Atomic Masses from Ruthenium to Xenon*

RICHARD A. DAMEROW,† RICHARD R. RIES,‡ AND WALTER H. JOHNSON, JR. School of Physics, University of Minnesota, Minneapolis, Minnesota (Received 14 June 1963)

A sixteen-inch double-focusing mass spectrometer employing the peak matching method of measurement has been used to measure the atomic masses of all stable isotopes in the region ruthenium to xenon. Atomic masses of 53 radioactive nuclei have been calculated from mass differences derived from nuclear reaction and β-decay energies. Nucleon binding and pairing energies have been calculated from the resulting mass table. The effect of the shell closure at Z=50 on the systematics of nucleon binding and pairing energies has been investigated in greater detail than has previously been possible. The discontinuity in proton binding energy is shown to be caused by a decrease in binding energy of protons beyond Z=50. The main result of the study of nuclear systematics in this region seems to be that the binding energies of both neutrons and protons exhibit smooth behavior except for discontinuities at a shell closure. The presence of doubly charged, diatomic tellurium satellites which interfere with the singly charged ion peaks is also noted.

INTRODUCTION

TOMIC masses of the stable isotopes of elements from ruthenium through xenon have been measured with the Minnesota 16-inch double focusing mass spectrometer. Improvements to the instrument have been described in the previous paper. The mass results have been combined with disintegration energies and reaction Q values to form a table of 108 stable and radioactive masses. With this table, a study of the nuclear binding energy systematics in the neighborhood of the Z=50 shell has been undertaken.

MEASUREMENTS

The procedure of measurement and the analysis of data is similar to that described in the previous paper.1 Mass doublets have been measured of the narrow hydrocarbon-isotope type and also of the wider isotopeisotope type. In order to resolve the C13 satellite ion peak in the hydrocarbon-isotope doublets, a resolution of about 1/60 000 was required. Resultions of 1/60 000 to 1/200 000 were employed, so that the C13 satellite was resolved for all measurements.

Metal ions were obtained in most cases by heating the element or one of its compounds in a furnace described in the previous article. The following compounds were employed: (C₅H₅)₂Ru, AgCl, SnCl₂, and CH₃I. Pure metals were used for rhodium, palladium, cadmium, indium, antimony, and tellurium. The ruthenium and iodine compounds had sufficient vapor pressure at room temperatures to be run as gases. Adequate vapor pressure from rhodium and palladium could not be obtained in the usual way. These materials were vaporized by heating a ribbon of tantalum to which a small sample of rhodium or palladium had been spot welded.

A series of closely spaced satellites were observed near the singly ionized tellurium ion peak. These satellites are illustrated in an oscilloscope photograph shown in Fig. 1. The resolution of the instrument for this illustration was in excess of 1/300 000. The satellite peaks were identified as doubly ionized combinations of other tellurium isotopes, see Fig. 1 for example.

RESULTS

Table I lists the measured doublets. Xenon doublets from Ref. 2 have been included for completeness. The errors listed are standard errors calculated from the statistical spread in the original data together with an estimate of resistor uncertainty. The masses are listed in the mass scale in which C12 is exactly 12 units, the symbol for these units being u.

Table II lists atomic masses that may be calculated from the doublets of Table I. Secondary standard masses used in these calculations are found in Table III. Some of the mass values for tin, cadmium, and ruthenium are overdetermined with data from both hydro-

Fig.1. Tracing the doubly charged, diatomic satellites of the Te¹²⁵ peak. The peaks are, from right to left (Tc¹²⁴Tc¹²⁶)++, (Tc¹²²Tc¹²⁵)++, Tc¹²⁵, and (Tc¹²⁰)++. The (Tc¹²⁰ Tc¹³⁰)++ peak has very low intensity and appears only as a slight broadening of the base of the peak. The $Te^{12\delta}$ and $(Te^{122} Te^{128})^{++}$ ions differ in mass by 672 μ u.

^{*} Supported in part by contract Nonr-710(18) with the Office of Naval Research.

[†] Present address: Sandia Corporation, Alburquerque, New Mexico.

[‡] Present address: Max Planck Institut für Chemie, Mainz,

¹R. R. Ries, R. A. Damerow, and W. H. Johnson, Jr., Phys. Rev. 132, 1662 (1963).

²R. A. Damerow, M. S. thesis, University of Minnesota, 1960

Table I. Mass doublets.

	Mass difference ^b		Mass difference ^b					
Doublet ^a	(u)	Errore	Doublet ^a	(u)	Errore			
C ₇ H ₁₂ - Ru ⁹⁶	0.186 304 6	38	C ₉ H ₉ -Sn ¹¹⁷	0.167 485 5	127			
$C_7H_{14} - Ru^{98}$	0.204 263 5	29	$C_9H_{10}-Sn^{118}$	0.176 644 6	71			
$C_7H_{15}-Ru^{99}$	0.211 442 8	30	$C_9H_{11}-Sn^{119}$	0.182 777 6	72			
$C_7H_{16} - Ru^{100}$	0.220 983 8	37	$C_9H_{12}-Sn^{120}$	0.191 709 0	112			
$C_8H_5-Ru^{101}$	0.133 549 5	22	$C_8H_{12}N - Sn^{122}$	0.193 541 4	80			
$C_8H_6-Ru^{102}$	0.142 604 8	32	$C_7C^{13}H_{13}N - Sn^{124}$	0.202 885 6	83			
C ₈ H ₈ -Ru ¹⁰⁴	0.157 171 5	34	$Sn^{115} - Sn^{114}$	1.000 573	- 11			
Ru ⁹⁹ – Ru ⁹⁸	1.000 652	11	$Sn^{116} - Sn^{115}$	0.998 398	11			
Ru ¹⁰⁰ — Ru ⁹⁹	0.998 282	11	$Sn^{117} - Sn^{116}$	1.001 219	11			
Ru ¹⁰¹ — Ru ¹⁰⁰	1.001 368	$\bar{1}\bar{1}$	$Sn^{118} - Sn^{117}$	0.998 662	11			
Ru ¹⁰² — Ru ¹⁰¹	0.998 767	11	$Sn^{119} - Sn^{118}$	1.001 709	12			
$C_8H_7 - Ru^{103}$	0.149 263 5	33	$Sn^{120} - Sn^{119}$	0.998 887	11			
$C_8H_6-Pd^{102}$	0.141 324 1	187	$Sn^{124} - Sn^{122}$	2.001 838	22			
C ₈ H ₈ - Pd ¹⁰⁴	0.158 612 3	101	$C_0H_{13}-Sb^{121}$	0.197 910 5	37			
$C_8H_9 - Pd^{105}$	0.165 356 5	139	$C_8H_{13}N - Sb^{123}$	0.200 580 0	33			
$C_8H_{10}-Pd^{106}$	0.174 764 0	43	$C_9H_{12}-Te^{120}$	0.189 879 0	89			
$C_8H_{12}-Pd^{108}$	0.190 013 5	61	$C_8H_{12}N - Te^{122}$	0.193 924 8	89			
$C_8H_{14} - Pd^{110}$	0.204 388 8	93	$C_8H_{13}N - Te^{123}$	0.200 538 0	155			
$C_8H_{11}-Ag^{107}$	0.180 986 4	31	$C_7C^{13}H_{13}N-Te^{124}$	0.205 336 0	127			
$C_8H_{13} - Ag^{109}$	0.196 972 1	38	$C_7H_6Cl^{35}-Te^{125}$	0.111 363 2	57			
$C_8H_{10}-Cd^{106}$	0.171 789 3	27	$C_{10}H_6-Te^{126}$	0.143 622 5	90			
$C_8H_{12}-Cd^{108}$	0.189 715 6	29	$C_{10}H_8 - Te^{128}$	0.158 111 5	86			
$C_8H_{14}-Cd^{110}$	0.206 548 4	46	$C_9H_8N-Te^{130}$	0.159 445 6	101			
$C_8H_{15}-Cd^{111}$	0.213 184 4	39	$C_{10}H_7 = I^{127}$	0.150 296 7	62			
$C_8H_{16}-Cd^{112}$	0.222 445 3	39	$C_{11}H_{10}-CH_{3}I^{127}$	0.150 305 3	34			
$C_9H_5-Cd^{113}$	0.134 721 1	39	$Xe^{128}-Xe^{126}$	1.999 226	45			
$C_8H_{18}-Cd^{114}$	0.237 487 6	40	$C_{10}H_8 - Xe^{128}$	0.159 068 2	42			
$C_9H_8-Cd^{116}$	0.157 837 4	29	C ₁₀ H ₉ -Xe ¹²⁹	0.165 643 6	36			
Cd111 - Cd110	1.001 180	11	$C_{10}H_{10}-Xe^{130}$	0.174 743 6	42			
$Cd^{112} - Cd^{111}$	0.998 581	ĨĨ	$C_{10}H_{11}-Xe^{131}$	0.180 991 6	30			
$Cd^{113}-Cd^{112}$	1.001 642	11	$C_{10}H_{12} - Xe^{132}$	0.189 740 8	33			
$Cd^{114} - Cd^{113}$	0.998 960	11	$C_{10}H_{14}-Xe^{134}$	0.204 155 5	32			
$C_9H_5-In^{113}$	0.135 015 3	85	$C_{10}H_{16}-Xe^{136}$	0.217 982 0	39			
$C_9H_7-In^{115}$	0.150 909 6	79	$Xe^{129}-Xe^{128}$	1.001 247	12			
$C_8H_{16}-Sn^{112}$	0.220 383 6	91	$Xe^{130}-Xe^{129}$	0.998 723	12			
C ₈ H ₁₈ -Sn ¹¹⁴	0.238 092 3	102	$Xe^{131}-Xe^{130}$	1.001 574	11			
$C_9H_7 - Sn^{115}$	0.151 411 4	76	$Xe^{132}-Xe^{131}$	0.999 070	$\overline{11}$			
$C_9H_8 - Sn^{116}$	0.160 860 7	84			_ _			

