
The linear dimensions of these regions will be charac-
terized here by /. It is convenient to reflect this average
nature of the macroscopic variables in the choice of the
microscopic energy density operator by defining H(x) as

where superscripts label vector components, and 6 ~

and 5;; are Kronecker-8 functions. Using these and the
forms for H and H(x) assumed above, one can show that

/1 p,'
-[H(x),P)= —s Z Zl —. L~(»—«'), p )
h 'i . (ih ''2;

p' 1
& p'+ —C~(»—q,),p') l +v'

I

2m, ih
'' '

& 2m, 'i

—
p

2

+ (A(x—q;) —6 (x—q;) )—,V, +H.c. (2.9)'
$A2m

It follows from the commutation relations, e.g., by
using the representation where p; = (h/i)B/Bg, ', that

(i/h)ph(x —q, ), p; )= 5,,r)It(x q, )/B—x (2.10. )

Also, making a Taylor series expansion of d, (x—q;), one
obtains

g(x —q, )—a(x—q,)=P.Lt)(q,'—q,')/r)x )

Xl 1+ .+ 2 (q'' —g,')
(s+1)!s

8 8 $
y, (q,

"—q, ")
l
I), (x—q,), (2.11)

Bx' Bx")

H(x)=-', 2 k(x—q) +v)+H. c. , (25)
i 2m'

where the function h(x —q,) is defined to be negligibly
small when

l
x—q; l

)I and large but finite when

l
x—q, l

&l. (The notation H.c. indicates that the Her-
mitian conjugate is to be added. ) Since the integral of
the energy density over the volume of the system must

'4 The operator II(x) is defined so that d(II(x))/dt=(P(x)),
where ( ) indicates an ensemble average. The macroscopic con-
servation law analogous to (2.1) is d(II(x))/dt+V (s(x))=0.

'~ The classical analogs of the results obtained in this section can
be obtained by replacing (i/k) Qp, V, g by BV,/Bg„~.

where there are s surrnnation indices 6 .r. Note that
t)/Bx operates on the function A(x —

q~) only. The sub-
stitution of formulas (2.10) and (2.11) into (2.9)
allows one to factor the operator cl/Bx' to the left of the
resulting expression, which then has the form

(i/h)LP(x), H)=g, Bs (x)/Bx (2.3)

"M. S. Green LJ. Chem. Phys. 22, 399 (1954)j and H. Mori,
I. Oppenheim, and J. Ross (see Ref. 6; p. 281) suggest an alter-
native choice:

a(x—q;) =I. ' Zx exp L
—iit (x—q;)j,

where ki, ks, ks(2z/l and I.characterizes the linear dimensions oi
the system.
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with

pi pi p'
s(x)=—P A(x—q, ) + A(x—q„) +V,

~

2 i 2m, 2nb, 2m, )
1 8

+E~l ~+—Eiv —c') + ")~(»—a;)
2! b ctxb

1 p''
X (q,—q, )—,V, +H.c. (2.12)

'lA 2m

This is the desired expression for the local energy-flux
operator. " From the above derivation it is apparent
that the conservation equation (2.1) is simply a re-
writing of Eq. (2.2) for II(x).

For determining the thermal conductivity' one needs
an expression for the average energy flux S which is
de6ned as

S= V ' de s(x), (2 13)

Although the interest here is in solids, the above
formulas for s(x) and S are also valid for gases and
liquids. In particular, the first terms (those containing
the product of three momentum operators) give the
significant contribution to the flux in a low-density gas.

where the integration is over the entire volume of the
system. "Now since A(x—q, ) is defined so that it is zero
except in a small region, the volume integrals of the
derivatives of D(x—q, ) are negligible. Consequently, the
integration (2.13) yields"

pt t' pt'
+V;

2V t nt;(2sn,
—p,2

+P (q,—q, )—,V; +H.c. (2.14)
ij zk 28$i

where S' is independent of the perturbation and where,
as is indicated, )tS' and X'S"are proportional to X and X'.

In this section the harmonic contribution to the average
flux S' is expressed as a function of the creation and
annihilation operators for phonons; the contributions
)~S' and )~'S" are discussed in Sec. 4. For simplicity only
a cubic lattice with one atom per unit cell is considered,
but this restriction is not fundamental, and the tech-
niques utilized also apply to more complex structures.

