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Electronic Band Structure and Wannier Exciton States in Solid Krypton*t
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The electronic band structure of solid krypton has been calculated by a combined tight-binding and
orthogonalized plane wave approach first introduced by Knox and Sassani. The crystal potential, con-
structed as a sum of quasiatomic potentials, contains an exchange potential which has been made to approxi-
mate closely the crystal Slater exchange potential. Spin-orbit splittings have been computed, and effective
masses have been obtained at points of high symmetry in the Brillouin zone. The smallest computed gap
between valence and conduction bands is "direct, " is located at r(k=0), and has a magnitude of 11.3&1.0
eV, in agreement with the direct gap of 11.8 eV inferred by Baldini on the basis of optical absorption data.
Computed Wannier exciton absorption lines at F are also in agreement with Baldini's results.

I. INTRODUCTION

HE solid rare gases have for many years been of
physical interest, both for their intrinsic proper-

ties and for the insight into the properties of other
solids which their study might yield. Recently attention
has been focused upon their electronic characteristics.
Foner et al.' have measured the magnetic properties of
impurities in solid rare gases; this problem has been
studied theoretically by Adrian and by Smith. ' Optical
properties have also been measured and several relevant
calculations made.

In 1958, Knox4 calculated the properties of Frenkel
excitons' ' in solid argon, and more recently the
electronic band structure of argon has been calculated
by Knox and Bassanir and by Mattheiss (who used
the APW method). Absorption line shapes have been
considered theoretically by Meijer and by Gold and
Knox. Early work on absorption spectra of the rare gas
solids" was followed by that of Baldini, "who, by using
ingenious techniques, was able to obtain spectra over a
fairly large energy range in argon, krypton, and xenon.
Baldini's surprising success in fitting certain observed
lines in krypton and xenon by the model of hydrogenic
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Wannier excitons' "" indicated that effective-mass
methods, which have been of great usefulness in the
study of semiconductors, might be relevant in calculat-
ing properties of the rare gas solids.

As a 6rst step in the use of such methods, we have
calculated the electronic band structure of krypton,
including the spin-orbit interaction, and have computed
effective electron and hole masses. Properties of hydro-
genic Wannier excitons at P (k=0) have been cal-
culated, and our results have been compared with
Baldini's data.

We have used the tight-binding method"4 to
calculate valence bands, and the full orthogonalized
plane wave (OPW) method to calculate conduction
bands. Although the OPW method, introduced by
Herring" around 1940, has been used with considerable
success in computing the band structure of semi-
conductors, " it had not until recently been employed
for larger band-gap materials such as ionic crystals and
rare gas solids. This is probably due to the fact that the
valence bands in such substances are considered to be
"tightly bound, " and that an expansion of such
valence band wave functions in OPW's would probably
not converge rapidly. On the other hand, the valence
bands are expected to have some structure, and it
would not be accurate to treat them as Qat core bands.
Knox and Bassani, ' therefore, used the tight-binding
method to calculate the valence bands in solid argon
and then used a perturbation approximation" to the
OPW method to calculate conduction bands. Our
procedure is similar, except that we have used the full
OPW method to compute conduction bands.

As a parameter in the calculation we have used a
lattice constant a=10.75as (Bohr radii) for fcc solid
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krypton, which corresponds to the density at about
50'K.' We have also employed Watson and Freeman's"
Hartree-Fock atomic functions for krypton. Numerical
work was largely performed on the IBM-7070 digital
computer at the University of Rochester, although
several calculations were also performed on the IBM-
704 computer at Argonne National Laboratory. For
details of the calculation not presented here the reader
is referred to the author's thesis. "

In Sec. II we discuss the choice of a crystal potential,
The valence bands are calculated in Sec. III; in Sec. IV
the spin-orbit interaction is added to the valence bands;
and in Sec. V the conduction bands are considered. Zn

Sec. VI effective masses are calculated, and in Sec. VII
the preceding results are applied to the Wannier exciton
model and comparisons are made with Baldini's
experimental results.

where R, represents the position of the vth lattice site.
The Coulomb part of V(r) is chosen to be a simple sum
of Coulomb potentials of free krypton atoms; this is a
reasonably good approximation, since the Coulomb
potential is a linear function of the charge density, and
the overlap of charge densities of neighboring atoms
is small.

