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Superconductors with Plane Boundaries*
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The Gor'kov equations are salved approximately for various geometries to obtain information about the
pair wave function a (x) in the vicinity of plane boundaries. The approximation method consists of assum-
ing a model a (x) taken constant within the superconductor, and assuming it to be close to the correct
A*(x). The equations are then solved and a new ae(x) is calculated. a e is then chosen in a self-consistent
manner. The problems considered are the finite and semi-infinite superconducting slabs, and semi-infinite
superconducting and normal metals in contact. The effects of the boundary conditions are discussed.
The calculations are performed both at zero temperature and near the critical temperature.

where f(x) is one or zero depending on the type of
metal we have at point x:

f(x) =0 Normal metal
=1 Superconducting metal.

(2)

(Our use of x rather than r is because we shall only
consider geometries which vary in one direction. ) We
will, as usual, introduce a cutoG at the Debye fre-
quency co&, whenever necessary. With this assumption,
the system may be described by the Gor'kov equations

I. INTRODUCTION

HE properties of an in6nite homogeneous super-
conductor have been reasonably well described

by means of the theory of Bardeen, Cooper, and
Schrie6er, ' and variations of it.' However, because of
the nonlinearity of the equations involved, it is rather
difficult to apply the theory to less trivial geometries.
It is therefore desirable to develop various approxima-
tions which allow the equations of the theory to be put
in more tractable form. One successful approach has
been that of Ginzburg and Landau' which Gor'kov' has
shown can be derived by taking advantage of the fact
that the energy gap approaches zero at the critical
temperature, and the assumption that the distance
over which the magnetic 6eld varies (the penetration
depth) is much longer than the coherence distance near
the critical temperature. We should like to consider
another approach which is not restricted to the critical
temperature region and hence does not depend on the
smallness of the energy gap. We shall restrict ourselves
to the simplest possible problem by assuming that the
interaction potential between two electrons is given by

V(r—r') = gf(x)3(r —r'), g) 0—

for the imaginary frequency Green's functions4:

Lite „+V'/2nt+tt)G„„(r, r')

+f(x)t5.(x)P„„t(r,r') =3(r r'), —
$—iso„+V'/2m+tt/P„„t(r, r') (3)

—f(x)rV(x)G„„(r,r') =0,
where the frequency co ranges over discrete values,

(o„=(2m+1)srkT
and

(4)

t5.*(x)=gkT P P„„t(r,r).
n

One usually refers to A(x) as the energy gap because in
an infinite homogeneous superconductor it is inde-
pendent of position and corresponds to half the mini-
mum energy necessary to break a correlated pair. In
our case, where A(x) will vary with position, this is
probably not good terminology, as the energy of a given
pair will presumably be the same no matter where you
find it, so we shall refer back to the definition, (5), and
call d(x) the pair wave function, the probability of
6nding a correlated pair at point x (multiplied by g out
of deference to convention).

Now, we don't want to assume that h(x) is small.
However, if the geometry is such that we can make a
reasonable guess at a model 6 (x), then we might be
able to assume that 4 (x)—A(x) is small. If this is the
case, and if we can solve the, now linear, equations with
h(x) replaced by 6 (x), then, to the extent that 6 (x)—t), (x) actually is small, we shall have a useful approxi-
mation. For the geometries we shall consider, we will
6nd it convenient to choose

*Research supported in part by the U. S. Air Force OfBce of independent of position, whenever we are in a super-
Scienti6c Research.

& J. Qardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. conductor. Since d, (x) always occurs multiPlied by f(x),
108, 1175 (1957). we need say nothing about 6 (x) in a normal metal.

z" E"'p"'m ' T' ' " 3 5 (195 ) The choice (6) guarantees that we can always solve theLtranslation: Soviet Phys. —JETP 7, 41 (1958)g; L. Gor'kov,
ibid. 34, 735 (1958) Ltranslation: ibed 7, 505 (1958)g. . equations.

3 V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Fiz. In Sec. II we shall treat a 6nite superconducting
20, 1064 (1950).

4 L p G k Zh Ek ' ' T p' 36 1918 (1959) slab. We shall see that our approximation gives excel-
Ltranslation: Soviet Phys. —JETP 9, 1364 (1959)g. lent agreement with the numerical calculations of Blatt
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and Thompson. ' We will discuss the effects of the
boundary conditions on our results, and will also con-
sider the limit as the slab becomes infinitely thick, that
is, the semi-infinite superconductor. In See. III we wiQ

consider the semi-infinite superconductor in contact
with a semi-in6nite normal metal. We will examine the
behavior of the pair wave function both at zero tem-
perature and near the critical temperature. Ke will
also examine the eBects of varying the effective mass
and the Fermi momentum independently in one metal,
as well as the boundary conditions at the interface
between the metals.

II. FINITE AND SEMI-INFINITE SLABS

Since we will be considering geometries which vary
in only one dimension, the x dimension, we can im-
mediately make a Fourier transformation with respect
to the y and s variables. Thus, we let

FIG. 1. Behavior of
n*(a) in slab of thick-
ness fg, showing region
d' over which n*(g) is
to be averaged to calcu-
late d*.

o L

b= t 2tn( —(2+is„)g' ' b~= 12—tn( $2—ie—„)5'"
(11)

e„=L(g 2+)g(2]'t2

the solutions are

rV 2tn ' sinb(d —x&) sinbx&

b sinbd

( )
F„„t(x,x', tt,,)=

(b2 b2 2)

ishing of P~ and 6 at the boundaries, and then demands
continuity or the appropriate discontinuity at x=x.
If we introduce the notation

G„„(r,r') = expLik, (r,—r, ')JG„„(x,x', k,),
(22r)'

(7)
sinb~(d —x&) sinb*x&

b* sinb*d

F„„t(r,r') = exp$ik, (r,—r, ')]F „t(x,x', b,),
(22r)2

where the subscript J indicates a two-dimensional
vector in the ys plane. We introduce the abbreviations

g, =0,'/2tn —t2,

a= L2tn( —$1+$0) )jr12 and

a*=—
t 2tn( —P,—ia) „)j"'. (9)

G„„(x,x', k,)=
(b2 b22)

(12)
(a*'—b') sinb(d —x&) sinbx&

b sinbd

(a~2 —b~2) sinb*(d —x&) sinb*x&

b* sinb*d

where x& is the larger of x and x', while x( is the smaller.