P(x;)=p; and Q(x,)=q;—x;, (3.3)

since it was implicit that the qi were measured from a
collimon origin.

The harmonic part of the Hamiltonian is written as

H'= Q P(x,)'
25$ i

+l 2 2 ~"(»'—x)Q (x')Q'(») (34)
ij ab

where m is the mass of the particles, and the coeS.cients
2 b(x,) satisfy the relations

g b' (—x,) =g &b (x~) =g b& (x,) . (3.5)

The harmonic Hamiltonian is expressible as a sum of
independent harmonic oscillator Hamiltonians by using
the transformation

Introduction of Phonons

Before proceeding, the notation to be used for the
phonon description of lattice dynamics will be
introduced. "

The momentum and position operators for the ith
particle in a lattice will be designated P(x,) and Q(x;),
respectively, where Q(x,) measures the displacement of
the ith particle from its equilibrium position (or lattice
site) x,. These operators are related to the p; and q, in
the previous section by

3. THE HARMONIC ENERGY FLUX

The Harniltonian will be written as

P(x,) =I''—'"p pk, ek,e"'" **',

Q(x )=X—'"Q tIk 'ek e*" *'
ks

(3.6)

H= H'+) H', (3 1)

S=S'+) S'+)'S", (3 2)

' By assuming two-body central forces and that the local mean
velocity is zero, one can show that the classical analog of (2.12) is
equivalent to Irving and Kirkwood's (see Ref. 8) Eqs. (6.20),
(6.21), and (6.22).

' The integration may be taken over all space as the integrand
is zero outside of the system.

' By assuming two-body central forces the classical analog of
(2.14) becomes equivalent to Eisenschitz's (see Ref. 9) Eq. (1.13).

where B' is the harmonic Hamiltonian for a lattice,
AB' describes the effects of imperfections and an-
harmonic forces, and X characterizes the strength of this
perturbation. With this and an analogous separation of
the energy density, the energy-flux operator can be
expressed as

where E is the total number of particles in the system,

qk, ~ is the Hermitian conjugate of qk„and where

pk= —pkt and gk= —
g (3.7)

The polarization vectors ek, and the frequencies cok, are
determined by

se a —P(P gab(x )etk x&)e b (3.8)

or
tnt '5 =p ekaa(p A"(x,)e'k *')ek ' (3 9)

ab

~0 For general discussions see, e.g. , M. Born and K. Huang,
Dynamical Theory of Lattices (Oxford University Press, London,
1954), or J. M. Ziman, Electrons and Pttonons (Oxford University
Press, London, 1962).
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and

ek, ek,.——8„; ek, ———e k„~k,——co k, . (3.10)

The properties (3.5) allow one to replace e'" *' with
cosk x; in (3.8) and (3.9). Periodic boundary conditions
are imposed to determine the allowed values of k. These
values are such that

Q elk. z~ (3.11)

where hk equals 1 when k=0, K (where K is a member
of the reciprocal lattice) and is zero otherwise.

The creation and annihilation operators for phonons,
ak, ~ and ak, respectively, are introduced through the
transformation

The quantity S30 is

1 P(x,) P(x,)'
+V(x,)

2V ~ nz 2'
1 ( 1

+ E[Q(x,)—Q(x,)]XI P'(x, )—[P (x,), V(x;)]
2m '2 a& ik

1
+—[P (x;),V(x;)]P (x;) ~

+H.c. (3.19)
ik

The Quadratic Part S2'

Now consider the term S2'. Using the conunutation
relations for the P(x;) and Q(x,) one obtains for x,&x;

Pk, ———i(-,'mkuk, )'"(ak,+a k, t),
qk, t= (A/2m(ak, )'~'(ak, —a k, t),

(3 12) (sh) '[P'(x, ),V(x,)]=—-', p A" (x,—x,)Q (x,). (3.20)

where ak, t and ak, satisfy the commutation relations The introduction of this into (3.17) yields

[~kayak's't] ~kk'~88' ~

The introduction of ak, ~ and ak, into H' yields

(3.13)
S2o= Q Q A '(x„)x P (x„+x,)Q'(x, ), (3.21)

2~ V jm ab

H'= +(Xk,+-', )A(uk„ (3.14) where x„=x,—x,. The introduction of the normal
coordinates of H' gives

where Ek,=uk, tak, is interpreted as the number of
phonons in the ksth normal mode. The matrix repre-
sentation which diagonalizes the operators Ek, also
diagonalizes B' and will be referred to as the phonon
representation.