Slater" has derived an approximate exchange poten-
tial based only upon charge densities:

V. (r)=up"s,

where p is the charge density and a is equal to

—6t 3lge )'"

(2)

when V,„ is in Ry. In some previous calculations this
has been approximated for the crystal as

(3)

whereas the actual value would be

V. (r) =uLP p(r —R„)j"'.

Investigation of this approximation shows that the
use of Eq. (3) leads to a potential which is fairly close
to that of Eq. (4) for small j r—R„~, but which is too
large for larger

~

r—R„~ . This approximation was used
by Knox and Bassani~ in their argon-band-structure
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II. THE CRYSTAL POTENTIAL

The one-electron crystal potential may be written as
a sum of quasiatomic potentials,

calculation, with reasonable results (although their
predicted band gap was =1.8 eV too small). However,
the use of a Slater exchange potential, at least in the
approximation of Eq. (3), in an ionic crystal (AgCl)
leads to unreasonable results. "

It is not simple to make an analytic correspondence
between P„V.' (r—R„) and Eq. (4). What has been
done in the present calculation is to construct a poten-
tial (as a sum of quasiatomic potentials) which is equal
to a sum of atomic Slater potentials LEq. (3)j for
~r —R„~ &2.0as, a somewhat arbitrary number. For
larger

~
r—R„~ the potential is made smaller than

a P„p„'"by multiplying the atomic Slater potential by
an exponential factor. The damping length is deter-
mined by requiring that the exchange potential due to
nearest neighbor atoms at their midpoint be equal to
that given by Eq. (4). This procedure, admittedly
crude, nevertheless yields a potential which more closely
approximates the potential of Eq. (4) than does that of
Eq. (3).

This procedure has nothing to do with many-body
effects, such as those considered by Robinson, Bassani,
Knox, and Schrieffer" (RBKS) or by Bassani, Robin-
son, Goodman, and Schrieffer. '4 In the RBKS approach
an exchange potential is derived as a function of an
effective dielectric constant. The relationship between
this dielectric constant and a given physical dielectric
constant has not been firmly established, but if it is
assumed in our case that the dielectric constant is
that of krypton (e=1,80), then RBKS screening of
the Slater potential is small. "In Fig. 1 we have plotted
rV,' (r) for the atomic Slater potential, our "corrected"
Slater potential, and an infinite-dielectric-constant
RBKS potential (which probably is not pertinent to
the case of krypton).

III. THE VALENCE BANDS

The one-electron Hamiltonian is

X=p'/2m++ V, (r—R„)

and the eigenfunction of K in a tight-binding represen-
tation is

y,a(k r) —P +, a(ATon, a)—1/2 Q &ak'Rett a(r R ) (6)

where
e„(r—R ) =P c I (r—R ).

The quantities N„„(r—R,) are atomic wave functions
centered at R„, and c„are constants which choose
linear combinations of a set of degenerate N„which

~ R. S. Knox, F. Bassani, and W. Beall Fowler, Suppl. J.Phys.
Soc. Japan (to be published).

~' J. K. Robinson, F. Bassani, R. S. Knox, and J. R. Schrieffer,
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~ F. Bassani, J. Robinson, B. Goodman, and J. R. Schrieffer,
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FIG. 1. Several approximate one-electron exchange
potentials for krypton (see text).
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and E is the number of lattice sites. The quantities
a;„are determined by solution of the secular equation
for E.

The energies are given by the solutions of detM=O,
where M is a matrix whose elements are

(Q+,~Q+,a)—1/2 p e&k'Rr

In practice, one does not include an in6nite number of
atomic-like states in the matrix M, and, in fact, we
have considered mixing only between 4s and 4p states;
even this involved an energy change of only order 1%%u~.

The integrals in Eq. (9) are of one-, two-, and three-
center types. To evaluate certain of the one- and two-
center integrals, we made the approximation

LPs/2m+ V (r—R„)7u„(r—R„)
= e„„u„(r—R„), (10)

where

6—g sfomlc
nm, ntn

+(u„(r) I V, (r) —V,&. ;,(r) I u~ (r)); (11)

we recall that our one-electron functions u„(r—R„)
are eigenfunctions of p'/2m+ V,~, ;,(r—R„). This

~5 L.P. Bouckaert, R. Smoluchowski, and E.signer, Phys. Rev.
50, 58 (1936).

