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used as the measure of relative cross section. The colli-
sion chamber pressure eras maintained below 10 4 Torr
to insure that multiple collisions were not occurring
and to- insure that the primary proton beam was not
significantly attenuated. The primary proton-beam
current was monitored by a Faraday cup beyond the
collision chamber. Variations in this current during the
beam scans were automatically compensated for by a
newly developed servo system, which drove the pro-
portional counter scanning mechanism at a speed pro-
portional to the beam current arriving in the Faraday
cup. The addition of this servo system was the only
change made in the apparatus described in Ref. 5.

Careful tests were performed to ascertain that the
negative ions emergent from the collision chamber were
not produced by single-electron capture on a small
fraction of H atoms present in the beam entering the
collision chamber.

The negative ions were found to emerge from the
collision chamber in a beam less than —,

"wide, indicating
that the collision chamber exit solid angle and the

length of the detector slit were both adequate to trans-
mit all of the fast K ions produced. The negative ions
were deflected by the electrostatic deflection plates
through an angle equal and opposite to the angle of
positive ion deflection, and the pulse-height distribution
produced by the negative ions was exactly the same as
that produced by the primary protons.

The experimental results are shown in Fig. 1. The
collision-chamber calibration factor was chosen so as to
normalize the 0'1, o curve to the value 8.2)&10 "cm' at
10 keV. With the same factor applied to all cross section
values, the 0-1,o curve was found to fit within a few
percent the mean of several sets of absolute data taken
from a recent review article. ' The 01, 1 curve agrees
well with the latest Fogel results4 near the maximum,
but departs seriously from these results on either side
of the maximum. The discrepancy is far outside an esti-
rnated +10jo uncertainty of the present data.

S. K. Allison and M. Garcia Munoz, in Atomic and 3folecglar
Processes, edited by D. R. Bates (Academic Press Inc. , New York,
1962), p. 751.
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Values of the quadrupole antishielding factor y„have been calculated for the F, Br, Rb+, Pr3+, and
Tm'+ ions, using the method of direct solution of the inhomogeneous Schroedinger equation for the per-
turbed wave functions.

SUMMARY of calculated values of the quad-
rupole antishielding factor' ' y„has been given

in a recent paper. 4 The purpose of the present note is to
give the results of additional calculations of y„ for the
following ions: F, Br, Rb+, Pr'+, and Tm'+. Th
method of calculation is the same as in our earlier
work. ' 4 For F,Br, and Rb+, Hartree-Fock wave func-
tions were used. For the two rare-earth ions, Pr'+ and
Tm'+, only Hartree functions are available for the
calculations.

The method of calculation will be briefly outlined.
The contribution y„(nl + l) to y„due to a given radial
mode of excitation (nl —+ l) is given by

7 (nl-+ l)=C(("' No'u1'r'dr,

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

' R. M. Sternheimer, Phys. Rev. 84, 244 (1951).
2 H. M. Foley, R. M. Sternheimer, and D. Tycko, Phys. Rev.

93, 734 (1934);
'R. M. Sternheimer and H. M. Foley, Phys. Rev. 102, 731

(1956).
4 R. M. Sternheimer, Phys. Rev. 130, 1423 (1963).

where No' is r times the unperturbed radial wave func-
tion, normalized to 1; N1 is r times the perturbation of
the wave function, and is determined by the equation

d' l (l+1) 1 1
+ +Up —Ep ur = sp' ———,(2)

dr' r' r3 r

together with the orthogonality condition

uo I& dr= 0. (3)

Vo- I'o=
1 d'up' l(l+1)

uo'

In Eq. (1), the coeKcient C«"' represents the ef'feet of
the integration over the angular variables and the sum-
mation over the magnetic substates. We have C1&|'&

=48/25 for nP~ P, and Cssis'=16/7 for nd~ d, for
completed p and d shells, respectively. In Eq. (2),
(1/rs) „~is the average value of 1/r' for the wave function
srp' In solving Eq. . (2), the expression Up Ep on the left—
hand side is directly obtained from the unperturbed
function No', as follows
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For each case, two types of integration were carried
out for Eq. (2): (1) Several inward integrations starting
from a large radius r& were performed by means of an
IBM 7090 computer. These solutions differ only by a
multiple of the unperturbed function No', as can be seen
from Eq. (2). The use of several functions Nr' with
different starting values srr'(rr) serves as a check on the
calculations. (2) An outward numerical integration
starting at r=0 with a power series (up to r 0.02uH)
was also carried out. The two solutions are joined at an
intermediate radius r2, of order 0.1—0.2aH. We note that
the value of r~ at which the inward integrations are
started depends, of course, on the specific case con-
sidered; thus, r& must be well outside the location of the
outermost (principal) maximum of the unperturbed
wave function. In the present work, the values of r~

range from 2.0rrH for Rb+ 3p —+ p to 9arr for F 2p ~ p
and Br 4p —+ P.