S2 Q pk. g—k ' Q ek
27+@ kss' ab

X(P A' (x~)x~e' ' )ek, ~. (3.22)

The Contribution S'

The transformation (3.3) implies that

q —q = Q(x,)—Q(x )+x,—x;.

At this point it is convenient to introduce a quantity
Vkss':

(3.15)
""'

2 („„)g(,

Then since the potential energy part of H' is a quadratic
function of the Q(x;), it follows from (2.14) that

X (Q A '(x )x e"k *")ek, ', (3.23)

S'=S '+S '

(3.24)Vkss' = Vks's V ks s ~

(3 15) which has the units of velocity. From this and (3.3) it

where S2O is a quadratic function of the P(x;) and Q(x,)
follows that vkss is real and that

and Sao is a cubic function. The term S2O is

So
1

Z(x' —x~)Z P (x')—[P'(x*),V(x~)]
2nzV ~~' a ik

1
+—[P~(x,),V(x,)]P~(x,), (3.17)

ik

Now it will be shown that vk„(s=s') is equal to the
group velocity 7k~k, . By considering cok, as defined by
(3.9) as a continuous function of the wave vector k and
differentiating with respect to k' (the 1th vector com-
ponent of k), one obtains

where V(x;), corresponding to the term V; in ( .14), is

V(x,) =-,' P P A"(x;—x )Q'(x, )Q'(x ). (3.18)
m bc

This choice for V(x;) satisffes the requirement that
P; V(x,) be equal to the potential part of the harmonic
Hamiltonian.

Bek,' Bek, '
+Q nuok, 'ek; +Q m(uk, 2ek,', (3.25)

Bk' b Bk'

where (3.8) has been. used to simplify the last two terms.



ROB E RT J. HARDY

p (Bek ~/Bk')ek, '=0 (3.26)

With this relation it follows from a comparison of (3.23)
and (3.25) with s=s' that

Since the polarization vector ek, is of unit length, any
infinitesimal change in ek, resulting from a change in k
must be perpendicular to it, and thus

periods of oscillation), the contribution of S,, „e to the
transport of energy is negligible compared to that of the
(classically time-independent) contribution S2,e'. (It is
interesting to note that terms analogous to S2,„e' also
exist in the expression for the Aux for an isotropic
elastic medium. ")

~~ks/~~ ="kss —=&ks s (3.27) The Cubic Part S,o

where ek„' has been written as ~k, ' for brevity. Thus one
sees that vk, is indeed equal to the group velocity.

Another useful result is obtained from (3.25) for s&s'
in those cases where the frequencies cok, and ~k, happen
to coincide. Rewriting the first term on the right of
(3.25) with the aid of (3.23) and taking ~ks=cuks, one
obtains

(3.28)

Since ek, ek, =0 when s/s', it follows that vk88 is zero
When ~ks ——~ks .

The final expression for S20 is obtained by introducing
vk„and the creation and annihilation operators into
Eq. (3.22) to obtain

with
S2'——S2,e'+ S2,.e', (3.29)

S, , e' ——V ' Q &kA~0k. vk. ,
kS

(3.30)

„0—2snd
2t/' kSS', SgS'

(ak, +a k.')

X (a „,.—a k, . )A(ok. vk„, (3.31)

and Ãk, =uk, tak, . The subscripts d and ed indicate that
S&, „P and S2, P are respectively, diagonal and non-
diagonal matrices in the phonon representation. (Since
S3' is a cubic function of the ak, t and ak„ it is necessarily
nondiagonal. ) One now has the important result that
the usual expression for the energy-Aux operator in a
lattice, that is, Eq. (3.30) or (1.1) is just the diagonal
part of the harmonic contribution.