Fzo. 2. Krypton band structure (without spin-orbit coupling).
Note the several changes in scale between 4s and 4p valence
bands and conduction bands. Notation is that of Bouckeart,
Smoluchowski, and Wigner (Ref. 25).

approach is reasonably accurate if the difference
between V, (r) and V,t. ..(r) is small. It ignores the
fact that Hartree-Fock functions are not eigenfunctions
of the quasiatomic potential, but it does account
through erst-order perturbation theory for the shift in
energy due to use of this potential.

We have neglected all three-center terms. They are
difFicult to calculate, and in the case of krypton they
can be shown to be at least an order of magnitude
smaller than corresponding two-center integrals.

Two-center terms were calculated for nearest and
next-nearest neighbors. The latter turned out to give
negligible contributions to the energy. Standard tech-
niques were used in writing" and evaluating' two-
center integrals.

Computed valence band energies are shown in the
two lowest sets of bands of Fig. 2, for the corrected
Slater exchange potential. We also have calculated the
energies at F, using atomic Slater and infinite-dielectric-
constant RBKS potentials. We obtained for the Slater
potential E(i'r)= —2.47 and E(i'»)= —1.43 Ry, for
the RBKS potential E(i'r) = —0.85, E(1'rs) =+0.02 Ry.

"J.C. Sister and G. F. Koster, Phys. Rev. 94, 1498 (1954).
mr P. 0. Lowdin, Suppl. J. Appl. Phys. 33, 251 (1962).
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Results for the RBKS potential are not very accurate,
however; this potential is so much diferent from the
atomic exchange potential that the 6rst-order perturba-
tion technique for calculating e LEq. (11)$ is obviously
not valid.

We see that the valence bands are really rather Rat,
expecially the 4S band, and the assumption of Rat core
bands is certainly well justified. We estimate that the
position of the F» valence state is computationally
accurate to within 0.01 Ry, the width of the 4p valence
band is accurate to within 0.01 Ry, and the position of
the 4s valence band is accurate to within 0.05 Ry.

A 1dV, (r)
en

4m'c' r dr
(13)

where L is equal to r x p.
The procedure for incorporating H, ,"' into the

tight-binding calculation is straightforward. One takes
space- and spin-eigenfunctions of the tight-binding
calculation without spin-orbit interaction, forms linear
combinations of these which transform according to a
particular irreducible representation of the crystal
double group"" and includes H, ,"' in the energy
matrix. This is similar to the procedure used in atomic
physics, when one takes eigenstates of /, en&, s, m„
and forms linear combinations which are eigenstates

'sB. Swirles, Proc. Roy. Soc. (London) A152, 625 (1935);
A157, 680 (1936).» J. Callaway, R. D. Woods, and V. Sirounian, Phys. Rev. 107,
934 (1957).

~ However, see M. Blume and R. E. Watson, Proc. Roy. Soc.
(London) A270, 127 (1962) for a discussion of the role of exchange.

» R. J.Elliott, Phys. Rev. 96, 266 and 280 (1954).
~ G. F. Koster and H. Statz, Quarterly Progress Report No. 39,

2962, Solid State and Molecular Theory Group, MIT, Cambridge,
Massachusetts (unpublished).

IV. SPIN-ORBIT INTERACTION IN THE
VALENCE BANDS

The usual one-electron spin-orbit coupling term is

II,, = (fr/4m'c') e. (V V & p), (12)

where e represents the Pauli matrices, V the potential,
and y the momentum. This result may be obtained by
writing a many-electron Dirac-type equation, using the
one-electron approximation and the variational method
to obtain a Hartree-Fock-like equation, " replacing
Coulomb and exchange terms by an effective potential,
and going to the low-energy limit. "From a theoretical
point of view, it is not clear that the effective potential
V should be the same as that used previously, or how,
in particular, exchange should be treated. ' If we use
the same effective potential we find (a) the contribution
of the exchange potential is only a few percent that of
the Coulomb potential, and (b) for the Coulomb
potential, VV is only large very near the nuclei, and
thus all many-centered terms are negligible. The
effective spin-orbit interaction is, thus,

of J and J,. The relevant group theory has been
treated by Koster and Statz, 32 and we use their results.

If we redefine our basic atomic linear combinations
as follows:

u„(r—R„e)=P g c.„,„,N. ,(r—R„)7f(e,m.), (14)

the general tight-binding matrix element remains the
same in form, with B, , "' included in the Hamiltonian.
The only changes in the matrix elements will be one-
center terms involving B,,,"'. These will result in
the removal of degeneracies and the mixing of hitherto
orthogonal states. For example (now in the notation of
the crystal double group),

(s,(I',—;r,e)
~
H, .„."'