(We shall use the convention that the phase of a com-
plex number lies between 0 and 2m, hence any square
root lies in the upper half plane. For this reason we
must have the minus sign in a".) Then (3) becomes,
with (6),

(1/2tn) (a'+ d'/dx') G„„(x,x',k,)
+f(x)dF „'(x,x',k2) =b(x x'), —

10
(1/2tn) (a*'+d'/dx') F„ t (x,x',k,)

f(x)A*G „(—, xkx,)=0.
I'"or the case of a slab of superconductor between x=0
and x= d, we must take f(x)=1 in this region.

Solution for Et and. G

Self-Consistent Evaluation of d *

YVe must now evaluate 6* in some self-consistent
manner. Our approach will be to calculate Ae(x) by
means of (5). If b,*(x) were a constant, then we would

simply equate that constant to 6* and obtain an
equation for b,*. Since, in fact, LV(x) will not be con-
stant, we will equate LV to the average value of h*(x).
Now, we expect that A*(x) will go to zero at the bound-
aries, because of the boundary conditions, but will rise
as we get away from the boundaries and remain rela-
tively constant in the interior of the superconductor
(see Fig. 1).We should like to equate b,* to the average
interior value of LP(x), hence we should only average
over the region d', rather than over d. Thus, our self-
consistence equation will be

We shall take as boundary conditions the vanishing
of the wave functions, and hence both Iit and 6 at the
boundaries x=0 and x=d. Later we will see how some
modi6cation of these will aGect the results. The solu-
tion of (10) is then straightforward; one simply solves
them in the regions x&x' and x(x' subject to the van-

~ J. M. Blatt and C. J. Thompson, Phys. Rev. Letters 10, 332
(1963).

a*(x)dx.
d' o

As b.~(x) is essentially zero outside of d' we have ex-
tended the integration to the surfaces of the super-
conductor without introducing any appreciable error.
We will return to the specific evaluation of d' after we
see what the surface behavior of h*(x) actually is.
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a d'- which is independent oof & and thatt to perform the averag g d- w icR in lmIQedl- w icIt is convenien o
ately on „„x,F t(a x'b&). Thus we get

db/d)t= —2N/b, db"/d)1 ——tl —b*,

F t(kl)=—— d2/F „(x,x, „k,Cit22S

6*(22N)' 1 d 1

2d' b' —b*') b' b b b*(

5 we need F„„t(r,r) in order to
,. S;....h s we must integrate ove

hp h thand on yb 1 depend on k, throug 1 we
variable of integration to $1.

one gets
5*m~ 1 b* sindb «

~072'

there is no contribution fromSince b —+ ioo as $& -+ oo, t ere
'

the upper limit and we have

5*nzi 1 -b* sindb

d' e bsindb*

(22r)' p

w understood that we are to replace $, ybwhere it is no
—p. Finally, according to an

dg,F„„t(k,). (15)
h*=gkT g„F„. (20)

Then noting that
b' —b*'=4mie„)

e ourselves noir to zero temperature.D

io i (20) b o 1 dIn this case, the summation in
(16) by an integral'

dc'~
I'"-.f

—.2x

2 I g ' ' 2 g 2)l/2]]1/2}-&o ', 6
l

')'/']}'/' sin{d [22/2L/2+2(ol„+dko {2222[/-2 2(ol '—
2 g 2)1/2] Jl/2}2

l pl )1/ ]}1/ slll{d [22/2[@ $(% 2+2+lhl2)'/2 {22/2[/2+2(M„2+ 62(22l ) d „i th)~

Or, letting o)„=zo),

2 g ' 2 g 21/2 ~ 1/2}-//2]1/2 sin{ll 1—(ol-
'" '

{~L1+(~'—l~l') //]lhl2)1/2 [1 (~2 ld, l2)'/2 sin2 (22r)2l'2;„(o12—6

~ (21)

(22)

w ere w d d the dimensionless measureswhere we have intro uce
0f the slab thickness

(23t= ped, 1'=ped',

PPth "Fermi momentumwhere Pe ls e

FIG. 2. Complex ar plane
s orang distorted contour
for evaluation of (22).

P. ' d I. E. Dzyaloshinskii,
1959) Lt l tlo: S

. Gor'kov, an
r. Fiz. 36, 900Zh. Kksperim. z Teor. F

I tt Pll L tt ra 5 6 (1M3)~ C. J. Thompson and J. M. Blatt, Phys. e e

(24)po2/2222= y, .

d out as Thompson and BlattvIt should be pointed out, as o t
that for Axed density, 0 i

~ ~

dof the thickness d.. In the Appen ix we
f the normal metal,as in the case o ethe same function as

'

d Blatt. The integral
t kth 1

Thorn son an a
in (22), as written, diverges, so we mus m

introducing
2 g 2 1/2Gd—

and explicitly introducing the cucutoB at

(25)

(26)
'/' never vanishes), we get(so tllat 1&e /2

gtNPeh~

2(22r)2P2 p

ln[ j„+(l,e)j„(l,e)], (27)
("+I

~I')'/'

. It is convenient
d' ti th

e fl'e uency, co~.
the cutoff by istor in

tht th t llof (22). To do so, we assum

h may distort the
nction which goes to zero

g"- p

db k
~ ~

around the point or=
is. The only rane

1
' dtoth '

htalon the rea axis a
b h oit t

b 1 th 1of the integrand above and e ow
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where
sin(t (1~e/fe) ~ i—rft5

j,'(t, ) =
sinD(1+ e/fe) Us+irft5

'i

20- 1
'l

and g~0+. Now

inj„+(t,e) = 2—i tan 'l cott(1&e/fe)' ' tanhpt5. (29)

As t(1&e/fe)'I' increases through «, the inverse tan-
gent makes a jump of —m, otherwise it is constant.
Hence, we may write

(30)

Fxa. 3. Behavior
of b, as a function of
thickness of slab for
various values of X
and for N(0)V=0.3
and ay~=100 K.