The significance of the term S&,„&' is most easily
understood in the classical limit. Expressing (3.31) in
terms of the normal mode variables pk, and qk, t, one gets

S2, d&ssZ Pksg —ks' (&ks&ks') Vkss' s (3 32)
k88, SQ S

and the classical limit is obtained by simply treating
pk, and q k, "as classical variables (with the Hermitian
conjugate becoming a complex conjugate). The variables
pk, and q k, t are then rapidly oscillating functions of
time with frequencies cok, and &ok, . As cok, is unequal
to &dk, for those terms with sos' and vk„WO Lsee
(3.28)$, it follows that (3.32) is made up of oscillating
terms with frequencies which are the sums and differ-
ences of cok, and cok, . As a result, when the Qux is
averaged over long periods of time (i.e., over many

The term SP is easily expressed as a function of the
pk, and gk, by applying the transformation (3.6) to
Eq. (3.19) for S30. The result is

ek. (ek, ek",")&kpk pk4ygl/2 kkfg/1 Sstsll

PksPk's'Pk" s"
+Pksgk's' gk" s" ~k"s"2

+tlks gk' sPk" s''(~k" s" Mk' s) +H.C. s (3.33)

where (3.8) has been used to introduce cvk, '. This is
easily written as a function of gk t and gk by using
transformation (3.12).

The significance of S30 is most readily seen by inspect-
ing (3.19). The terms in (3.19) containing products of
t:hree P(x,)'s correspond to Irving and Kirkwood's
"kinetic energy" contribution to the Qux. ' The terms
P(x,)V(x,)/m describe the transport at the velocity
P(x,)/m of the potential energy V(x,). The terms con-
taining the diiference Q(x,)—Q(x;) are corrections to
S2O arising from the fact that the interparticle forces do
not transmit energy between the lattice sites x, and x,,
but between the actual positions of the particles which
are displaced from x; and x, by Q(x,) and Q(x;).

If the energy (p,2/2m)+ V; were associated with the
lattice site x; instead of with the actual position of the
particle iI, =Q(x,)+x;, the contribution S2O would be
obtained, but not S3 . This is easily seen by retracing
the calculations of Sec. 2 with A(x —q~) replaced by
D(x—x,). (Note that since x; is a number it cornrnutes
with the operator y;.) Thus, if the particle displace-
ments are small compared to the lattice spacing, the
contribution of S30 to the flux will be small compared to
that of S20. This will actually be the case except at
elevated temperatures.

4. PERTURBATION CONTRIBUTION TO
THE ENERGY FLUX

The contribution to the average energy Qux from the
anharmonic forces and lattice imperfections will now be
treated. The perturbation due to the anharmonic forces

2' R. J. Hardy, Ph.D. thesis, Lehigh University {University
Microhlms, 1962), p. 96.



E N E R G Y —F L U X 0 P E R A T 0 R FOR L A T T I C E 173

that is considered is

XV3 ———P P B~"(x,,x, ,x )Q (x )Qk(x, )Q'(x„),
3 t i jm abc

where Sa' and S4' are, respectively, cubic and quartic
functions of the P(x;) and Q(x,).

The quantity XS3' will be treated first. By using (4.7)
and the commutation relations it can be shown for
xi&x; that

which is the cubic term in the potential energy expan-
sion. The effects of imperfections are not included in

m abc
A V3, so that one has

X (f ( ')Q'( )Q'( )+Q'( )Q'( )~ ( ')) (49)
B"'(x,,x, ,x ) =B~k'(0, x;—x;, x —x,) . (4.2)

The correction to the kinetic energy arising from the
presence of impurities, isotopes, etc., is

Multiplying this result by (2m) ' (x;—x;), summing
over i and j, and introducing the creation and annihila-
tion operators, one obtains

where

Sruti
7 T'= — P P(x,)',

2rN ' m+ &m,
(4.3) XS3'=

2 V kk'k", ss's"

A COks

ks k' s' k"s"
8~kr slick" s"

hami =mi—m (4.4) X(ak,+a k, )(ak .—a k . )

where m; is the actual mass of particle i [see (2.4)j and
m is the mass used in H' [see (3.4)].Lattice imperfec-
tions also give rise to a perturbation" where

X (ak-; —a k". ') +H.c. (4.10)

&Uk= 2 2 2 C"(x',xr)Q'(x')Q'(» )
'by mn

(4.S) 8ks, k' s', k"s" +k+k'+k" Q ek ek' ' ek"
3~@»2 abc

where the coeKcient C '(x, ,x;) are the corrections to
the quadratic term in the potential energy expansion,
the complete coefficients being 3~k (x;—x;)+C~' (x,,x;).
In general, C'k (x,,x;) depends on the specific positions
in the lattice of both the particles i and j, while
2'k(x; —x;), which is included in H', depends on their
relative displacement only.