~
e„(rs—;r,e))

~ (15)

We have computed the relevant matrix elements and
thus the energies. The results are shown in Fig. 3. We
see that splitting is fairly pronounced. Although the
4p-like bands still overlap somewhat, in xenon, the
next rare gas in the periodic system, the highest valence
bands might not overlap.

where p,a is a core or valence eigenfunction and S~ is a
particular linear combination of degenerate plane
waves, i.e.,

S a —(+Q)—1/s g P .a&i(k+hr') ~ r

The quantities b» are chosen so that S„ transforms
according to the n irreducible representation of the
group of k.25 S represents the number of unit cells of
volume Q. The wave function will be

The conduction band wave functions and energies
are solutions of the equation detM=O, where the
matrix M has elements

M„=(S„(ps/2m+V(r) ~S„)—p (S„, ,y, )

Here E; is the core or valence eigenvalue of the one-
electron crystal potential.

V. THE CONDUCTION BANDS

The full orthogonalized-plane-wave (OPW)
method"" was used to calculate conduction band
energies. The basis set associated with this method is
given by

a —S a Q Q,a S a)y.a
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Evaluation of the various terms in M» has been
described in several places in the literature. ~" 33 The
potential V(r) is expanded in Fourier series;

2.0-

V(r) =P v(K)e'*'. (20)
I.S—

l.6—

Ll(3)
XI (3)

r„(2)

The Fourier coeKcients n(K) may be computed and
this part of M» evaluated. s(K) is given by

e(K) =4'(KQ) ' r sin(Er) V, (r)dr; (21)

v(0) is given by

l.4—

l.2-

I.O—

~ L' (3)
a Xsh)~X4(2)

g (2)

v(0)=4xQ ' r'V (r)dr. (22)
0.8—

4(2)

Evaluation of e(0) is subject to error, since n(0)'depends
upon V, (r) for large r where V, (r) may not be known
precisely. We assumed, however, that our method of
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Fzo. 3. Krypton band structure (with spin-orbit coupling).
Spin-orbit splittings indicated for the conduction bands are
schematic. Note the several changes in scale between 4s and 4p
valence bands and conduction bands. Notation is that of Elliott
(Ref. 31). Irreducible representations at I, (and X) are given by
Lq+(Xq+), where b denotes the irreducible representation of A(n)
and only the sign (+ or —) is indicated. For example, the lowest
X point shown is X6+.

T. O. WoodruG, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press inc. , New York, 195'I}, Vol. 4;
Phys. Rev. 103, 1159 (1956).

constructing the crystal potential was a reasonably
accurate one, and having chosen V, (r), we simply
performed the integration. The resulting value for our
potential was r (0)= —1.274 Ry.

Evaluation of the orthogonality matrix element

Qp, Sr~) may be accomplished by expanding S„ in
spherical harmonics. This is a standard approach and
will not be discussed further here.

Results of the numerical calculation for the corrected
Slater exchange potential are shown in Figs. 2 and 3,
where the existence of spin-orbit splitting in the
conduction bands has been indicated schematically.
The shapes of the conduction bands are not a direct
result of this calculation; those near symmetry points
for the lowest conduction band are, however, a result of
effective mass calculations, Sec. VI.

The convergence of various conduction band energies
as a function of the number of plane waves involved in
the matrix is shown in Fig. 4. Convergence is seen to be
rather good for some states, not so good for others.
For most points the use of from 5 to 7 sets of plane
waves is sufhcient for reasonable accuracy. Low-lying
conduction band points are almost certainly computa-
tionally accurate (relative to each other) to within
0.05 Ry. The lowest point is probably accurate to



1596 FovVr ER

within 0.05 Ry. This estimate does not derive directly
from observed convergence, which is not optimum
because of slightly inaccurate core functions, but
represents a reasonable extrapolation of the results
shown in Fig. 4.