 $[^]a$ Throughout this work C, H, and N refer to C¹², H¹, and N¹⁴. b All masses are measured in a scale in which the atomic mass of C¹² is exactly equal to 12 units (symbol u). The symbols mu and μu refer to one milliunit and one microunit, respectively.

carbon doublets and isotopic doublets. In these cases, a weighted least-squares fit of the data was made. The result listed in Table II is the adjusted value of the mass. Errors in these cases are those derived from the least-square adjustment.

Table II also gives, for comparison purposes, the results of previous measurements. In this region, most of the mass spectroscopic results that were used in the 1961 Mass Table³ are from previous Minnesota work by Halsted⁴ on a smaller instrument. For this reason, no attempt will be made to make detailed comparisons with the 1961 Mass Table. The errors for Halsted's measurements are, in most cases, more than ten times larger than the present quoted errors. Thus, no significant test of the present data can be made by a comparison of these masses. One observes that there is no general tendency for Halsted's results to be higher or lower than the present results.

Comparison of the present results with the precise results of Barber et al.5,6 for tin and antimony isotopes indicate that in all cases Barber's masses are higher than the present masses. The agreement would not be as good if the Cl37-Cl35 mass difference which may be obtained from the 1961 Mass Table is employed rather than the value derived from chlorine masses in Table III. The agreement with Barber's results is satisfactory.

Many of the results for ruthenium, tin, and antimony may be compared with results of Demirkhanov et al. 7,8 The measurements of Demirkhanov have errors that are about 10 times larger than the errors for the present results. In all cases, the masses listed by Demirkhanov

Throughout this work the errors refer to the last figure of the particular result. The errors given in this table are from the original experimental data. The resulting error in an atomic mass calculation will be rounded off to the nearest μ u.

³ L. A. König, J. H. E. Mattauch, and A. H. Wapstra, Nucl. Phys. 31, 18 (1962).
⁴ R. E. Halsted, Phys. Rev. 88, 666 (1952).

⁶ R. C. Barber, R. L. Bishop, L. A. Cambey, W. McLatchie, and H. E. Duckworth, Can. J. Phys. 40, 1496 (1962).

⁶ R. C. Barber, L. A. Cambey, J. H. Ormrod, R. L. Bishop, and H. E. Duckworth, Phys. Rev. Letters 9, 16 (1962).

⁷ R. A. Demirkhanov, V. V. Dorokhov, and M. I. Dzkuya, Zh. Eksperim. i Teor. Fiz. 40, 1572 (1961) [translation: Soviet Phys.—IETP 13, 1104 (1961)].

Phys.—JETP 13, 1104 (1961)].

§ R. A. Demirkhanov, T. I. Gutkin, O. A. Samadashvili, and I. K. Karpenko, Bull. Acad. Sci. USSR, Phys. Se.., 25, 882 (1961).

TABLE II. Atomic masses computed from doublet data in Table I together with a comparison with previous mass spectroscopic values.