The Contribution from 2 V&

From (2.14) it follows that the contribution of XV3 to
the average energy flu» XSv' is

'AS'~ ——(2V)
—' {m

—'QP (x;)X Vg (x,)

+ (2m) ' P[Q(x,)—Q (x,)+x;—x;)

X (ih) '[P(»,)',XV3(x,)))+H.c. (4.6)

The form of XV3 suggests that one take

1
XV3(x,)=—Q Q B "(x,,x, ,x~)

3 t g'm aye

XQ.(;)Q'(;)Q ( .) . (4.7)

Just as H', a quadratic function of the P(x,) and Q(x;),
led to S = S2 +S3', the contribution of XU3 to the flu»
can be written as

XQ B"'(0)x„,x„)»~e'&"' "~+k" *.&. (4.11)

The quantity inside the curly brackets in (4.10) is just
pkegki, itgki, » t. Notice tllat

'R 4Bks k's' k"s" ~ —ks —k'g' —k''g" (4.12)

XS,"= Q Q B"'(x,,x, ,x„)
2 tr"3 t~ ijm abc

X (Q'(», )Q'(x;)Q'(» )&'(x,)

Q'( )Q'( )Q'( -) '( ')

+2Q'(xl)Q'(xr)Q'(x-)& (x~))+H c. (4.»)
The introduction of ak, ~ and ak, yields

lI, S4' ——

2 tr' kkrkl lkrl l, ss sr ls"
klsr kllsll kill sill8

~ g—zh2 Q)kill sill

X
45$ CO k sG) k r sr CO k» s r r

where the asterisk indicates complex conjugation.
The quartic term XS4' can be written with the aid of

(4.7) and (4.6) [in (4.6) replace Q (x;)—Q (x;)+x,—x;
by Q (x~)—Q (x;)j as

XSy' ——XS,'+XS4', (4 g) X (aka a—k ) (ak'a a—k'8' ) (ak" " a k z t)

22 For convenience, the same parameter X is used to characterize
the strength of the different perturbations XV3, ) T', and 'A V2 even
though they are in reality all indepen den t .

X (akiria&rs+a gssizilit) +H.c. (4.14)
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where

kl I kl I SI I kl I I sl I IB.
s 1

phonon variables, which gives

(~ks+&—ks ) (+k's'+&—k's' ) (~ks~k's')
kk', ss'

6k~k'+k "+k"' Q &k' ' ek"b c

3 ~mS abc

Sm,
X (e .e, ,) +—i p ~s(k+k'i. x,

yg+Qg;
(4 19)

Xp gabs(0 X X )gs(k 'xm+k '&a)

XV2 Q (+ks +—ks ) (+k's' +—k's' )
4~ kk', ss'

X Lek, ek ~ . .+2ek, ek . "(e' *"—1)]. (4.15)
X (~ks~k's') P &ks &k's'

abquantity inside the curly brackets in (4.14) is

qk, &qk, .tqk", tpk, . Notice that XP(1V P C'b(x; x,—x~)e'&k+k'&'*'}e ' "~.
(4.20)

B'-s k's' k"s" k"'s"' B—ks —k's' —k' rsvp', k' r's'" ~ —(4' 16)ass S s S s t

Diagonal terms in the phonon representation can occur
The complete expression for the contribution of XV& only when k= —k' (and s=s'). The factors in curly

to the flux is obtained by combining (4.8), (4.10), and brackets in (4.19) and (4.20) are zero for k= —k' when

(4.14). the 5m, and Cab(x;, x;) are chosen so that

The Contributions from 0 T' and 0 V2

The effect of lattice imperfections on the part of the
energy Aux proportional to X will now be treated. " It
can be deduced from (2.14) that the kinetic-energy
perturbation XT' gives a contribution XSz' to the
average flux of the form

—1~ 6m; m+-', Sm;
XSr' ——

~ Q P(x;)E(x;)'
2Vi ' ~2 (~+&~,)~

Snab;