In the 6nal results the highest valence and lowest
conduction bands have a direct gap between 1"~ and
I'~4 (neglecting spin-orbit coupling) of 11.3 eV. The
state F~ was also computed using Slater and RBKS
screened-Slater potentials. The results, in Ry, are for
Slater, E(1'~)= —0.73; for RBKS, E(I'~) =+0.15.
Corresponding predicted energy gaps between I'& and
F» are 9.5 and 1.8 eV. The latter is clearly unreasonable;
this is due to the breakdown of the core shift approach
used in obtaining E,'s, and demonstrates that the
Hartree-Fock functions are not even approximate
eigenfunctions of the RBKS Hamiltonian. Eigenfunc-
tions of the RBKS Hamiltonian might more nearly
resemble Hartree than Hartree-Fock functions. Thus,
by comparing Hartree and Hartree-Fock eigenfunctions
and energies, one may estimate core energies and
eigenfunctions. Although the core shift approach is not
valid, a calculation might still be made by the methods
outlined in this paper. " Tight-binding two-center
integrals are not expected to depend too strongly on
whether Hartree or Hartree-Pock (or RBKS) functions
are used, and one should be able to estimate core
energies. Convergence of. the OPW conduction band
states under these conditions might not be good, but
one could at least estimate the shape and position of
the conduction band.

As we have just implied, a pertinent point (previously
discussed by Herring" and by WoodrufP') involves the
importance of using in Eq. (16) core and valence wave
functions which are accurate eigenfunctions of the
crystal Hamiltonian. This is important in a theoretical
sense for consistency, and in a practical sense to ensure
reasonable convergence of OPW energies. We have
studied this by computing certain valence and conduc-
tion states at F, X, and L by the OPW method. This
yielded the following results: (a) At I'~, seven sets of
plane waves gave a valence energy only 0.2 Ry higher
than that calculated by tight binding; more signif-
icantly, convergence of the F& conduction band state
was much improved under this procedure. Similar
results obtained at L~ and X~. (b) At I'», convergence
with 7 sets of plane waves was to an energy 0.29 Ry
higher than that calculated by tight binding. Indications
were that at least one or more further sets might
contribute nontrivally to E, and that the final position
as determined by OPW would be closer to that deter-
mined by tight binding than is indicated here.

The position of the F~~ conduction band state was
in very close agreement (less than 0.1% different) with
that calculated through orthogonalization to the
valence band. This occurred because the amount of
I'» valence band state included in I'~4 (conduction) was
very small; that is, P~d, q ~ »(p„& ",S~"") was very

small, and behavior of the valence state did not aBect
that of the first conduction state very strongly. The
states of the lowest conduction band shown in Figs. 2
and 3 were computed by the method discussed in these
two paragraphs.

The same procedure for the Slater potential yielded
a I'& valence energy of —2.38 Ry, as compared with the
tight-binding result —2.47. For the RBKS potential
E(1'&) equals —1.19 Ry, as compared with the tight-
binding result —0.85. This is a further demonstration
that the core shift procedure will not work accurately
for large perturbations (such as the RBKS exchange),
and that in fact there will be an important change in
the wave function.

For further comparison of OPW and tight-binding
results, we expanded the F~ tight-binding function in
OPW's and compared coeS.cients with the calculated
r, OPW coefficients. ' Agreement was reasonably good,
which was not surprising since the corresponding
energies were in close agreement.

The apparent discrepancy (of the order of tenths of
a Ry) between the position of the I'» valence state
calculated by tight-binding and OPW methods, and
the uncertainty in the convergence of the first F& con-
duction state, lead us to estimate a corn.putational
uncertainty in the band gap of perhaps &1.0 eV. This
of course does not represent the physical accuracy,
since any result will depend strongly upon the crystal
potential chosen.

The use of OPW perturbation theory was considered,
but questions about its convergence and the desire for
accurate determination of wave functions for effective
mass calculations led us to abandon it. One would
expect that in the case of solid argon~ the full OPW
method would likewise be superior to the perturbation
approach.

VI. THE EFFECTIVE MASS

As is well known, near points K in k space for which
parity is a good quantum number (e.g. , I', L, X) the
one-electron energy is approximately given by

where

f44 ~Q, , K )k .~ [y,K ))2
+—p'

m n

k'= k—K„.