	Present resi	ıltsa	1961 Mass T	[ableb	Other results			Present results ^a		1961 Mass 7	Γable ^b	Other results®	
Isotope	u	error	u	error	u	error	Isotope	u	error	u	error	u	error
Ru ⁹⁶	95.907 592	4	95.907 600	700	95.907 377	15 ^d	Sn118	117.901 601	6	117.901 790	190	117.902 08	22f
Ru ⁹⁸	97.905 282	4	97.905 500	800	97.904 754	60^{d}						117.901 611	6h
Ru^{99}	98.905 928	4	98.906 080	490	98.905 668	50^{d}						117.901 448	45i
Ru ¹⁰⁰	99.904 210	5	99.903 020	300	99.904 186	74^{d}	Sn119	118.903 298	6	118.903 390	200	118.903 16	11f
Ru^{101}	100.905 574	2	100.904 120	210	100.905 167	44^{d}						118.903 320	5h
Ru^{102}	101.904 343	3	101.903 720	200	101.904 021	72^{d}						118.903 150	40i
Ru^{104}	103.905 426	4	103.905 530	400	103.905 084	23^{d}	Sn120	119.902 186	9	119.902 130	140	119.902 19	7 f
$\mathrm{Rh^{103}}$	102.905 509	4	102.904 800	200	102.905 49	10e	1					119.902 207	5h
$\mathrm{Pd^{102}}$	101.905 624	19	101.904 940	190	101.904 87	8 ^f						119.902 077	45i
Pd^{104}	103.903 985	10	103.903 560	200	103.903 29	10^{f}	Sn122	121.903 428	8	121.903 410	140	121.903 47	14f
$\mathrm{Pd^{105}}$	104.905 066	14	104.904 640	270	104.904 83	14^{f}	1					121.903 453	6^{h}
Pd^{106}	105.903 483	5	105.903 200	120	105.902 92	18f						121.903 180	40^{i}
$\mathrm{Pd^{108}}$	107.903 883	6	107.903 920	120	107.903 48	10^{f}	Sn124	123.905 264	9	123.905 240	130	123.905 24	10f
$\mathrm{Pd}^{\scriptscriptstyle{110}}$	109.905 157	10	109.904 500	320	109.904 49	12f	l					123.905 287	7h
Ag^{107}	106.905 085	4	106.904 970	110	106.905 00	10^{g}						123.905 025	70i
Ag^{109}	108.904 749	4	108.904 700	110	108.904 64	10^{g}	Sb^{121}	120.903 811	4	120.903 750	140	120.903 822	4h
Cd^{106}	105.906 458	3	105.905 950	370	105.905 94	14^{f}						120.903 652	40i
Cd^{108}	107.904 181	4	107.904 000	120	107.904 08	10^{f}	Sb^{123}	122.904 214	4	122.904 150	140	122.904 215	5h
Cd^{110}	109.902 998		109.902 970	110	109.903 41	12^{f}						122.903 938	50i
Cd^{111}	110.904 184		110.904 150	190	110.904 29	8f	Te^{120}	119.904 017	9	119.904 510		119.904 51	15f
$\mathrm{Cd}^{_{112}}$	111.902 752		111.902 840	110	111.903 06	10^{f}	Te^{122}	121.903 045	9	121.903 000	130	121.902 91	8f
Cd^{113}	112.904 401	4	112.904 610	100	112.904 48	9f	$\mathrm{Te^{123}}$	122.904 256	16	122.904 180	130	122.904 34	40^{f}
Cd^{114}	113.903 357	5	113.903 570	100	113.903 56	13f	Te^{124}	123.902 814	13	123.902 760		123.903 12	10^{f}
$\mathrm{Cd^{116}}$	115.904 760		115.905 010		115.905 00	12f	$\mathrm{Te^{125}}$	124.904 438	6.	124.904 420		124.904 62	32^{f}
In^{113}	112.904 108		112.904 280	100	112.904 32	10^{f}	Te^{126}	125.903 326	9	125.903 242	37	125.903 87	6f
In^{115}	114.903 863		114.904 070	100	114.903 62	10^{f}	${ m Te}^{128}$	127.904 486	9	127.904 710		127.905 56	12f
Sn^{112}	111.904 812		111.904 940	110			$\mathrm{Te^{130}}$	129.906 225	10	129.906 700		129.906 96	8 f
Sn^{114}	113.902 763		113.902 960	100			I^{127}	126.904 471	5	126.904 352	23	126.904 66	12f
Sn^{115}	114.903 349		114.903 530	110	114.903 36	25^{f}	Xe^{126}	125.904 303	45	125.904 169		125.904 45	14^{f}
$\mathrm{Sn^{116}}$	115.901 737	6	115.902 110	190	115.902 20	16f	Xe^{128}	127.903 529	4	127.903 538		127.903 52	7 f
					115.901 747	7ь	Xe^{129}	128.904 779	4	128.904 784		128.904 78	12 ^f
					115.901 679	50i	Xe^{130}	129.903 503	5	129.903 510		129.903 51	3i
$\mathrm{Sn^{117}}$	116.902 944	8	116.903 060	190	116.903 11	9f	Xe^{131}	130.905 080	4	130.905 087	7	130.905 08	4 i
					116.902 963	6h	Xe^{132}	131.904 156	4	131.904 162	8	131.904 17	5i
					116.902 940	40^{i}	Xe ¹³⁴	133.905 390	4	133.905 398	. 8	133.905 41	5 i
							Xe^{136}	135.907 213	5	135.907 221	10	135.907 210	. 25i

^a Computed by combining the doublet data in Table I with the appropriate auxiliary masses given in Table III. The overdetermined masses of Sn, Cd, and Ru are obtained by a least-squares adjustment of the data. The mass of I¹²⁷ is a weighted average of the two determinations.

TABLE III. Standard masses.

	Mass	
Isotope	, u	error
C13	13.003 355 4	10a
Cl^{35}	34.968 853 1	19ь
Cl^{37}	36.965 903 4	12b
H^1	1.007 824 7	20
H^2	2.014 102 2	1 ^d
n	1.008 665 4	4 d
N^{14}	14.003 073 1	4a
0^{16}	15.994 914 2	. 5°

are smaller than the present results. The source of the large discrepancies in several of these comparisons is unknown.

Table IV lists the unstable masses which may be calculated using the present data combined with nuclear reaction Q values and β -decay energies. (Only results

Fig. 2. Nuclear reaction and β -decay paths that were employed to calculate atomic masses of the radioactive isotopes. Solid circles represent stable nuclei, open circles represent radioactive nuclei, and connecting lines indicate nuclear reaction and β -decay mass differences.

The mass of 1¹² is a weighted average of the two determinations. b Ref. 3.

^e The original doublet values of these authors have, where necessary, been converted to the C¹² scale and then combined with the appropriate masses from Table III.

^d Ref. 7.

^a T. T. Scolman, K. S. Quisenberry, and A. O. Nier, Phys. Rev. 102, 1076 (1956).

^b C. F. Giese and J. L. Benson, Phys. Rev. 110, 712 (1958).

^c K. S. Quisenberry, C. F. Giese, and J. L. Benson, Phys. Rev. 107, 1664 (1957).

^d Ref. 3.

[°] Obtained from the \$Pb²⁰⁸-Rh¹⁰⁸ doublet value of B. G. Hogg and H. E. Duckworth [Can. J. Phys. 30, 637 (1952)] combined with the Pb²⁰⁸ value (converted to Cl²⁸) from J. L. Benson, R. A. Damerow, and R. R. Ries [Phys. Rev. 113, 1105 (1959)].

§ Ref. 4,

§ W. H. Johnson, Jr. (private communication).

h Refs. 5 and 6.

i Ref. 8,

i Ref. 8,

ⁱ Ref. 8. ^j W. H. Johnson, Jr., and A. O. Nier, Phys. Rev. **105**, 1014 (1957).