P(x,) U(x,)
yg s 'iib+ Qgs

1
P (Q (x,)—Q (x,)+x,—x,)

5m; 1—LP(x,)', V(x,)] +H.c. , (4.17)
yg+5nZ, i7b

where V(x,) is the potential energy part of the harmonic
Hamiltonian given in (3.18).The contribution of XV. to
the flux is given by an equation of the form of (4.6)
with XVb(x,) replaced by

siV (x,) =-,' Q Q C '(x;,x;)Q'(x,)Q'(x, ) . (4.18)
j ab

These contributions to the Aux are readily expressed as
functions of the creation and annihilation operators, but
the complete calculation will not be given here. How-

ever, it will be shown that if the IIamiltonian is sepa-
rated into parts H=H'+AH' in such a way that the
perturbations XT' and AV~ are nondiagonal in the
phonon representation, then the contributions of these
perturbations to the ft.ux are also nondiagonal.

The conditions under which AT' and XV2 are non-

diagonal can be seen by transforming (4.3) and (4.5) to

6m,E'Q =0
yg+Q~, .

(4.21)

N ' Q C"(x x x)=0—(4.22)

A comparison of (4.21) with (4.4) indicates that condi-
tion (4.21) can be satisfied by defining m as

(4.23)

—zk
'AS~' —— +—ks ak's'

SmV

XI
ab

—{& ' Q C"(x;, x,—x„)e'& +"'i *')

XX ~-'k'*-+H. C. (s4.24)

Also, it is always possible to choose the gab(x; —xs) and
C' (x;,x,) so that condition (4.22) is fulfilled Lsee dis-
cussion following (4.5)j. If these conditions are not
initially satisfied, they can be obtained by redefining m
and the C'b(x;, x;), and correcting the frequencies and
polarization vectors determined by (3.8). Thus, it is
always possible to separate the Hamiltonian into parts
so that 'AT' and 'AV~ are nondiagonal in the representa-
tion diagonalizing II'.

The conditions (4.21) and (4.22) also cause the con-
tributions of XT' and XV2 to the energy flux to be non-
diagonal. To show this, write out those parts of these
contributions which are quadratic in the P(x;) and
Q(x,), these being the only parts which could give
diagonal matrix elements. One obtains
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Again, diagonal elements can occur only in terms with
k = —k', but the coeflicients of such terms are zero when
conditions (4.21) and (4.22) are satisfied. Thus, it is
seen that the separation of the Hamiltonian which
makes XT' and ) V2 nondiagonal also makes their con-
tributions to the Aux nondiagonal. The significance of
this is that nondiagonal terms correspond (classically)
to oscillatory functions whose contributions to the
transport of energy are of a smaller order than those of
the (time-independent) diagonal terms.

S. THE LOCAL ENERGY FLUX

In the usual discussion of lattice thermal conduc-
tivity, based on the Boltzmann equation, it is necessary
to introduce a number operator 1Vk, (x) which is a func-
tion of position. Associated with this is an expression for
the local energy Aux of the form

s(x) =p 1t„rk, (x)~k.vk, .
ks

(5.1)

One method' of justifying this point of view is to divide
the lattice into small regions and identify s(x), for
example, with the average energy flux (1.1) of the region
containing x. This procedure, however, requires heu-
ristic arguments whose rigorous justification is not
readily seen. Another approach is to form wave packets
of the plane-wave normal modes, ' but is is not clear
exactly how these packets are to be formed. In this
section the rigorous expression (2.12) for the local
energy Aux operator will be used to determine just what
approximations are necessary to obtain an expression
of the form (5.1) and to give a more precise meaning to
the quantity Ek, (x).

First, those terms in the exact expression for the local
flux analogous to XS' (the perturbation contribution to
the flux) and S80 (which does not exist when the energy
of the particles is identified with the lattice sites) will be
neglected. One expects their contributions to be small for
the reasons discussed in Secs. 3 and 4. Next, it will be
assumed that

(5.2)

Other Contributions to the Flux

An inspection of the general expression (2.14) for the
energy Aux shows that contributions proportional to X'

will result from a combination of a kinetic energy and
a potential energy perturbation. There are also con-
tributions to the Aux from higher powers in the potential
energy expansion, which can be treated along essentially
the same lines as the contribution from XV3. In particu-
lar, a perturbation which is of nth power in the Q(x;)'s
gives rise to eth and (m+1)st power contributions to
the energy Aux, just as the cubic perturbation gave
cubic and quartic contributions. The calculation of
these higher order contributions is straightforward.
However, they will not be considered further here.