(23)

(24)

Thus an important result is demonstrated: Near such
symmetry points, the E versus k' relation is quadratic
in k'. The coefficient of~k" involved, however, is not,
in general, 0/2m, but is an explicit function of the
particular system and state considered. It is then
relatively simple to speak of the E versus k relation



TABLE I. Effective hole masses for krypton valence bands
(with spin-orbit coupling).

in terms of the reciprocal effective mass tensor" '4

1l 1 O'E

hs ah~h
Point and direction (m*/m);;

+3.4
+1.5
+7.1
+12—3.9—3.5—7.5—4.9
+2.3
+2.3

2 03—1.6

r;
~sr;r;

X7
Xe-

L4, L5
Le
Ier;
Xe-
Le

~~e
~A4, Ae—+ h.e

(upper)~ A.4) A.s—+ Ae (upper)

—+he
(lower)

—+ Ae (lower)

where the + sign is associated with the effective mass
of an electron, the —sign with that of a hole.

Calculation of valence band effective masses in the
tight-binding formalism is very simple. Since one
knows the explicit E versus k dependence, one merely
takes derivatives of the secular equation according to
Eq. (25), and solves for (m*/m). Results of these
calculations are listed in Table I (with spin-orbit
interaction).

Application of effective mass theory to OPW conduc-
tion bands is, in general, more laborious than the simple
procedure utilized for tight-binding valence bands.

In Table II are listed effective electron masses for
various points in the lowest krypton conduction band.
These numbers are probably accurate to within 0.1
electron mass. The masses at I"t(1's+) are isotropic,
those at I.t(1.4+) and Xt(Xs+) are anisotropic with two
components each.

k, A
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VII. COMPARISON WITH EXPERIMENT

I

I
I

I

KRYPTON

Baldini's optical absorption results" for krypton are
shown in Fig. 5; the dashed line represents measure-
ments taken at 40'K, the solid line measurements at
20'K. He shows that the positions and strengths of the
peaks between 10 and 12 eV are reasonably consistent
with the properties of two series of simple Wannier
excitons arising from the lowest conduction band and
the spin-orbit split valence bands. On the basis of this
model he deduces band gaps, reduced exciton masses,
and exciton binding energies.

These quantities follow from consideration of the
simple Wannier equation" u

I

I

I

'I

I
I

I
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I

I

(
I
I

I

0.5

0
hv„=EO G/I', v=1,—2, 3, , (26)I3.0 l2.0 I 1.0 IO.O

hv, eV

where G, the exciton binding energy, equals p, e ' Ry,
e is the dielectric constant, and p, is the reduced exciton
mass in units of the electron mass,

Fro. 5. Absorption spectrum of solid krypton
(after Baldini, Ref. 11).

One does not have simple expressions for E versus k,
but knows E only at symmetry points. It is therefore
necessary to use Eq. (23) and evaluate k' V matrix
elements involving the state of interest and other states.
These other states include both valence and conduction
states, and thus it is important to have fairly accurate
wave functions. Fortunately, contributions from high-
energy conduction band states are generally small.

Conduction band effective masses were computed in
the lowest band for the points F~, I ~, X~. We did not
compute band shapes at E&. A". is not a symmetry point,
in the sense used here; that is, parity is not a good
quantum number and E will not be a quadratic function
of k'. The shapes of the lower Et bands were schemat-
ically drawn in Figs. 2 and 3, based in part on analogy
with the calculated results of Ref. 8.

(27)1/p =m/m. *+m/ms*,

where m, * refers to the conduction band electron and
mj,* to the valence band hole.

We may use Eqs. (26) and (27), along with our
theoretical results and an experimental value of e,
to predict optical absorption properties of krypton. We
will expect some sort of transitions to take place involv-

TABLE II. Effective electron masses for krypton conduction bands.

(m*/m);;Point and direction

r, (r,+)
Lg(Ls+)
L1(Le+)
X,(Xe+)
X,(X,+)

(isotropic)
(1,1,1)
(1, 0, —1) or (1, —2, 1)
(1,0,0)
(0,1,0) or (0,0,1)

+0.6
203

+0.6
+2.0
+0.834E. N. Adams, II, Phys. Rev. 92, 18 (1953); W. Kohn and

J. M. Luttinger, sbsd. 98, 915 (1955).
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TABLE III. Comparison with experiment. With the exception
of the use of the experimental values of the krypton lattice
constant and dielectric constant, the "theoretical" results are
based entirely on computed band parameters. As noted in the
text, the ratio of G(theor) to G(exp) is independent of e since
both involve the same value of ~, and therefore within the context
of the Wannier model. We are comparing reduced masses only.