TABLE IV. Atomic masses of radioactive nuclei.^a

tope Reaction keV error Ref. b u error tope Reaction keV $(\beta^-)Rh^{103}$ $(\beta^-)Rh^{103}$ $(\beta^-)Rh^{103}$ $(\beta^-)Rh^{103}$ $(\beta^-)Rh^{105}$ $(\beta^$	582 20 419 24 984 4	Ref. ^b i 60-3-96 60-3-96 60-3-111	Mass u 111.905 524 111.905 520d 113.904 880	error ^c
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	582 20 419 24 984 4 924 29	i 60-3-96 60-3-96	111.905 524 111.905 520 ^d	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	119 24 984 4 924 29	60-3-96 60-3-96	111.905 520d	22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	984 4 924 29	60-3-96		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	984 4 924 29	60-3-96	113,904 880	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	024 29			26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		60-3-111	113.904 893	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	290 60		113.904 886	32
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	290 60		113.904 886d	1 10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		60-3-121	115.905 269	65
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	470 10	60-3-135	116.904 522	13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	584 4	60-2-106	112.904 842	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	920 70	60-4-78	120.904 256	76
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	383 5	60-4-78	120.904 222	7
$\overset{\circ}{\mathrm{Ru}}^{104}(p,n) = -2340 30 61-4-9 \begin{array}{c ccccccccccccccccccccccccccccccccccc$			120.904 239d	١ 9
103.906 626 ^d 22 $\sin^{124}(d,p)$ 35	120 10	60-6-66	122.905 738	11
	340 10	60-6-93	124.907 763	14
D_{105} (g-1) D_{105} 565 3 61 A-22 104 005 673 14 1	520 70	60-9-95	124.907 762	76
			124.907 762d	
	320 30	60-3-137	116.904 898	33
	579 20	60-4-62	118.903 920	22
	720 20	60-4-70	119.905 106	23
Pd^{107} (β^{-}) Ag^{107} 35 1 60-5-140 106.905 123 4 Sb^{122} (β^{-}) Te^{122} 19	71 4	60-4-88	121.905 161	10
	590 30	60-4-88	121.905 135	33
Pd ¹¹¹ (β -)Ag ¹¹¹ 2190 50 60-2-81 110.907 662 55 $\mathring{S}b^{1/23}(\gamma,n)$ -89		60-6-68	121.905 190	54
	780 20	60-4-90	121.905 197	22
Ag^{106} (β^{+})Pd ¹⁰⁶ 2980 10 60-4-52 105.906 682 12			121.905 171 ^d	
	216 3	60-6-79	123.905 945	13
	57 6	60-6-96	124.905 251	9
	570 3	61-1-75	126.906 896	10
	294 2	60-4-63	118.906 383	22
(β)1 d 1902 23 101.903 923 20 1 c (β)1 c	589 7	61-1-76	126.905 211	9
	180 5	61-1-99	128.906 571	9
	280 20	61-2-53	130.908 570	22
	170 30	60-6-85	123.906 217	35
11g (p) Od 2001 0 00 2011 10 12 (c) 10	50 30	60-6-99	124.904 599	33
	51 5	60-6-109	125.905 635	10
	251 5	60-6-109	125.905 646	45
	35 22	61-1-77	125.905 613	24
	120 10	61 1 00	125.905 631d	
		61-1-88	127.905 805	11
	267 12 785 22		127.905 846	16
		61-1-901	127.905 852	24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50 50	61-1-90	127.906 078	
	189 5	61-1-101	127.905 834 ^d	
	189 5 950 20	61-3-73	128.904 982	7
In^{112} (β^{-})C I^{112} (β^{-})S I^{112} (β^{-})S I^{112} (β^{-})X I^{12} (β^{-})X I^{12} (β^{-})X I^{13}		01-3-13	129.906 670	22
111 (β /311 030 0 00-2-93 111.903 310 12 1.00 (β /λε 9	070.4 0.6		130.906 122	4

with errors smaller than 75 keV are used.) The nuclear reaction and β -decay paths that were employed to calculate atomic masses of the radioactive isotopes are pictured in Fig. 2. A check on the present data may be obtained from the thirteen overdetermined Q value masses. It should be pointed out, however, that such studies cannot detect with any certainty small systematic errors $(5-10 \,\mu\text{u})$. In general, the different determinations of the same mass agree quite well, and this agreement is taken to be a confirmation of the accuracy of the present data. In three cases, one of the individual masses disagreed markedly with the remainder and

^e Not included in the average.
[!] H. W. Brandhorst, Jr., and J. W. Cobble, Phys. Rev. 125, 1323 (1962).
⁸ This is a particular value rather than the average given in the sheets.
^h L. Frevert, Z. Physik 169, 456 (1962).
ⁱ N. L. Lark, P. F. A. Goudsmit, J. F. W. Jansen, J. E. J. Oberski, and A. H. Wapstra, Nucl. Phys. 35, 582 (1962).
ⁱ J. Ruan and Y. Yoshizawa, Nucl. Phys. 36, 431 (Z962).
^k H. Langhoff, P. Killian, and A. Flammersfeld, Z. Physik 165, 393 (1961).
ⁱ An unassigned gamma ray (0.075 MeV) has been added to the value given in the *Nuclear Data Sheets*.

was eliminated from the average. Only in the case of the rejected Q values will a specific comment be made.

The reaction $Ru^{104}(p,n)Rh^{104}$ has been rejected because the Rh¹⁰⁴ mass value derived from it is approximately 470 µu higher than the other values. It should be mentioned, however, that the Ru¹⁰⁴ value of Demirkhanov et al.7 would reduce this disagreement by a factor of three. The $\mathrm{Ag^{107}}(d,p)\mathrm{Ag^{108}}\;Q$ value appears to be wrong in view of the excellent agreement of the four other determinations. Similarly, the agreement of three of the four determinations of I¹²⁸ is considered grounds for rejecting the $I^{127}(d,p)I^{128}Q$ value.

^{*} The conversion factor 931.476±0.004 MeV/u [E. R. Cohen, Bull. Am. Phys. Soc. 7, 305 (1962)] has been used in these calculations.

^b References have usually been given to the year, the set, and the page numbers of the Nuclear Data Sheets; for example, 60-2-56. Recent editions of these sheets specify the volume number rather than the year; for example, 5-1-13.

 ^{5-1-13.} The error assigned to the average is the larger of the following quantities:
 The error of the most precise value, and
 A number chosen so that twice its value covers all measurements.
 Unweighted average.

TABLE V. Total nuclear binding energy, TNBE; and the average binding energy per nucleon, TNBE/A.