If')bi.0
I

5&. +(e)
i'i. j

where
tf(*)=1, x&0

=0, x&0. (31)

The original branch that j „+(t,e) starts on is deter-
mined by the fact that (14) vanishes as d and d' ap-
proach zero. This makes the summation in (30) begin
with n = i.With this result, and using the usual notation

1V(0)V=grspp/2m'

we may rewrite (27) as

(32)

E(0)V t'

+el tl 1—
l

—«
I

. (33)
((
E E, Ie) )

g e(t—«) (35)
X(0)V (,&+

l
Al&)»s

which has the approximate solution (taking A real)

A=2pen exp[ f(t)/X(0—) V5, (36)
where

f(t) = (t—) ~)/~ P 0(t «)—
n

(37)

The function f(t) increases linearly in t whenever t&«.
At t=«, f(t) decreases discontinuously from (rs—X)/
(rs —1), for t= « , to (s—X)/—I, for t=«+. The be-
havior of d, (t) is sketched in Fig. 3 for values of X

"Nofe added is proof. The e6'ect of 6nite temperatures is
simply to introduce the usual factor, tanhL(e'+

~
A (')'~'/2kTg, in

the integral in (33).This modi6cation, the same as in the in6nite
superconductor, then results in the usual relationship between the
critical temperature and the zero-temperature energy gap, except
just at the resonances.

This is the gap equation for a slab of thickness d = t/pp. "
To see what the solutions of this look like, let us first
neglect terms of order ~~/fe compared to unity. Further,
let us write l' in the form

(34)
Then (33) becomes

0
5»' 5» 6»

4=p d

8»

That is, we have changed the effective size of the
sample. We can simulate this kind of e8ect by every-
where replacing t by t+m. , where a will depend on the
detailed nature of the boundary conditions. The only

'b Note added is Proof. These discontinuities are related to the
passing of a single-particle energy level through the Fermi energy,
much the same as in the de Haas-van Alphen eGect.

e P. W. Anderson, J. Phys. Chem. Solids ll, 26 (1N9).

equal to 0, 1, and 0.82, the last value being the one
that gives agreement with the results of Blatt and
Thompson. ' We must, of course, examine the small dis-
tance behavior of h*(x) to see what value of X is reason-
able. We will return to this point later.

We note that the resonances all occur at t=«(or
pp= «/d, the usual condition for standing waves of
wave number pp in an infinite square well of width d).
If we make explicit the dependence of pp on d (see
Appendix), we see that the resonances occur at

d= fn(s+-', ) (s—1)prV/3Ã5'~'= (s—xe) (s.V/31V)'"

where X is the number of electrons and V the volume,
and the approximation is valid for all but the smallest n.

That the resonances occur at l= nm is a direct conse-
quence of our choice of boundary conditions: the vanish-
ing of the wave functions at the surface. One should
like to see the eGect of a change in the boundary condi-
tions. The usual alternative to specular reflection, dif-
fuse reflection, does not have immediate applicability
here. That is, no matter how rough the surface, as this
is a time-independent problem, it will be the eigenstates
corresponding to the actual surface which will form the
pairs. Hence, the surface can't serve to break up the
coherence. We can, however, instead of invisioning the
system to be in an infinite square well, treat it as a
finite but deep square well, corresponding to the finite
probability of escape with suKciently large energy. If
the depth of the well is Vo then the resonances occur,
for suKciently large Vo, at

1( 2
=t+pol

d Em Vp) ass Vp)
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change then is that f(l) is replaced by f(l+n2r), which
has the same behavior as f(t) except that the reso-
nances are shifted to l= (22—ir)2r. If Vp is large enough,
then the distance between resonances remains m. Since
the boundary conditions may well vary throughout a
realistic sample, we would not expect to see these reso-
nances; their positions would be averaged over.

To see the effects of the terms of higher order in
ioD/p, which we dropped, we refer back to the gap
equation (33). The erst 0 function begins to contribute
as / increases when l(1+ipD/y)'~2=m. , and contributes
over the whole range of integration when l=nx. The
second 8 function starts to contribute at i=ex but
doesn't contribute over the entire range of integration
until /(1 —coD/p)' '= 222r. Hence, the effect of these terms
is to replace the sudden jump in f(l) at l=pbpr by a
more gradual change spread out over the region

!4-

12-

II-
I~ IP-
Ci

C}

CI

5
"2

I
5 I I I I 5«I a ea ~ P m ~ a I424 424

X

easily seen to be

F„„"t(x,x',k,)

Fn. 4. Detailed
behavior of a(l) near
l =4m. for X=0.82 and
E(0)V=0.B, plotted
as a function of x,
where

i=—42 (1+xcPD/2P) .

&l&
(1 +6& D/P)1/ 2 (1 ~D/P)1/2

(38) d*(22m)22 1 1
eib(n —x'(+ e

—iV(z-e'J
2(b2 —5*2) b

(41)

Thus the resonances have a width M~NrrppD/lb. When 22

becomes suKciently large (22 p/cpD), the resonances Now, noting that, since Imb) 0 always,
begin to overlap. Figure 4 shows the detailed behavior
near the x=4 resonance. lim cotM=1/2,

d

and that

(42)

Small Distance Behavior of 4*(x)
sinbx cosbx —(1/i) sinpbx= 222T1 —e2'b ), (43)

To estimate .the value of X we must return to (12)
and evaluate iP(x) for small x. By small, we mean
x 1/pp and we will assume the slab is suKciently
thick that. d»1/pp. We write

we may rewrite (40) as

F „"(x,x,k,)=F „"t(x,x,k,)
+F.„'t(x,x,k,)+F.„"t(x,x,k,), (44)

where

Now,

F„„( txx, )k

F „t(x,x,ki)
(22r)2

lP(2222)22 1 1
epibs+ e 2ib+x—

2(P—b*') b k*
F „' ( t, xkx,)=—

dq.F„„&(x,x,k,). (39) and
p A*(2222)' 1

F„„"t(x,x,k,)= —— cotbd —— sinpbx
(b2 —5*2) k 2

(45)

LP(2222)2 1
—Lsinbx cosbx —cotM sinpbx)

($2 A@2)

1——Lsinb*x cosb*x—cotb*d sinpb*x) . (40)