Series Line

Theoretical
Energy G

(eV) (eV)

Experimental'
Energy G

(eV) (eV)

9.09
10.62
10.91
9.90

11.29
11.55

2.05

1.84

10.15
11~ 24
11.48
10.88
11.95

1.73

1.52

& Reference 11.

ing the states at I', but we should also investigate the
possibility of bound excitons being formed at the points
L and X.At present the latter investigation cannot be
carried out because a theory of Wannier excitons
involving anisotropic or degenerate energy surfaces is
complex and has not yet been developed to a point
at which quantitative predictions pertinent to our
problem can be made. ""

At the point I', we assume that Wannier excitons are
constructed from the F6 and I'8 valence states corre-
sponding to the A6 direction, and the F6+ conduction
band state. Using our theoretical band gaps and effec-
tive masses, we may calculate binding energies and
absorption energies for Wannier excitons. In our
calculation we use for the dielectric constant &=1.80,
which is a reliable value. " However, for small radius
excitons (n= 1) the effective dielectric constant might
be somewhat less. At any rate, by using the same e as
does Baldini the ratio G(theor)/G(exp) will be independ-
ent of e and equal to y, (theor)/p(exp).

Pertinent quantities are listed in Table III, together
with those of Baldini. "Disagreement is mainly of two
sources: our theoretical energy gap is about 0.45 eV
less than that inferred by Baldini, and we predict
reduced masses for the 6rst and second series to be
0.49 and 0.44, compared to Baldini's 0.41 and 0.36.
Baldini's latter value may be too small; he uses the
m=1 line to determine it, and the Wannier model is
probably not accurate for such small-radius excitons.
One thus does not expect to obtain quantitative agree-
ment for e= 1 lines. I'or the m= 2 exciton, however, of
the order of 40 lattice sites are enclosed in a sphere
delineated by electron and hole, and the Wannier
model might be expected to be reasonably valid. This
point is discussed elsewhere. "

"It seems likely that the techniques developed by Kohn and
Luttinger (Ref. 34) for donor states in semiconductors can be
applied to the Wannier exciton problem. To the author's knowl-
edge, this has been done only for the case of nearly isotropic
reduced masses, by J. J. Hopfield and D. G. Thomas, Phys. Rev.
122, 33 (1961) and by R. G. Wheeler and J. O. Dimmock, ibad
125, 1805 {1962).

"Q. Saldinf and R. $, Knox, Phys. Rev. Letters ll, 127 (1963).

Observed relative absorption strengths are in qualita-
tive agreement with theory. Theoretically the oscillator
strengths of the difI'erent lines should go as n ' on the
Wannier model"; according to Baldini, " the observed
ratio for ran=1 and v=2 lines is about 4 (whereas it
should be 8). This is riot considered a serious dis-

crepancy, however, since as mentioned the m=1 lines
are not expected to be in quantitative accord with the
Wannier model. Linewidths are also consistent with a
Wannier picture. ' Agreement is generally rather good,
and it appears that the interpretation of the krypton
lines as corresponding to n=1, 2, 3 Wannier
excitons at I' is reasonable. Further support for this
sort of interpretation arises from a study" by Baldini
and Knox of the optical properties of mixed rare gas
crystals.

Further theoretical work might include a study of
xenon. One might infer that the band structure of xenon
would resemble that of krypton, based upon similarities
between argon~ ' and krypton. It would then probably
be worthwhile to attempt to determine where the
differences and similarities between krypton and xenon
wouM lie, and explain the xenon absorption structure
on the basis of these. For example, the large spin-orbit
interaction in xenon might cause the 5p valence band
to be split into two nonoverlapping parts. Also, the
formation of excitons at the points L or X might be of
importance.

Several experiments may be suggested. Photoconduc-
tivity studies would be useful in helping to identify
band-to-band transitions and other phenomena assoc-
ciated with conductivity. The study of optical properties
of rare gases doped with impurities such as hydrogen
and sodium could yield among other things information
regarding the position of impurity levels within the
forbidden gap. The relationship between the optical
properties of annealed and nonannealed samples of
solid rare gas might be studied further, to understand
better how defects in crystal structure and excitons
are related.