	TNBE ^a	TNBE/A		TNBEa	TNBE/A
Isotope	mu	mu error	Isotope	mu	mu error
$_{44}\mathrm{Ru}_{52}{}^{96}$	887.181	9.2415 3	In_{66}^{115}	1051.316	9.1419 3
Ru ₅₄ 98	906.821	9.2533 3	In ₆₇ ¹¹⁶	1058.575	9.1256 6
Ru ₅₅ 99	914.841	9.2408 3	In_{68}^{117}	1067.988	9.1281 3
Ru_{56}^{100}	925,224	9.2522 3	$_{50}\mathrm{Sn}_{62}^{112}$	1023.522	9.1386 3
R1157 ¹⁰¹	932.526	9.2329 3	Sn_{63}^{113}	1032.157	9.1341 3
Ru ₅₀ 102	942.422	9.2394 3	Sn ₆₄ 114	1042,902	9.1483 3
R11 ro ¹⁰³	949.169	9.2152 4	Sne5 ¹¹⁵	1050.981	9.1390 3
Ru_{60}^{104}	958.670	9.2180	Sn ee 116	1061.258	9.1488 3
Ru_{61}^{105}	965.079	9.1912 3	Sn_{67}^{117}	1068.717	9.1343 3
Ru ₆₂ 106	974.102	9.1896 3	Sn ₆₈ ¹¹⁸	1078.725	9.1281 3 9.1386 3 9.1341 3 9.1483 3 9.1488 3 9.1343 3 9.1417 3 9.1235 3 9.1289 3 9.1081 3
$_{45}^{100}$ Rh ₅₄ 99	91.739	9.2095 3	Sn_{69}^{119}	1085.694	9.1235 3
Rh ₅₅ ¹⁰⁰	920,468	9.2047 3	Sn ₇₀ ¹²⁰	1095.471	9.1289 3
Rh ₅₇ ¹⁰²	939.081	9.2067 3	$\operatorname{Sn}_{71}^{121}$	1102.083	9.1081 3
Rh ₅₈ ¹⁰³	949.074	9.2143 3	Sn ₇₂ ¹²²	1111.560	9.1111 3
Rh ₅₉ ¹⁰⁴	956.622	9.1983 3	$\mathrm{Sn_{73}^{123}}$	1117.915	9.0887 3
Rh ₆₀ ¹⁰⁵	966,240	9.1963 3	Sn ₇₄ ¹²⁴	1117.913	9.0892 3
KI160 ¹⁰⁰			Sn ₇₅ ¹²⁵		9,0092 3
Rh ₆₁ ¹⁰⁶	973.296		S1175 20 Ch 117	1133.222	9.0658 3
Rh ₆₂ ¹⁰⁷	982.511	9.1823 6	51Sb ₆₆ ¹¹⁷	1065.915	9.1104 4
$_{46}\mathrm{Pd}_{56}{}^{102}$	939.447	9.2103 3	${}^{\mathrm{Sb}_{68}}_{119}_{\mathrm{Sb}_{69}}$	1084.224	9.1111 3
${ m Pd}_{57}{}^{103}$	947.626	9.2003 4 9.2155 3	SD ₆₉ ¹²⁰	1091.703	9.0975 3
Pd_{58}^{104}	958.416		Sb ₇₀ ¹²¹	1101.664	9.1047 3
${ m Pd}_{59}{}^{105}$	966.001	9.2000 3	Sb ₇₁ ¹²²	1108.969	9.0899 3
Pd_{60}^{106}	976.249	9.2099 3	Sb_{72}^{123}	1118.592	9.0942 3
Pd_{61}^{107}	983.275	9.1895 3	$\mathrm{Sb_{73}^{124}}$	1125.526	9.0768 3
$\operatorname{Pd}_{62}^{108}$	993.180	9.1961 3	Sb_{74}^{125}	1134.885	9.0791 3
Pd_{63}^{109}	999.781	9.1723 3	Sb_{76}^{127}	1150.571	9.0887 3 9.0892 3 9.0658 3 9.1104 4 9.1111 3 9.0975 3 9.1047 3 9.0889 3 9.0768 3 9.0791 3 9.0596 3 9.0833 3 9.0995 3 9.1004 3 9.0870 3 9.0870 3
${\rm Pd}_{64}^{110}$	1009.237	9.1749 3	$_{52}\mathrm{Te}_{67}^{119}$	1080.913	9.0833 3
Pd_{65}^{111}	1015.397	9.1477 6	${ m Te_{68}^{120}}$	1091.945	9.0995 3
$_{47}$ A $_{957}^{104}$	952.985	9.1633 3	$\mathrm{Te_{70}^{122}}$	1110.247	9.1004 3
Ag_{59}^{106}	972.192	9.1716 3	Te_{71}^{123}	1117.702	9.0870 3
$A_{\mathcal{G}_{60}^{107}}$	982.465	9.1819 3	Te ₇₉ 124	1127.809	9.0952 3
$A_{O_{c_1}}^{108}$	990.271	9.1692 3	Te_{73}^{125}	1134.851	9.0788 3
$A \sigma_{co}^{109}$	1000.132	9.1755 3	Te_{74}^{126}	1144.628	9.0843 3
$A_{2'63}^{110}$	1007.455	9.1587 3	Te ₇₅ 127	1151.408	9.0662 3 9.0687 3
$A \sigma_{e_A}^{111}$	1016,900	9.1613 3	Te_{76}^{128}	1160.799	9.0687 3
Ag_{65}^{112}	1023.788	9.1410 4	Te ₇₇ 129	1167.379	9.0494 3
Ag_{66}^{113}	1032.994	9.1415 5	Te_{78}^{130}	1176.391	9.0492 3
48Cd 58 ¹⁰⁶	971.580	9.1658 3	Te_{70}^{131}	1182.711	9.0283 3
Cd_{50}^{107}	980.097	9.1598 3	53I71 ¹²⁴	1123.558	9.0610 4
Cd_{60}^{108}	991.188	9.1777 3	I ₇₀ 125	1133.841	9.0494 3 9.0492 3 9.0283 3 9.0610 4 9.0707 4 9.0593 3
Cdc, 109	999,115	9.1662 3	I_{73}^{126}	1141.474	9.0593 3
Cd_{62}^{110}	1009.701	9.1791 3	T ₇₄ 127	1151.300	9.0654 3
Cd_{63}^{111}	1017.181	9.1638 3	T-2 128	1158.602	9.0654 3 9.0516 3
Cd_{64}^{112}	1027.278	9.1721 3	\tilde{I}_{76}^{78}	1168.120	9.0552 3
Cd_{65}^{113}	1034,295	9.1531 3	I ₇₇ 130	1175.097	9.0392 3
Cd_{66}^{114}	1044.004	9.1579 3	T ₇₀ 131	1184,310	9.0405 3
Cd_{67}^{115}	1050,606	9.1357 3	54Xe ₇₂ ¹²⁶	1141.954	9.0552 3 9.0392 3 9.0405 3 9.0631 5 9.0630 3 9.0502 3 9.0570 3 9.0420 3
Cd_{68}^{116}	1050.000	9.1373 3	Xe ₇₄ ¹²⁸	1160.058	9.0630 3
49In ₅₉ 108	984.854	9.1190 6	Xe ₇₅ ¹²⁹	1167.474	9.0502 3
In_{60}^{109}	996,098	9.1190 0	Xe ₇₆ ¹³⁰	1177,415	9.0570 3
T1160	1004,603	9.1385 3 9.1328 5	Xe ₇₆ ¹³¹	1177.413	9.0370 3
In ₆₁ ¹¹⁰		9.1340 3 0.1209 2	Xe ₇₇ ¹⁰¹ Xe ₇₈ ¹³²		9.0420 3
In ₆₃ ¹¹²	1023.662	9.1398 3	V c 134	1194.093	9.0462 3 9.0313 3 9.0125 3
${ m In_{64}^{113}} { m In_{65}^{114}}$	1033.740 1041.627	9.1481 3 9.1371 3	$Xe_{80}^{134} \ Xe_{82}^{136}$	1210.190 1225.698	9.0313 3 9.0125 3

^a No errors for total binding energy are specified. For most purposes, the difference in two TNBE values is employed. For these cases, the errors in TNBE may be considered to be equal to the errors given for the corre-

sponding atomic mass. In other words, one may assume the errors associated with the neutron mass and the hydrogen mass to be negligible.