Before attempting to evaluate (39) it will be convenient
to break up (40) into various terms. First it will be
useful to remove that part of (40) which corresponds to
the semi-irifinite superconductor (d -+pe), and we shall
further want to remove from that part the part corre-
sponding to the in6nite superconductor. That is, we
shall first want to return to (10) and solve it for the
case f(x)=1 in all space. This solution is easily ob-
tained by taking Fourier transforms with respect to x.
If we denote this solution by a superscript po, it is

+—cotb*d+— sinpb*x . (46)

When we insert „F„" (xt, kx)iin the expression for
A*(x), (5), the result will be of the same form as one
ordinarily gets for the infinite superconductor. 1The
numerical value will, of course, be different because the
6* in the right-hand side of (40) is the solution of (13).
That is, the h~ in the right-hand side of (40) will be
6(l) rather than ~b, (po) (see Fig. 3)). However, if we
de6ne

=X(0)V =f(l) (47)
~'(t) ~ ("+I ~(I) I')'"

then „F„" ( t, x, x&)kwill just yield Z*(l). Of course, as
l~oo, E*(l) -b LP(oo). To evaluate the contribution
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45 in (39):f p (x~xp b ) we insert (

, (4g)

ziz

d( p /t(g x,&i)p„'t(x) =—
2'r

co Qb . —2ib*
z(2zN)'~

dp, e'*'*+
d)1

i (16) and (1chere we have made use o

dp p "t(x,x,&I)p "&(x)=-

g*(2zzz)' 1 "
db, otbd

4ySi~n

1 . , ~ 54)
4.-

g sin'b xb* cot
4~—p

1y). Since e second(16) an '

i the erst;„t,g,al in (54) ".t '(49)
need only con"

't x)= —e&n
Sex ~„

1
db cotbd —— sin'bx

Z~

"'"" i 'be (55)

~2Qdn
Qo x

bx+z—s111 x ccosbx-sin x* l 1 " do)„zzizh*(l)
a'*(x)= g

prx „' A(l) ' '"
yLeNpz e

—p/, t/ gg

7
d2~9

rovided
I
b

I
x (zr, that is px

vanis, we mion at or~. Nowff the integration amust cut og '
,11) and

I/P

e theordero ~~,e at most on d
5 ) ooDi

Ml
~ sl

(1&zp„ /tz "'=+1 zp„

To this order, (50) becomes

gzizh'(l)

g241JnI= (1/d) sin'bx g (1/zz e
'

(56)

b dBerentiating56) is easily done y
series, andh. ~ ~ n.

The sum

p

vanishes. This y

I= (1/d) sin'bx inl 1——e", x . 57

Thusq

p "z x = LPzlz 2pr d {sin x
—sin'b*x ln 1—e

S'*(x)=—
Ngj dGDn

52e
To evaT aluate( .'+ I~(&) I')'"

I=

co„, as in
zero temperature, t e
in (21), yielding

a takex~1/pp, we may
'

terested in xSince we are in
the exponentia1 and replace

(47), we have

53)

unity. Then, using, e

a"(x) =—~ s

te the contribution o
p„"t x,x,k1) to lp x, w

'

Thus, we s a

g//p/ (g) p //t( )
2

—'
'PPg+OPPgPPI) iZ,2 ),sin'bx =sin Ox

=sin'b*x.

Then, letting co„=ceo,

(60)

i ue used in evaluating 21). Wewe w usill e the technique use in
note that

S111Ppg

Sill Ppg
m 06*

S"*(x)=
(2pr 'lz

gzzzpplV

(2pr)'lz

ln

ln
sin(lL1 —(pp' —

I
6 I')'" iz

(61)
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Distorting the contour we get

gfÃp pk
b,"*(x)= sin'ppx

(2or)'lp

de
X »bio+(l p)J. (l p)j

(pp+
i
g~')»'

—2l
(
1+-i —i1—i, (63)

PP E lto)

which gives to order AD/p,

6"*(x)= 2 sin'ppxL(l'/l) LF (l)—Z*(l)j. (64)

Limit of Semi-Infinite Slab

The limiting case of a semi-in6nite slab may be ob-
tained easily by taking the limit of (12) as d —&oo. In
this limit pp and p assume the usual values for an in-
finite medium. Since Imb&0, Imb (0, we have, in this
case,

F.„t(x,x', k,)
a*(2~)' 1 1

—o:" & sinbx& e"**)sin—b*—x& . (66)
(b —b*P) b bg

Hence,

F„„t(x,x,k,)=F„„"t(x,x,k,)+F„„'t(x,x, l'pi). (67)

Hence, combining all our results according to (44), we
have

sin2 pox -l' 6*(l)
a*(x)=Z*(l) 1— + — —1 2 sin'ppx

2ppx l Z*(l)

x/d«1, Ppx« lto/coD)) 1.

Thus, if we define Xor as twice (because there are two
surfaces) the value of ppx which gives LP(x)=&V(l)
then (65) suggests that Xor &2(or/2) or X &i.

The specific value of X chosen will determine (see
Fig. 3) whether LV(l) lies predominantly above or below
the value of the gap in the in6nite superconductor,
h*(pp). )The reasonable Blatt-Thompson' value of X

=0.82 makes 6*(l) predominantly greater than LP(~ ).j
We shall see later that the presence of a normal metal
at the surface, rather than a vacuum, greatly alters the
rate at which A*(x) rises. Since in practice supercon-
ducting slabs are bounded by various materials (e.g.,
substrates for evaporated films, etc.), and surfaces may
not be particularly clean, it would seem likely that any
given sample would probably have a variety of X's

associated with diferent parts of it and the net eGect
would be to average out values predominantly above
and below A*(pp). Since the resonances themselves will

also be washed out by varying thickness in the sample,
it seems improbable that any value other than LP(op)
would actually be measured.

gm5*
s1112pp

4n-'x
pQS e pilp

(op '+ [5(')»'

opD/p«1. (69)

For large x, specifically x)&p/toDpp, the major con-
tribution to the integral in (69) comes from p &p/ppx
&(~~. That is, from co„&&co~. As the exponential cuts
the integrand oG rapidly, we can let the upper limit go
to ~, and thus obtain

S*(x)—S*

4g'x
sli12pp

tlat„
&
—poxepzl p

(p —[5[ ) ~

gmpo sin2 pox
Ep ppx

2x' p2ppx

p
x»——.(70)

&D pp

For still larger x, then

~*(x)—~*=—goippp sin2ppx( or p )»'
zoo I&l &v—

2~' 2p,x (2p,x /A[i
(71)

p 1
x))

I~I po

Thus, while the exponential dropoff of A*(x)—6* is
only over the coherence distance

4= (2/or) (&/I ~ I)1/po (72)

the sin2ppx oscillates with a wavelength or/pp and will
in any realistic sample, whose surfaces are surely not
plane to this accuracy, cause LP(x)—LP to average to
zero. This sin2ppx behavior is not restricted to large
distances but is valid, as we see from (69) Pand more
explicitly (68)j, for all x, down to very small distances.