For F, the 2p Hartree-Fock wave function obtained
by Froese' was used. For Br and Rb+, the Hartree-
Fock 3P, 3d, and 4p functions obtained by Watson and
Freeman' were employed. For Pr'+ and Tm'+, we used
the Hartree wave functions calculated by Ridley. 7

The results of the calculations of y„(nl —+ t) and the
total y„are shown in Table I. It should be noted that

TABLE L Values of y„ for several ions.

Ion F Pl Tm'+

7-(2P ~ P)
v-(3P ~ P)
y„(3d ~ d)
v-(4p p)
v-(5P ~ P)
y„(ang)

—23.30 0 49
—4.51
—1.63

—118.7

—0.45
—3.93

~ 23
—43.8 —8.81

—69.7

—6.79
—67.2

+0.77 +2.3 +2.2
—22.53 —123.0 —47.2 —78.5 —74.0

6 C. Froese, Proc. Cambridge Phil, Soc. 53, 206 (1957).' R. E. Watson and A. J.Freeman, Phys. Rev. 124, 1117 (1961).' E. C. Ridley, Proc. Cambridge Phil. Soc. 56, 41 (1960).' Tables of the perturbed wave functions u1'(nl ~ l) obtained
in the present work are given in a supplementary paper "Wave
Functions for Quadrupole Antishielding Factors. " This supple-
rnentary paper has been deposited as Document Xo. 7675 with
the ADI Auxiliary Pubhcations Project, Photoduplication Service,
Library of Congress, Washington 25, D. C. A copy may be secured
by citing the Document number and by remitting $2.50 for photo-
prints or $1.75 for 35-mm microfrlm. Advance payment is required.
Make checks or money orders payable to: Chief, Photoduplication
Service, Library of Congress.

numerical calculations of y„(nl ~ l) were carried out for
the following casess: 2p ~ p for F; 3p —+ p, 3d ~ d,
and 4p —+ p for Br and Rb+; 4p —+ p and Sp~ p for
Pr'+ and Tm'+. For Rb+ and Br, the value of
y„(2p —& p) is expected to be insensitive to the small
differences between the Hartree and the Hartree-Fock
wave function for the 2p shell. In addition, the
y„(2p —+ p) term makes only a very small contribution
to the total y„. Accordingly, y„(2p ~ p) for Rb+ was

obtained from our previous calculation using Hartree
wave functions (see Table I of Ref. 3). The value of
p„(2p —+ p) for Br was obtained in a similar fashion by
interpolation of the previous results' for Cu+ and Rb+.
The present results for Rb+ 3p, 3', and 4p enable us to
calculate the factor by which the use of Hartree-Fock
wave functions (including exchange) reduces the values
of

~ y„(el ~ I) l, as compared to the values calculated
by means of Hartree wave functions. These ratios p are
as follows: p(3p ~ p) =3.93/4. 4=0.893; p(3d ~ d)
=1.23/1.4=0.879 p(4p ~ p) =43.8/66. 6=0.658. Here
the y„values for Rb+ in the denominators are those ob-
tained in Ref. 3 using Hartree wave functions. As would
be expected, the percentage reduction is largest for the
outermost shell (4p), which is the most loosely bound
and, therefore, the most sensitive to the contraction of
the wave function as a result of exchange effects.

In Table I, the values of the term y„(ang) for Br and
Rb+, due to the angular modes of excitation (es —+ d,
eP-+ f) have been obtained from Ref. 3. They are
based essentially on the Thomas-Fermi treatment of

p„(ang), as derived by Sternheimer. '
We note that the present value of y„(2p —+ p) for F

practically coincides with that obtained by Burns'"
using the variational method of Das and Bersohn, "
(—23.30 as compared to —23.22). The result that the
variational method works very well in this case probably
arises from the fact that the 2p radial wave function
has no node, and therefore, the approximation made in
this method that I&' is given by No' times a polynomial in
r does not introduce any artificial nodes into Nj, unlike
the case when the unperturbed wave function No' has
one or more nodes. The value of y„(ang) =+0.77 for F
which is given in Table I is based in part on the varia-
tional results of Burns (see footnote 27 of Ref. 10),
and in part on a comparison of the variational" with
the numerical results" for the terms of y„(ang) for the
isoelectronic Na+ ion. Of course, y„(ang) is very small
compared to the total y„which is almost entirely
due to y„(2p —+ p).

For the cases of Pr'+ and Tm'+, we have calculated
only the dominant terms y„(4p ~ p) and y„(5p ~ p).
We note that a calculation of y„ for these ions using the
variational method has been recently carried out by
Wikner and Burns. " The present results differ from
those of Ref. 13 by amounts which are of the order of
the uncertainties associated with the variational
method. It should be pointed out that for a given un-
perturbed wave function uo', the method of dir ect
solution of the inhomogeneous Schrodinger equation
[Eq. (2)] which has been used here gives results which
are generally accurate to within 3~/~.