Three nuclear reactions linking stable isotopes are also shown in Fig. 2. The reaction linking Ru¹⁰¹ and Ru¹⁰² (Ref. 9) yields a mass difference which is 831±64 μu greater than the present value. The value of this difference obtained from Ref. 7 is in substantial agreement with the present result and would seem to indicate that the Q value does not represent a groundstate transition. The $Cd^{113}(n,\gamma)Cd^{114}$ reaction yields a mass difference of 0.998, 954±9 u which agrees very well with the present value of 0.998, 956±6 u. The $Te^{123}(n,\gamma)Te^{124}$ reaction¹¹ gives a mass difference of 0.998, 573±22 u which compares well with the value 0.998, 558±21 u calculated from the present data.

⁹ P. Mason, F. C. Flack, and G. Parry, Proc. Phys. Soc. (London) 73, 138 (1959).
¹⁰ B. B. Kinsey and G. A. Bartholomew, Can. J. Phys. 31, 1051

^{(1953).}

¹¹ K. Way, G. Anderson, F. Everling, G. H. Fuller, N. B. Gove, R. Levesque, J. B. Marion, C. L. McGinnis, R. Nakasima, and M. Yamada, in *Nuclear Data Sheets*, compiled by K. Way et al. (Printing and Publishing Office, National Academy of Sciences—National Research Council, Washington 25, D. C., 1960), set 6, p. 84.

TABLE VI. Neutron separation and pairing energies.

_	S_n		S_{2n}		P_n		1	S_n		S_{2n}		P_n	
Isotope	mu	error	mu	error	mu	error	Isotope	mu	error	mu	error	mu	erro
$_{44}Ru_{54}^{98}$			19.640	3			In_{68}^{117}	9.413	67	16.672	18	2.154	130
Ru_{55}^{99}	8.020	2	-				50Sn63 ¹¹³	8.635	13				
Ru ₅₆ 100	10.383	3	18.403	3	2.363	4	Sn64 ¹¹⁴	10.745	13	19.380	13	2.110	23
Ru_{57}^{101}	7.302	3					$ Sn_{65}^{115} Sn_{66}^{116} $	8.079	13				
Ru ₅₈ 102	9.896	3	17.198	3	2.594	4	Sn_{66}^{116}	10.277	11	18.356	13	2.198	19
Ru_{59}^{103}	6.747	27					Sn_{67}^{117}	7.459	15				
Ru_{60}^{104}	9.501	27	16.248	4	2.754	54	Sn_{68}^{118}	10.008	15	17.467	11	2.549	27
Ru_{61}^{105}	6.409	18					Sn_{69}^{119}	6.969	10				
Ru_{62}^{106}	9.023	21	15.432	12	2.614	37	Sn ₇₀ ¹²⁰	9.777	13	16.746	13	2.808	19
$_{45}Rh_{55}^{100}$	8.729	31					Sn ₇₁ ¹²¹	6.612	14				
$\mathrm{Rh}_{58}{}^{103}$	9.993	13					Sn ₇₂ ¹²²	9.477	12	16.089	13	2.865	22
Rh ₅₉ ¹⁰⁴	7.548	22					Sn ₇₃ ¹²³	6.355	13				
Rh_{60}^{105}	9.618	26	17.166	14	2.070	46	Sn ₇₄ ¹²⁴	9.140	13	15.495	11	2.785	24
Rh_{61}^{106}	7.056	18					Sn ₇₅ ¹²⁵	6.167	16				
Rh_{62}^{107}	9.215	55	16.271	56	2.159	60	51Sb68 ¹¹⁹			18.309	41		
$_{46}\mathrm{Pd}_{57}^{103}$	8.179	37					Sb ₆₉ ¹²⁰	7.479	33				
Pd_{58}^{104}	10.790	34	18.969	21	2.611	68	Sb_{70}^{121}	9.961	24	17.440	23	2.482	53
Pd =0105	7.585	17					Sb ₇₁ ¹²²	7.305	18				
Pd_{60}^{106}	10.248	14	17.833	11	2.663	29	Sb_{72}^{123}	9.623	18	16.928	3	2.318	36
Pd_{61}^{107}	7.026	4					Sb ₇₃ ¹²⁴	6.934	11				
Pd_{62}^{108}	9.905	6	16.931	7	2.879	8	Sb ₇₄ 125	9.359	14	16.293	8	2.425	27
Pd_{63}^{109}	6.601	7					$\mathrm{Sb_{76}^{127}}$			15.686	12		
Pd_{64}^{110}	9.456	10	16.057	11	2.855	13	52Te68120	11.032	24				
Pd_{65}^{111}	6.160	56					Te70122			18.302	12		
$_{47}\mathrm{Ag_{60}^{107}}$	10.273	12					$\mathrm{Te_{71}^{123}}$	7.455	18				
A or c. 108	7.806	22					Te ₇₂ 124	10.107	20	17.562	15	2.652	34
Ag_{62}^{109}	9.861	22	17.667	3	2.055	44	$\mathrm{Te_{73}^{125}}$	7.042	13	1		2.002	0.1
Ag_{63}^{110}	7.323	8					Te_{74}^{126}	9.777	10	16.819	15	2.735	18
Ag_{64}^{111}	9.445	13	16.768	11	2.122	18	Te ₇₅ 127	6.780	12	20.017		2.700	
Ag_{65}^{112}	6.888	34					Te _{7e} 128	9.391	12	16.171	12	2.611	21
Ag ₆₆ ¹¹³	9.206	54	16.094	45	2.318	78	Te ₇₇ 129	6.580	11	10.171	14	2.011	21
48Cd ₅₉ 107	8.517	5					Te ₇₈ 130	9.012	13	15,592	13	2.432	20
Cde0108	11.091	5	19.608	2	2.574	10	Te ₇₉ 131	6.320	$\overline{24}$	10.072	10	2.102	20
Cd_{61}^{109}	7.927	5					53I72 ¹²⁵	10.283	48				
Cd_{62}^{110}	10.586	6	18.513	4	2.659	11	I ₇₃ 126	7.633	$\overline{34}$				
Cd_{63}^{111}	7.480	5		=			T74127	9.826	11	17.459	33	2.193	39
Cd_{64}^{112}	10.097	$\tilde{4}$	17.577	5	2.617	7	T ₇₅ 128	7.302	16	17.407	00	2.195	3,9
Cd_{65}^{113}	7.017	$ar{4}$		-			$egin{array}{c} f I_{75}^{128} \ f I_{76}^{129} \ \end{array}$	9.518	16	16.820	7	2.216	31
Cd_{66}^{114}	9.709	$\overline{4}$	16.726	4	2.692	8	I ₇₇ 130	6.977	23	10.020	•	2.210	31
Cd_{67}^{115}	6.602	13	2011-0	•		•	I ₇₈ ¹³¹	9.213	22	16.190	6	2.236	44
Cd_{68}^{116}	9.326	13	15.928	3	2.724	26	54Xe74 ¹²⁸	7.213	22	18.104	45	2.230	44
49In ₆₀ 109	11.244	55	10.,20	v			Xe ₇₅ ¹²⁹	7.416	4	10.104	T J		
In_{61}^{110}	8.505	45					Xe ₇₆ ¹³⁰	9.941	$\overset{4}{4}$	17.357	5	2.525	7
In_{64}^{113}	10.078	15					Xe_{77}^{131}	7.089	$\overset{4}{4}$	11.551	5	2.343	•
In_{65}^{114}	7.887	13					Xe_{78}^{132}	9.589	2	16.678	4	2.500	5
In_{66}^{115}	9.689	13	17.576	11	1.802	23	Xe_{80}^{134}	2.509	4	16.073	2	2.300	3
In_{67}^{116}	7.259	65	1		1.002	20	Xe_{82}^{136}			15.508	3		