Hence, we may say at zero temperature that LP(x)
rises very rapidly from zero at the surface to the bulk
value LF in a distance on the order of 1/pp. Different

We have already evaluated the A*(x) produced by
(67) in the course of evaluating that produced by (44).
I'hus, we have, at zero temperature, the small distance
behavior of the pair wave function

cV(x) =LPL1—sin2ppx/2ppxj, pox&&jr/AD»1. (68)

We should also like to evaluate LV(x) at large dis-
tances from the surface, both at zero temperature and
at the critical temperature. It is clear from (45) that as
x —+~, F „'t( xx,k,) -+ 0. Hence, at large distances from
the surface, the behavior is the same as in an in6nite
superconductor, and we can reasonably identify 6*with
LP(op), the energy gap of the infinite superconductor.
To see how rV(x) ~ d,* at large x, we consider first the
zero temperature case, and return to (52).

a'*(x)=Z*(x)—a*
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boundary conditions may alter somewhat the value at
the surface, but should not change the rapid rise to 6*.
%'e shall see however that the presence of normal metal,
rather than vacuum, on the other side of the surface
will alter this quite radically.

To evaluate d,*(x)—6* near the critical temperature,
we return to (49) and sum over frequencies according
to (4) and (5). We note that (49), depending on &o„

only through c, is even in ~„. Hence, we need only
consider ~„&0.Further, at T= T„6*=0and therefore

for co )0. Then (49) involves terms like
exp(2ipsL1+m„/pj'~'). For large x, the major con-
tribution arises from the smallest value of or„, from
cop= 7rkT, . Hence, to obtain the large x behavior, we need
only replace the summation in (5) by the leading term.
(The contribution of the next term is about 5 jz for
x=p/xkT, ps. ) Finally we note that kT,/p«1, so that
we may expand

In order for the normal metal and the superconductor
to be different metals, we shall assume that they are
described by different effective masses and Fermi mo-
rnenta. All quantities referring exclusively to the nor-
rnal metal will be signified by a bar above them: m,
ps ——(2')'~' where p= p

—U—and U is an extra param-
eter (a potential) introduced to further distinguish the
two metals. Thus, for example,

P,=k,'/2m —p, a=L2m( —&L+i&v„)j' '. (78)

Superconducting quantities will be unbarred: m,
pp ——(2m')'".

The Gor'kov equations for this sy' stem are then,
after Fourier transforming them according to (7),

1( d'i 1( d
e(x)

~

a'+ ~+8(—x)
~

a+
) G„„(*,x,k.)

2m& dx') 2m, k dxs)
(1&imkT./is)'~'= +1+ixkT./2p.

This gives us

A*(x)—A*= 2gkT P Z.„'t(x)
n=p

(73)
+e(x)SF„„t(x,x', k,)=S(x *'), —

(79)
1( d'i 1( d

e(x) (
u*'+ ~+8(—x)

~

u*s+
~

J „„t(x,x,k,)
2m 4 dx'J 2m 4 dx')

= 2gk T,F.sr, 't (x), (74) —S(x)S*G„„(,xxk,)=0.

or, to lowest order in b,* and kT,/p,

gyps sin2psx
A*(x)=A* 1— ~

—
g px~r T'clj

(75)21I ppx

x& (p,/nkT, )1/ps.
Thus, near the critical temperature, we also see that,
because of the rapidly oscillating sin2psx, LP(x) effec-
tively rises to 6* in a very short distance. That the
sin2psx is correct even at small distances can be seen

by referring to (49) and noting that we may generally
write

5=Ps(1+is„/2p), b*=Ps(1—ie„/2p), (76)

We now consider the boundary conditions at x=0 fol-
lowing a discussion of Harrison. ' We must insist that
any current be continuous so that there be no accumula-
tion of charge at the interface. Since the current is
proportional to the velocity, it involves the effective
mass which changes discontinuously at the boundary.
Hence the wave function and/or its derivative must also
change discontinuously. This is not unreasonable, as
the effective mass approximation means we are replac-
ing Bloch waves by plane waves. The Bloch waves, of
course, must be continuous, but the plane waves
needn't be. Thus, if we consider the wave function in
the effective mass approximation, f(x), as a function
of x, we may take as the discontinuous boundary
conditions

since only co„&coz&&p can reasonably be expected to
contribute to the superconducting solution.

4 @(0+)
P(O —)= P(0+), —(0—)=p

dx lx
(80)

III. SEMI-INFINITE NORMAL AND SUPER-
CONDUCTING METALS IN CONTACT

f(x) =8(x). (77)

We want to see how the results of Sec. II are modified
when the superconductor is in contact with a normal
metal, rather than with the vacuum. We shall consider
a semi-infinite superconductor touching a semi-infinite
norma] metal, with x=0 the plane of contact, the super-
conductor being on the positive x side. Thus the two-
particle potential will be given by (1) where, according
to (2),

If we take 0- and p real, then current continuity requires

po = m/m, . (81)

The boundary conditions for (79) are then (expressed
in a form which will be useful later)"

s W. A. Harrison, Phys. Rev. 123, 85 (1961).' Rote added irI, proof. P. G. de Gennes (to be published) has,
for the case of dirty metals, chosen essentially the same boundary
conditions: current continuity and discontinuity of Ii ~. He
chooses a particular value of the discontinuity, derived for the
special case of the critical temperature. and only valid there.
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1 dG„„ 1 dG„„
(0+,x', kg) — (0—,x',kg)