The introduction of the creation and annihilation
operators gives

1/2

(+—k's'+~k's' ) (e'ks &—ks )
452 kk', ss' cok,

jA
s20(x) =

&&+ e k "ek.'Q A"( x~) x„e'" "m

ab

&({1V ' P h(x —x,)e'& '& *'}. (5.4)

As suggested by (2.7), the function A(x—x,) will be
taken to be

a(x—x;)=~ '"l ' exp( I
x—x'f'/l'). (5.5)

iA'ith this the term in curly brackets in (5.4) can be
written as

t fx,—bf'
P exp

f

— —-',
f
k—k'

f
'8+i (k—k') x f,

p

(5.6)

where 4= x+ iiP(k —k'). It will now be assumed that

(5.7)

where the lattice constant u gives the value of
f
x;—x;

f

wheni and j are adjacent particles, and I.characterizes
the dimensions of the system being considered. With
l))a the sum over i in expression (5.6) can be replaced
by an integration over x;, and with /« I. the limits of
integration can be taken to inanity. Carrying out the
resulting integral one finds

E 'P h(x —x;) expLi(k —k—') x;j
=U—'exp( —

~ fk —k'f'P) expLi(k —k') xj. (5.8)

The main contribution to (5.4) comes from those values
of k and k' for which the function exp( —

4 f
k—k' f'l') is

peaked, i.e., for values which satisfy
f
k—k'

f
(2/l. For

such values and with a« l it follows from (3.8) and
(3.23) that e k, —ek, and vk, , vk, „respectively.

where l p characterizes the interparticle force range, and
l is descriptive of the localization of the operators H(x)
and s(x) )see the discussion of (2.5)). The interparticle
force range comes into expression (2.12) for s(x)
through fpP, V;$ which is zero for fq;—q, f)lp. The
quantity A(x —q, )/l" gives the order of the eth deriva-
tive of h(x —q,) with respect to x Lthis can be seen by
differentiating (2.7)j. From this it follows that the
expansion in (2.12) is an expansion in powers of l~/l, so
that with lg&(l the first term in the series is a good
approximation to the complete expansion. Thus, using
the above approximations and introducing the P(x,)
and Q(x~) into (2.12), one obtains

1 1
s20(x) = g A(x—x,)(x,—x,)—fP(x,)', V(x,)). (5.3)2' i2
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Using these approximations in (5.4), one obtains

s (x) Q (a—k' '+ak' ' )(ak a—k )
ear, ssr 2V

The transformation to the a~, ~ and ai„with the aid of
(5.8) and the approximations e k, ek~ —b„and
~k, —(dk, cok, cok /cok ~ ymlds

Xexp( —-',
l
k—k'l'P) exp/i(k —k') x] II'(x) =Q l 1Vk, (x)+ lb'&k, .

2V)
(5.13)

X&(~k"~k'")"%(vk" +» " ) (5 9)

The terms in (5.9) with sos', which are analogous to
S2 „~ discussed in Sec. 3, contain contributions from
modes with different frequencies, and, thus, are rapidly
oscillating functions whose time average is negligible.
For this reason they will be neglected. LOf course, the
terms being kept with s=s' but k/k' also possess con-
tributions from modes with diGerent frequencies; how-
ever, since the values of k and k' can be arbitrarily close
(for large systems), the frequency difference cvk, —a»,
can be so small that the oscillations are no longer rapid.
Although it is also possible for the difference or~, —coi„
with s&s' to be very small, the associated terms in
sp(x) still do not contribute because then vk„ is
vanishingly small; see (3.28).] Neglecting terms with
sos' and using (&ok,&ok,)'"~ark„one obtains

S20(x) =P Sk, (x)krak, vk„

Notice that the average over the volume of the system
of this expression is just H'/V.