NUCLEAR SYSTEMATICS

The total nuclear binding energy (TNBE) and the average binding energy per nucleon (TNBE/A) for 108 stable and radioactive nuclei in this region are given in Table V. The total nuclear binding energy is defined as follows:

TNBE
$$(Z,N) = ZM_H + NM_n - zM_N^A - E_b(Z,N)/c^2$$
, (1)

where M_n and M_H are the neutron mass and hydrogen atomic mass, and zM_N^A is the mass of the atom characterized by Z protons and N neutrons. The Coulomb binding of the electrons $[E_b(Z,N)/c^2]$ has been calculated by means of an expression given in Ref. 12. The value of this correction ranged from 115 μ u for ruthenium to 186 μ u for xenon, with a stated accuracy

of 10%. The expression for TNBE ignores the binding energy of the electron in the hydrogen atom. The

Fig. 3. Average binding energy per nucleon for stable isotopes.

¹² L. L. Foldy, Phys. Rev. **83**, 397 (1951).

TABLE VII. Proton separation and pairing energies.

	S_p		S_{2p}		P_{p}			S_{p}		S_{2p}		P_{p}	
Isotope	mu	error	mu	error	mu	error	Isotope	mu	error	mu	error	mu	error
45Rh5499	4.918	22					In ₆₈ ¹¹⁷	8,056	17				
Rh55100	5.627	22					50Sn62 ¹¹²			13.821	10		
Rh ₅₇ 102	6.555	13					Sn ₆₃ ¹¹³	8.495	15	14.976	10	2.014	26
Rh ₅₈ 103	6.652	3					Sn ₆₄ ¹¹⁴	9.162	13	15.624	10	2.700	19
Rh ₅₉ 104	7.453	35					Sn_{65}^{115}	9.354	12	16.686	8	2.022	22
Rh_{60}^{105}	7.570	14					Sn ₆₆ ¹¹⁶	9.942	11	17.254	8	2.630	17
Rh ₆₁ 106	8.217	21					Sn ₆₇ ¹¹⁷	10.142	66	18.111	18	2.173	130
Rh_{62}^{107}	8.409	55					Sn ₆₈ ¹¹⁸	10.737	18	18.793	7	2.681	1 34
$_{46}\mathrm{Pd}_{56}{}^{102}$			14.223	19			51Sb66 ¹¹⁷	4.657	35			-	Marie Ba.
Pd_{57}^{103}	8.545	35	15.100	32	1.990	41	Sb ₆₈ ¹¹⁹	5.499	23				
Pd_{58}^{104}	9.342	10	15.994	10	2.690	11	Sb ₆₉ ¹²⁰	6,009	25				
Pd_{59}^{105}	9.379	26	16.832	30	1.926	53	$\mathrm{Sb_{70}^{121}}$	6.193	11				
Pd_{60}^{106}	10.009	15	17.579	4	2.439	28	Sb_{71}^{122}	6.886	20				
Pd_{61}^{107}	9.979	11	18.196	18	1.762	29	$\mathrm{Sb_{72}^{123}}$	7.032	8				
Pd_{62}^{108}	10.669	54	19.078	13	2.260	110	Sb ₇₃ ¹²⁴	7.611	17				
47Ag57 ¹⁰⁴	5.359	35					Sb ₇₄ ¹²⁵	7.830	11				
Ag_{50}^{106}	6.191	18					₅₂ Te ₆₇ ¹¹⁹			12.196	26		
Ag_{60}^{107}	6.216	4					$\mathrm{Te_{68}^{120}}$	7.721	24	13.220	11	2.222	46
Ag_{61}^{108}	6.996	22					${ m Te_{70}^{122}}$	8.583	9	14.776	14	2.390	15
Ag_{62}^{109}	6.952	6					Te_{71}^{123}	8.733	24	15.619	18	1.847	40
Ag_{63}^{110}	7.674	8					Te_{72}^{124}	9.217	13	16.249	15	2.185	15
Ag_{64}^{111}	7.663	14					Te ₇₃ 125	9.325	14	16.936	12	1.714	28
Ag_{65}^{112}	8.391	64					Te_{74}^{126}	9.743	12	17.573	12	1.913	20
$_{48}\mathrm{Cd}_{58}^{106}$			13.164	10			$\mathrm{Te_{75}^{127}}$			18.186	17		
Cd_{59}^{107}	7.905	13	14.096	14	1.714	28	$\mathrm{Te_{76}^{128}}$	10.228	12				
Cd ₆₀ 108	8.723	2	14.939	4	2.507	5	53I71 ¹²⁴	5.856	38				
Cd_{61}^{109}	8.844	23	15.840	6	1.848	23	I_{72}^{125}	6.032	35				
Cd_{62}^{110}	9.569	5	16.521	7	2.617	9	I_{73}^{126}	6.623	11				
Cd_{63}^{111}	9.726	8	17.400	5	2.052	15	I_{74}^{127}	6.672	10				
Cd_{64}^{112}	10.378	11	18.041	9	2.715	24	I_{75}^{128}	7.194	17				
Cd_{65}^{113}	10.507	32	18.898	55	2.116	85	I_{76}^{129}	7.321	10				
Cd_{66}^{114}	11.010	43					I ₇₇ 130	7.718	23				
$_{49}In_{59}^{108}$	4.757	54					I_{78}^{131}	7.919	10				
In_{60}^{109}	4.910	12					$_{54}\mathrm{Xe_{72}^{126}}$	8.113	56	14.145	47	2.081	80
In 61 ¹¹⁰	5.488	43					Xe_{74}^{128}	8.758	6	15.430	9	2.086	13
In_{63}^{112}	6.481	12					Xe_{75}^{129}	8.872	15	16.066	9	1.678	31
In_{64}^{113}	6.462	9					Xe ₇₆₁₃₀	9.295	7	16.616	9	1.974	15
In_{65}^{114}	7.332	11					Xe_{77}^{131}	9.407	22	17.125	8	1.689	44
In_{66}^{115}	7.312	8					Xe_{78}^{132}	9.783	2	17.702	10	1.864	10
In_{67}^{116}	7.969	66											

average binding energy per nucleon, TNBE/A, for stable nuclei is plotted as a function of A in Fig. 3. The effect of the shell closure at Z=50 is not evident in this graph. A change in slope of the odd-A curve that is found at other magic numbers may be masked

Fig. 4. Neutron separation energy.

Fig. 5. Proton separation energy.

at Z=50 because of the nearness of the next neutron shell closure at N=82.