2m dx 2m dx

=&B+(x')= B(x-'),
p

1
F„„t(0+,x', kg) — F„„~(0—,x', kg)

2m2m

=gC~(x') =-C (x'),

1 dF„„t 1 dF„„t
(0+,x',kg) — (0—,x', kg)

28$ dx 2m dx

1 1
G„.(0+,x',kg) — G„„(0—,x',kg)2' 2'

=gA+(x') = A-(x'),

(82)

The left-hand side of (87) is the limit of a function
which is analytic in the upper half of the E plane. The
right-hand side is the limit of a function which is
analytic in the lower half plane. Hence we may set
(87) equal to P'(E,x'), an entire function of E. Simi-
larly we set (88) equal to Q'(E,x'), another entire
function. Considering only the case x')0, the right-
hand side of (87) gives

2m
G (E,x')=

(E a) (E—+a)

X $P'(K,x') gB+—(x')+iKgA+(x') j. (89)

By our convention, —a lies in the lower half plane. But
G (E,x') must be analytic in the lower half plane.
Hence we must have

P'(E,x') t B+(x')—+iErIA+(x') = (E+a)P(K,x'), (90)

where P(E,x') is an entire function of E. Then

where

= t'D~(x') = D(x'), -
p

G (E,x') =2mP(E, x')/(E a) . —

Similarly, from (88),

(91)

1( 11 1( 1

2m' crf 2m' pf where
F (E,x') =2mQ(E, x')/(E+a*), (92)

and Q'(E,x') fD~(x')+i—EqC+(x') = (E—a*)Q(E,x') . (93)
dG„„

A~(x') =G„„(0~,x', k,), B~(x')= (0+,x', kg),
dx

dF„„~
C~(x') =F„„t(0a,x', k,), D~(x') = (Oa,x', k,). 2'

La*G,(E,x')+ (K—a*)Q(K,*')
(K—a*)(Ega*)

+i D~(x') iKqC+(x') j, (94)Solution for E~ and G
G+(E,x')

It is convenient to deGne

Using (90) and (93), the remaining halves of (87) and
(88) may be written

(84)
F+(E,x')

G~(E,x') —=a

F~(E,x') —=a

+00

dxe'x G„„(x,x', kg),

dxe'x*F„„t(x,x', kg) .

(85)

2m
t ~ (E x') e'x" (K+a)—P(K x'—)

(E—a) (E+a)
l B+(x')+i'—A+(x') j. (95)

For large K we may, from the de6nition (85), expand
G (E,x') as

Considered as functions of a complex variable E, F+
and G+ are analytic in the upper half plane, F and G
in the lower half plane. If we now multiply (79) by
e'~* and integrate with respect to x from —~ to ,
we get, using the boundary conditions (82),

G (E,x')= dxe'x G„„(x,x',k~)

1 1
A(x')+ B(x—')+, (—96)

iE E'

(1/2m) (a' E')G~ (E,x')+ d F—~ (K,x') 0(x')e'x"—
= —(1/2m) (a'—E')G (E,x')+0(—x') e'x~'

+tB,(x') iK~A (x'), (87)—

(1/2m) (a*'—K')F (K,*')—~*G+(E,x')
=—(1/2m) (a*'—K')F (E x')+ fD+(x')

—iEqC+(x') . (88)

where use has been made of the definitions (84) and
the boundary conditions that, for finite x',

limG„„(x,x', k~) = lim (dG„jdx) (x,x', k&) =0. (97)

On the other hand, (91) gives

G (E)x') =2mP(K)x')E1/E+a/E'+ .$. (98)
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Thus, comparing (98) with (96), we see that P(E,x')
must approach a constant with respect to E in the
limit of large E in the lower half plane. Similarly by
examining G+(E,x') from (85) and (95) we 6nd that,
in the limit of large E in the upper half plane, F(E,x')
must also approach a constant with respect to E. The
only entire function with these properties is a constant.
Hence, comparing (96) and (98) we then get

1 0
F(K,x') =F(x') = W (x') = A, (x')

2mi 2mi

where we have used (11), (81), and (83).The condition
that F+(K,x') be analytic in the upper half plane re-
quires that the expression in the square brackets in
(101) must vanish at E=b and E= b*—. These two
conditions enable us to solve for F(x') and Q(x'). If
we dedne

D(b b )=(b a)(Pb a)(Pb a )
—(b*'- a') (pb+oa) (pb*+o a*), (102)

then

1 p8 (x') = B+(x').
2ma 2m'

(99) 2m'*
Q(*')= L(pb* -a)-""+(pb+-a)e '""j-, (1o3)

D(b, b*)

Q(E,x')=Q(x')= C (x')= C+(x')
2mi 2mi Insertion of (103) and (104) in (101) gives F~(E,x')

for x') 0. Likewise use of (103) and (100) in (92) gives
F (E,x') for x') 0. To get F„„t(x,x', k&), we note from
(86) that

(100)—1 P
D (x') = D+(x').

2m'* 2me*

Similarly the asymptotic evaluation of F (K,x') yield's F (x') = L(b22 a2) (pbi'+~a+)eibz'
D(b, b*)

1 + (b' —a') (pb —o a*)e ib'"). (104)

Inserting (95), (99), and (100) in (94) gives

F+(E,x')
e(~x)F.„t(x,x', ki) =

" dE
e '~ Fg(E,—x') . (105)

(22N)'
$h*e'~ '+6*(PE+o a)P (x')

(E'—b') (E'—b*')

—(1/2222) (E'—a') (pK—o a*)Q(x')j, (101)

The integrations in (105) are straightforward contour
integrations and F„„t(x,x', k,) is easily obtained.