VIII. SUMMARY AND CONCLUSIONS

It has been shown that the combined tight binding
and full OPW methods yield a convergent set of energy
bands for the rare gas solids. The calculation which we
have performed contains several important features
which have not generally been included in earlier work.
The exchange potential has been constructed in a new
manner as a sum of quasiatomic potentials whose sum
resembles the known crystal free-electron effective
exchange potential. The shifts of core and valence
quasiatomic energies in this potential have been taken
into account by perturbation theory. The spin-orbit
interaction has been incorporated into the tight-binding
formalism and parameters have been explicitly cal-
culated. The full OP% method has been utilized to
calculate rare gas conduction bands, and has been shown
to be capable of handling valence bands which werc
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thought to be amenable only to tight-binding or atomic-
likc treatments, in contrast with previously held
notions. ' ' The success of the Wannier exciton model in
interpreting Baldini's krypton results" suggests that
other electronic properties of the solid rare gases are
capable of being understood in the framework of
effective-mass theory.
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Plasma Resonance Absorption in Thin Metal Films*
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The transmission of p- and s-polarized light through thin silver Qlms as a function of wavelength and
angle of incidence has been measured. As predicted, a dip in transmission occurs in the vicinity of the
plasma frequency only for the p-polarized light. This dip is associated with the excitation of a collective-
type surface plasma mode in the thin 61m by the electromagnetic wave. The plasma frequency of the film
can be accurately determined from this dip to occur at 3.80 eV.

I. INTRODUCTION

HEN a charged particle passes from one dielectric
medium to another, electromagnetic radiation is

is emitted because of the rearrangement of the induced
surface charges. This "transition radiation" was first
calculated by Ginzburg and Frank' and then extended
by other authors. ' ' Ferrel14 has shown that, for the case
of a thin metal film, a simple physical picture can be used
to predict a peak in the transition radiation around the
plasma frequency. Subsequently, other authors~' have
shown that this peak is also predicted by the usual
theory of the transition radiation from a metal slab in

*This work was reported at the Washington meeting of the
American Physical Society LA. J. McAlister and E. A. Stern,
Bull. Am. Phys; Soc., 8, 392 (1963)7. This research has been
supported in part by the Advanced Research Projects Agency.' V. L. Ginzburg and I.M. Frank, Zh. Eksperim. i Teor. Fiz. 16,
15 (1946).' V. E. Pafomov, Zh. Eltsperim. i Teor. Fiz. 33, 1074 (1957)
Ltranslation: Soviet Phys. —JETP 6, 829 (1958)g.

G. M. Garibian and G. A. Chalikian, Zh. Eksperim. i Teor.
Fiz. 35, 1285 (1958) Ltranslation: Soviet Phys. —JETP 8, 894
(1959)j. See also R. H. Ritchie and H. B. Eldridge, Bulj Am.
Phys. Soc. 4, 384 (1959).' R. A. Ferrell, Phys. Rev. 111, 1214 (1958).

e E. A. Stern, BulL Am. Phys. Soc. 6, 11 (1961).' E. A. Stern, Phys. Rev. Letters, 8, 7 (1962).
r V. P. Silin and E. P. Fetisov, Phys. Rev. Letters 7, 374 (1961).

R. H. Ritchie and H. B. Eldridge, Phys. Rev. 126, 1935
(1962).

the limit of small thickness. More recently, a quantum-
mechanical calculation of this peak has also been made. '
This predicted peak in the transition radiation has been
seen experimentally. "

On the basis of Ferrell's physical picture for the peak,
it was predicted that electromagnetic radiation of the
correct polarization and non-normal incidence would
show anomalous behavior around the plasma frequency
in interacting with thin metal films. ' In the next sec-
tion we describe in more detail the physical ideas in-
volved and present the theoretical expressions which de-
scribe the interaction of electromagnetic waves with
thin metal films. The last section describes the experi-
mental results which show the expected behavior and
gives a discussion of the results.

II. PHYSICAL CONSIDERATIONS

Consider a metal film of an ideal electron gas of thick-
ness d. If the film is thin enough, then the type of oscil-
lation in the film illustrated in Fig. 1 should occur. This

9 N. Matsudaira, J. Phys. Soc. Japan 18, 380 (1963).
'OR. W. Brown, P. Wessel, and E. P. Trounson, Phys. Rev.

Letters 5, 472 (1960); W. Steinmann, Phys. Rev. Letters 5, 470
(1960); A. L. Prank, E. T. Arakawa, and R. D. Birkhoff, Phys.
Rev. 126, 1941' (1962).

"R.A, Ferrell and E. A, Stern, Am. J. Phys. 31, 810 (1962).