A straightforward calculation making use of the
creation and annihilation operators and Eq. (3.14) for
H' leads to

IIrk, (x)= [&Vk, (x),HO]/ih

GOg q Mgq
gr

X (ak, tak, expLi(k' —k) x]—H.c.)
Xexp( —

4 l
k—k'l'P) (5.14)

It can also be shown that

V'cVk, (x)= g (k' —k)
2V &'

X (ak,.tak, exp/a(k' —k) x]—H. c.)

Xexp( —
4 l

k—k'l'P) (5.15)
Nk, (x)= g(ak, tak. , expLi(k' —k) x]+H.c.)

2V j' The use of these results to evaluate H'(x) and V'. s2'(x)

Xex ( i
l
k k/ l2P) (5 11) shows that for the conservation equation (2.1) to be

satisfied one must have
Here one has the expression for the local energy Aux in
the desired form together with an expression for the
quantity Ek, (x). The average over the system of (5.10)
yields the usual expression (1.1) or (3.30) for the
energy flux, since the volume integral of exp(i(k —k') x)
equals Vb&, & because of the periodic boundary
conditions.

H(x)+V s(x)=0 (2 1)

in the same approximation that the result (5.10) is
valid. To show this the energy density H(x) must first
be expressed as a function of the creation and an-
nihilation operators. By approximating the function
h(x —Q(x;) —x;) in Eq. (2.5) for H(x) with h(x —x,)
and neglecting the perturbations, one obtains

H'(x) =P D(x—x,)

The Conservation of Energy

It will now be shown that s20(x) as given above satis-
6es the equation for energy conservation,

~k's (dka vks' (k —k) . (5.16)

This condition is certainly satisfied to the approximation
being considered, since vJ„equals V'k~i„and the differ-
ence k —k' is very small in the region where
exp( —

~ lk —k'l'P) is peaked. This verifies the assertion
that s2'(x) satisfies a conservation equation in the same

approximation that (5.10) is valid.

0. CONCLUSIONS AND DISCUSSION

The expressions for the energy Aux, valid for all
phases of matter, have been obtained from the require-
ment that the local Qux satisfy a conservation law.
With the Hamiltonian expressed as H =Ho+AH', where
H' is the harmonic Hamiltonian for a lattice, one obtains
contributions to the energy Aux which are independent
of the perturbation XH' and contributions proportional
to X and to )P. %hen expressed in terms of phonons, the
perturbation independent part of the average fiux sep-
arates into

So=S o+S o+So

where S2 ~0 is the diagonal part of So in the phonon
representation, S2,„q' is nondiagonal and contains con-
tributions from modes with the same wave vector but
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different polarization directions, and S30 is a cubic func-
tion of the creation and annihilation operators aj,.~

and a~,.
The diagonal part S2,q' has the form of the usual

expression (1.1) for the lattice energy flux. Diagonal
elements in the phonon representation correspond to
time-independent terms in the classical harmonic
approximation, while nondiagonal terms correspond to
oscillatory functions. Thus, when the anharmonic
energy is small, one expects the diagonal element to give
the major contribution to the (time-averaged) transport
of energy.

When one uses the cubic term in the potential energy
expansion as a perturbation, its contribution to the Qux

has the form
zS'= xS,'+ zS,',

where 'AS3' and XS4' are, respectively, cubic and quartic
functions of the operators u~, ~ and a~, . Similarly, an nth
power term in the potential energy expansion yields eth
and (n+1)st power contributions to the flux. Since the
product of an even number of creation and annihilation
operators can possess diagonal matrix elements, there
are in general diagonal contributions to the Aux from
all powers in the expansion of the Hamiltonian.

Neither S30 nor the (v+1)st power contribution from
the nth power perturbation would occur, had the energy
associated with the various particles been identified with

their lattice sites instead of with their actual positions.
Because of this one expects these contributions to be
significant only when the amplitudes of the particle
displacements are appreciable compared to the spacing
between particles, such as one anticipates at tempera-
tures near the melting point. Such contributions are, of
course, of primary importance when the particle dis-
placements are very large, as in a gas.

It has also been shown that the general expression for
the local energy flux s(x) is given approximately by

s(x) =g Ng, (x)ha&k vg„

where cVq, (x) contains contributions from a packet of
normal modes with a spread of wave vectors centered
about the value k. To obtain this result it is required
that the macroscopically small volume elements over
which local properties are averaged be large compared
to the interparticle force range and contain many
particles.
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