From the work of Wikner and Burns, "it is seen that

' R. M. Sternheimer„Phys. Rev. 80, 102 (1950).
'" G. Burns, Phys. Rev. 115, 357 (1959); see footnote 27.
"T.P. Das and R. Bersohn, Phys. Rev. 102, 733 (1956)."R. M. Sternheimer, Phys. Rev. 115, 1198 (1959); see p. 1205."E.G. Wikner and G. Burns, Phys. Letters 2~ 225 (1962).
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the radial terms not calculated in the present paper Li.e.,
y„(2p -+ p), y„(3p~ p), y„(3d ~ d), and y„(4d ~ d) 7
are very small compared to y„(Sp —+ p), and will ap-
proximately cancel the effect of p„(ang), which is
shielding. y„(ang) is of the order of +2 to +3, as can
be estimated from our result for the neighboring Cs+ ion,
namely +2.9 (see Table I of Ref. 3). Thus, even allow-

ing for an appreciable percent error of the variational
results, one can safely conclude that the sum of the
terms which have not been calculated in Table I, will

be less than 2. The results for y„given in the last row
of Table I represent just the sum of y„(4p ~ p) and
y„(Sp~ p), and will, therefore, have an uncertainty of

%2 on account of the terms which have been neg-
lected. This error is probably somewhat smaller than
that which arises from the use of Hartree wave func-
tions, although it should be noted that for the trivalent
rare-earth ions, the outermost (Sp) electrons are rather
strongly bound, so that the contraction of the Sp wave
function which would arise from including exchange is
expected to be a relatively small effect. The resulting
decrease of ~y„(Sp —+ p) ~

might therefore be expected
to be of the order of only 15—20% (as compared to 34%
for Rb+ 4p —+ p). This would give values of y„(Pr'+) and
y„(Tm'+) of the order of —65 to —70. We note that
very recently, Freeman and Watson" have made
detailed calculations of y„ for the Ce'+ ion, using the
unrestricted Hartree-Fock method. This method auto-
matically includes the effect of the distortion of the
5p shell (for example, by an external electric field) on the
distortions of the inner shells. The authors have shown
that such e6ects may be important for the determina-
tion of the total y„of the ion.

In connection with the results of Table I for
y„(F ), y„(Br ), and y„(Rb+), one can calculate the
ratiosy„(F )/y„(Na+), y„(C1 )/y„(K+), and y.„(Br )/
p„(Rb+), in order to obtain the effect of the increased
binding upon increasing Z by 2 for these three pairs of
isoelectronic ions. Upon using the results of Table III
of Ref. 4, one obtains:

It is seen that the ratios decrease with increasing Z of
the pair, with a particularly large decrease in going from
F —Na+ to Cl —K+. A similar comparison has been
previously made by Wikner and Das."These authors
have also calculated values of y„ for Rb+ and Br . How-
ever, their results cannot be directly compared to those
given here, since they used Hartree wave functions and,
moreover, the variational method was employed.

In Table II, we have listed the values of y„(ml —+ l),

TABLE II. Values of y„(nl —& l), (r ') &, and J(al —+ I) for the
F, Br, Rb+, Pr'+, and Tm'+ ions. (r ')„~ is in units err '. All
values of J(af —+ I) are positive.

Perturbation

E' 2p —+ p
Br 3p~ p
Bl 3d~d
Br 4p~ p
Rb+3p —+ p
Rb+3d ~d
Rb+4p ~ p
Pr'+4p ~ p
Pr'+5p ~ p
Tm'+4p ~ p
Trn' Sp~ p

y„(nl —+ l)

—23.30—4.51—1.63—118.7—3.93—1.23—43.8—8.81—69.7—6,79—67.2

6.401
181.3
23.08
10.24

228.1
30.61
20.21

285.6
40.10

518.2
61.87

J(nl ~ l)

50.88
4545

66.50
281.5

6006
89.70

520
~ ~ ~

1306
~ ~ ~

5600

J(ul ~ l) —= uo'ui'(ril ~ l)r 'dr—
0

As discussed previously, "J(ul —+ l) enters into the calcu-
lation of the second-order quadrupole effect for the
hyperfine structure (energy ccQ'). In general, the values
of J(ul —+l) are estimated to be accurate to 10%.
However, for the cases of Rb+ 4P ~ P and Tm'+ 5P ~P,
the accuracy is only 30 percent. For Pr'+ 4p -+ p and
Tm'+ 4p~ p, values of J(4p —+ p) have not been
obtained.

(r ')„i, and J (el —& l) for the various perturbations con-
sidered in the present work. The integral J(el —&l) is
defined by:

p„(F )/y„(Na+) = 22.53/4. 56= 4.94,

y„(C1—)/y„(K+) = 56.6/17.32=3.27,

y„(Br )/y„(Rb+) = 123.0/47. 2 = 2.61.

(5)

(6)

(7)
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