In a similar manner, (87) and (88) may be solved
for x'(0. The 6nal result is

F„„( t, xxk,)=e(x)e(x')F.„"t( , xxk,)

4m'id*
+e(x)e(*') p& (a+ aic) L (b2 a2)eibze — ibz+z(b82 a2) e ibzzeibz—']

D (b,b*) (b' —b*')
D(—b, b*) D(b, —b~)

~ib(s+a') g
—ib~ (a+e')

2b
4' mid*

+e(x)e(—x') P(pb*+oa*)e"*e ""+(pb aa*)e "*e "—']
D(b, b*)

4~mid*
+e(—x)e(*') L(pb& &a)eiz*zeibz'+ (pb+&a)eia ze ib*z'J-

D(b,b*)
4m2ih*

+e(—x)e(—x ) (b+b')e'-"-e *-', (106)--
D(b, b*)

where F„„"t(x,x', ki) is given by (41).
Since a and b both have positive imaginary parts, we

see as x and x' become in6nite with x—x' remaining
finite, that all terms except the 6rst in (106) approach
zero. This gives the very reasonable result that as we

get suKciently far from the normal-superconducting
boundary the behavior is either that of a normal
metal (x, x' (0, Ft ~ 0) or a superconductor (x, x') 0,
Ft-+F"t). Since this is, indeed, a desired result, we
must choose 6* to be the energy gap in the infinite
superconductor.

F„„t(x,x,ki) =F „"t(x,x,ki)+F„„'t(x,x,k,) (107)

a*(x)=~*+~'*(x),

4*(x) at T=T,

We now want to see how the pair wave function,
calculated according to (5), approaches its limiting
ValueS Of 0 fOr X —+ —za and LP fOr Xb+zo. We
consider x&0 6rst. Then dedning
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we have

where

FIG. 5. Behavior
ofb, —b», and (b—b*)
as complex functions
of Q. Points 1, 2, and
3 correspond to Q,

2
reel axis

(109)e(x)Z'*(x) =gkTe(x) P„F.„'t(x),

at large distances from the surface where 6*—rV(x) is
small, we shall only attempt to evaluate 6'*(x) for
for large x. Froin (106) we see that the large x behavior
is determined by three types of exponentials whose
exponents are i(b b—*)x, 2t', bx, and —2ib*x. As $, —+po

we see from (11) that b—b", b, and b—* all approach
i~. The behavior of these three functions of $~ is
plotted in Fig. 5. The large x behavior comes from the
points where the imaginary part of these functions is
smallest, that is, from the points 1, 2, and 3 indicated
in Fig. 5. These all correspond to $,= —tt. We may
therefore evaluate the coefficients of the exponentials
at the point $r

———tt to get the dominant large x be-
havior. Noting that

F.„' (t)x= F„„'t(x,x,kg)
(2or)'

nz

d&,F„„'t(x,x,kr) .
2' p,

(110)

ei(b—b*)x

irrtx b*—b der

—1b d
e2ibx e2 ibm etC ~ )

ptsx 2 8fg
(112)

Since the integration in (110) is rather diKcult,
and since the approximation here should only be good we get for large x

2m'6* po. (a*'—a') (a+ a*)bb*
F„„'t(x)= ei(b—b*)a

prx D(b, b*) (b' —b*') (b*—b)

D(b, —b*)
e
—2ib+a

D(—b, b*)
eoib»+

4(b' —b*') D(b b*) 4(b' b*') D(—b b*)
(113)

where it is understood that everything is to be evalu-
ated at $&———tt.

To obtain the large x behavior at T=T, we use the
same technique used in (74); we simply take the leading
terms in the summation (109).In the approximation

this gives
kT,/tt((1, kT,/p((1, (114)

grlpp
e(x)a'*(x)= -e(x)

[2x

o po ( o po)' p o'—
4- —

l
1+——

~
+ sin2ppx

prkT, p pp E p pp) — p+0'

1
e »p-"r t». (115)-

px

e(x)a*(x)

The last term in the braces in (115), which arises from
the last two terms in the brackets in (113), is an oscil-
lating term with frequency 2pp. When averaged over
any realistic surface this will go to zero, and we may
ignore it. Thus, for large x, we get approximately

where the only effects of the discontinuities at the
boundary occur in T„, the transmission coefficient"
evaluated at energy E=p ..

transmitted current '

incident current

m/ U)

mI E)

(117)

-m/ Uq-'" '
1+a' —

i
1——

/

mk Ei

gmpp P
e(—x)Z*(x)=e(—x)aa Tp,

2a' prkT, pp)xl

We notice that if the transmission coeKcient vanishes
Lo. ~0 and/or popo; we cannot have U=y, because
of (114)j then (115) simply gives back the result (75).
In general, the ease with which particles may be trans-
mitted across the boundary only eBects the mugeitude
of the second term in (116).The rartge of that term, the
distance from the surface at which A*(x) becomes
essentially equal to 6*, is uneffected by the details of
the transmission and is always given by tt/rrkT, pp,
which is approximately the coherence distance.

For x(0, one gets by a similar procedure

gttzpp tt 1
e(X)ga ] T e »p»»LTcl»—

2a' a.kT. pox

X«p(—polx~prkT. /p). (118)

(116) "For example, Eugen Merabacher, Qgaatum 3Eerbartjpg (aloha
Wiley R Sons, Inc., New York, 1961),p. 90.
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Thus, at the critical temperature, the deviation of
h*(x) from its limiting values is quite symmetrical for
positively and negatively large x. The only difference
is that the parameters of the appropriate metal enter.
Correlated pairs are to be found in the normal metal
up to a distance of about p/~kT po.

g
e(x)s'*(x)=—e(x)

2'
ko F„„'t(x). (119)

As in the T= T, case, the last two terms in (113) give
an oscillating term with frequency 2po, which will

average to zero in a realistic sample, so we will neglect
these terms. The remaining term has the exponential

exp[i(k —f *)x]
=exp{—x[4mL(p'+ )6['+a&„')' '—pgP '}. (120)

For large x, the dominant behavior is from the neigh-
borhood of co„=0. We may therefore expand everything
about this point to get, after some algebra and taking
6&&@ and h«p, ,

gtspp
e(x)s'*(x)=—e(*)S*

2~' 2I~I'1+&.

A*(x) at T=O for x)0
To evaluate d,*(x) at T=O, we must insert (113) in

(109).The summation in (109) becomes an integration
at T=O as in (21) and (50). Thus,

longer at T=O.) Thus, at a distance of about the co-
herence distance from the normal metal, the super-
conductor behaves like an ininite superconductor. The
presence of the normal metal is felt at smaller distances.