Average quantities, such as TNBE/A, are not particularly sensitive to changes in nuclear structure. For this reason, various differences of the total binding energies are studied. The neutron separation energy, $S_n(Z,N)$; the binding energy of the last two neutrons

Fig. 6. Binding energy of the last two neutrons.

in a nucleus of even N, $S_{2n}(Z,N)$; and the neutron pairing energy, $P_n(Z,N)$; are given by the following expressions:

$$S_n(Z,N) = \text{TNBE}(Z,N) - \text{TNBE}(Z,N-1), \qquad (2)$$

$$S_{2n}(Z,N) = \text{TNBE}(Z,N) - \text{TNBE}(Z,N-2)$$
 (3)

$$P_n(Z,N) = S_n(Z,N) - S_n(Z,N-1) \quad N \text{ even}$$

$$= \text{TNBE}(Z,N) + \text{TNBE}(Z,N-2)$$

$$-2 \text{ TNBE}(Z,N-1), \quad (4)$$

with similar relations for the proton binding and pairing energies. The energy differences defined above are given in Tables VI and VII.

Fig. 7. Binding energy of the last two protons.

In Fig. 4, the neutron separation energy is plotted for even Z and odd N. Such nuclei consist of one odd neutron bound to a zero spin core. The most striking features of this plot are the smooth variation of S_n and the similarity of the curves for the various elements. It is also interesting to note that the proton shell closure at Z=50 does not seem to influence the general trend of these curves.

The proton separation energy is plotted in Fig. 5 for odd-Z, even-N nuclei. Unfortunately, there is insufficient information to yield curves as extensive as those for S_n . Nevertheless, one notices that the slopes of the curves are all similar except for the shell closure at

Z=50. One can also see that the binding of the proton which closes the shell is not anomalously high; rather, the binding of the proton just outside the shell is depressed. The depression in the binding energy is approximately 1.4 MeV.

The binding energy of the last two neutrons is plotted in Fig. 6 for even N and all values of Z. Here again, one is struck by the great regularity of the curves. This regularity is taken to mean that no drastic change in nuclear structure occurs in this region. Here also, the shell closure at Z=50 does not seem to affect the neutron systematics in this region. It is interesting to note that the curves for odd Z are not equidistant from the neighboring even-Z curves but are shifted slightly

Fig. 8. Neutron pairing energy.

toward the higher-Z curve. This is presumably due to the interaction between the odd proton and the neutron pair.

The binding energy of the last two protons is plotted in Fig. 7 for even Z and all values of N. Once again, the data are too sparse to allow extensive curves to be drawn. The influence of the shell closure is quite obvious, as well as the fact that the slope of the curves seems to be essentially the same on each side of the closure.

Neutron pairing energies and proton pairing energies that may be calculated are listed in Table VI and Table VII, respectively. The P_n values are plotted in Fig. 8 as a function of N. Values for the same element are connected by straight lines. As in the previous paper, an attempt was made to correlate the magnitude

Fig. 9. Proton pairing energy.

of the pairing energy with the j value of the individual nucleons in the pair. In many cases, the common ivalue for the individual nucleons in the pair is the same as the j value for the preceding odd nucleon. In other cases, the pairing may take place in a higher j value level. This is possible if one follows the assumption of Mayer and Jensen¹³ that the pairing energy increases as the j value of the pairing particles increases. In certain circumstances, it would thus be energetically favorable to pair in a high j-value state. Mayer and Jensen have indicated a possible ordering of shell model states in this region. From this ordering, one can determine the j value in which each pair is formed. Attempts have been made to correlate P_n values either to the j value of the odd neutron or to the jvalue given by the Mayer-Jensen scheme. In neither case are consistent correlations apparent.

Proton pairing energies are plotted in Fig. 9 as a function of Z. Values with a common neutron number are connected by a straight line. A decrease in the proton pairing energy is noted for values of Z beyond Z=50. This change was indicated in the neutron pairing energy at N = 50 in the previous paper. Over-all correlation to either the j value of the pair or to the j value from the scheme of Mayer and Jensen is poor. The decrease from Z=50 to 52 corresponds to a j value decrease. This may indicate that the relationship between pairing energy and j value is good only near a shell closure.

ACKNOWLEDGMENTS

The authors wish to thank Professor A. O. C. Nier for his continued support and encouragement of this work. We wish to acknowledge the aid of J. L. Benson who helped to make some of the measurements. We are also indebted to R. B. Thorness for his aid in design and construction of the mass spectrometer.

PHYSICAL REVIEW

VOLUME 132, NUMBER 4

15 NOVEMBER 1963

Properties of Radioactive Re¹⁸⁹†

B. CRASEMANN,* G. T. EMERY, W. R. KANE, AND M. L. PERLMAN Brookhaven National Laboratory, Upton, New York (Received 3 April 1963; revised manuscript received 19 July 1963)

The new isotope Re¹⁸⁹ has been produced by fast-neutron irradiation of osmium and by the (α, p) reaction on tungsten. The rhenium was separated chemically from the target material. Beta-ray, gamma-ray, and internal conversion spectra have been measured. The mass assignment is confirmed by the observation of eleven electromagnetic transitions in the Os¹⁸⁹ daughter, including the 30.8-keV isomeric transition (6h), all of which were known from the decay of Ir189. Rhenium-189 has a half-life of 23.4±1.0 h and emits betaray groups with end-point energies 1000, 780, and 725 keV, and probably others. Results of coincidence measurements lead to some new information about the level scheme of Os¹⁸⁹. The effects of the expected rotation-particle coupling between low-lying K=1/2 and K=3/2 bands in Os¹⁸⁹ are discussed.

I. INTRODUCTION

CONSIDERABLE number of activities have A been tentatively assigned to the isotope Re¹⁸⁹ in the course of the last several years, but little definite information about this nucleus and its decay has been available. We have conducted experiments leading to the production and identification of this isotope and have studied its decay to levels in Os189.

Previously existing knowledge of some features of the level structure of Os¹⁸⁹ has been helpful in the identification of Re¹⁸⁹. In turn, the results of this work add to the available information about the level scheme of Os189. The decay of Ir189 to Os189 has been studied by

the National Science Foundation.

* On leave from the University of Oregon, Eugene, Oregon.

Diamond and Hollander, by Kane, and recently, by Harmatz, Handley, and Mihelich,3 and by Lerohl.4 An isomer of Os^{189} , decaying by M3 radiation to the ground state, was characterized by Scharff-Goldhaber, Alburger, Harbottle, and McKeown⁵ and further investigated by Newton. 6 At least two low-lying levels of Os189 have been studied in Coulomb excitation experi-

¹³ M. G. Mayer and J. H. D. Jensen, *Elementary Theory of Nuclear Shell Structure* (John Wiley & Sons, Inc., New York,

[†] Supported by the U. S. Atomic Energy Commission and by

¹ R. M. Diamond and J. M. Hollander, Nucl. Phys. 8, 143 $(19\bar{5}8).$

² W. R. Kane, thesis, Department of Physics, Harvard University, Cambridge, Massachusetts [Technical Report 3-9,1959 (unpublished)].

⁸ B. Harmatz, T. H. Handley, and J. W. Mihelich, Phys. Rev. 128, 1186 (1962); referred to as HHM.

⁴ J. K. Lerohl, thesis, Ohio State University, Columbus, Ohio,

^{1962 (}unpublished).

⁶ G. Scharff-Goldhaber, D. E. Alburger, G. Harbottle, and M. McKeown, Phys. Rev. 111, 913 (1958).
6 J. O. Newton, Phys. Rev. 117, 1529 (1960).