The solution of this which goes to zero as x —+ —~ is

F„„t(x,x', k~) = f„„(x',k,)e' '*. (125)

Prom the definition' of F„„t(x,x', k&), one can easily
show /recalling that F„„t(x,x', k&) already has its anti-
symmetrical spin properties removedg that

F „ (t'x, ,xk)= F„.(t,xxk,).
Hence, it follows that

(126)

F„„t(x,x',k,)=f„„(k,)e' '*e '"' x, x'&—0 (127)

A*(x) at T=O for x&0

Finally we want to consider the zero temperature
pair wave function in the normal metal. We shall treat
this in a more general way in order to demonstrate
that the qualitative result doesn't depend on the ap-
proximation (6), or indeed even on the approximation
leading to the Gor'kov equations, but only on the
feature of the two particle potential given by (77).
Thus, with this potential, we have as an exact equation
(suppressing all bars on quantities),

1 ) d'q
i a*'+ iF„„t(x,x', ki) =0, x&0. (124)

2m& dx'&

1 where
e "'*~~1" ~~I~„[e ".~~ vol&t (121) f-.(k.)=f=.(ki) . (128)

where
R„=1—T„

Then, from (5) evaluated at T=O, we have
(122)

e(—x)S*(x)
is the reQection coefficient' evaluated at energy p.
Performing the integration, and introducing the co-
herence distance $0 defined by (72), we get, at T=O,

gag 00 00 '

=e(—x) da „d&if„„(kg)e'&' '"&~*~. (12-9)
kr'

e(x)a*(x)

gwpo x T„(gp) ( 2 x)
41+x„kx& 4 ~P,i

(123)

We have here recognized that symmetry with respect
to reflections of y or z implies that f„„(k,) must, in fact,
be a function only of ki2 and hence of Pi. Using (9) and
(128), we may rewrite (129) as

The appearance of the re6ection coefficient in the de-
nominator indicates the nonlinearity of the problem,
which didn't appear at T= T, because that calculation
was performed only to erst order in 5*. The greater
the reaction, the smaller will be the second term in
(123), and hence the closer to LV will be d*(x).This can
be thought of as an indication of the Bose properties
of the correlated pairs; the more pairs present (by
reflection), the more likely it is to find additional pairs.

Again, as at T=T„ the range of the second term
in (123) is essentially $p. (From T T, to T=O the
range has changed by less than a factor of 2, being

gal
e(—x)~*(x)=e(—x) d~. dpi f.„(k.)

2X Q

Xexp{—
( x ( [4mzL(g, '+co„')"'+tip]'"} . (130)

For large (x), the dominant contributions to (130)
come from )&&0 and from the neighborhood of co„=O.
Hence, we may write approximately

gm
00

e(—x)~*(x)=e(—*) — dp, f,(k,) d .
2H Iz G

&exp{—lxl [4~L(4'+~-')'I'+4) 1"'} f»1)
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The &o„ integral is easily evaluated for large ~x~ and
negative $, to give

Hence, independent of the detailed form of f„„(k~)
(which will depend on the boundary conditions at x=0
and the solutions for x&0), providing fo(ki) is not
actually zero (as would be the case for a vacuum to the
left of x=0), we see that LV(x) does not die off ex-
ponentially as we move into the normal metal, but
rather only slowly dies off as 1/~x~. For the special
case of our approximation, taking unit transmission co-
e%cient, we get for x —& —~

(133)

The reason for this failure of the pair wave function
to die o6 is that there is simply no mechanism for dis-
rupting any correlation that drifts across the boundary.
The only length in the problem is 1/po which is just
too small. On the superconducting side there is the
longer length p/ )

4
( po, and at finite temperatures there

is Is/kTPo, but as long as there is no interaction between
particles in the normal metal, the only energy is p, and
hence the only length is 1/po. If there were some energy
of interaction in the normal metal, then another
length could be constructed, namely, /, the mean free
path, but in this model which assumes no such inter-
action there is no way to prevent the pairs from drifting
arbitrarily far into the normal metal.

at slab thickness. The behavior of 6* as a function of
slab thickness reproduces the result of Blatt and Thomp-
son, and we can see to a certain extent the role of the
boundary conditions. The pair wave function here
rises rapidly to 6* in a distance on the order of 1/po,
as opposed to the case of the normal-superconducting;
boundary, where the rise takes place in a distance on
the order of the coherence distance. These results are
at variance with the somewhat perplexing results of
Parmenter, " presumably because the Gor'kov theory,
which we have used, involves pairing of eigenstates of
the problem, in keeping with the view of Ref. 8. Our
rise distances are essentially temperature-independent.
In the normal metal, on the other hand, the distance
to which LP(x) extends depends on the temperature,
ranging from about the coherence distance near the
critical temperature to something quite larger at lower
temperatures, presumably p/kTpo or the mean free
path, whichever is shorter. The effect of discontinuities
at the boundary is simply to reduce the deviation of
LP(x) from 6* (or 0) in the superconductor (or normal
metal) by a factor of the transmission coefficient near
the critical temperature and a further factor depending
on the reRection coe%cient at zero temperature where
the nonlinearities of the theory are more important.
These discontinuities do not eGect the rise or fall-oG
distances.
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IV. CONCLUSIONS

By replacing h*(x) in the Gor'kov equations by a
model 6 *(x)which we take to be constant in the super-
conductor, we have been able to solve the equations and
calculate an impmved be(x). No attempt has been
made here to estimate the errors involved in this pro-
cedure, although such a program is now underway.
Presumably this approach is valid in the case of the
Gnite and semi-in6nite superconducting slab where
LP(x) rises rapidly from its zero value at the surface
to the interior value of rV. The agreement obtained
with the work of Blatt and Thompson' reinforces this
conjecture. In the case of the normal-superconducting
boundary, our results are probably valid at large dis-
tances from the boundary Lthe asymptotic region in
which we explicitly evaluated h*(x)) where h*(x) is
close to 6*, although this shouM be verified. Since in
essence we are perturbing in E(0)V, (32), about the
in6nite superconducting solution, we might expect that
our results would be best for small E(0)V.

The results for the superconducting slab show the
Fabry-Perot resonances in the. energy gap as a function

p(r) = lim
~

——
~

d~ ImG;„(r, r'),
r'~r ( (A1)

where the factor of 2 is for spin, and

ImG; (r, r')

= lim —LG, &„+;„~(r,r') —G,&„;„&(r,r')). (A2)~'+ 2i

We shall take the limit r'~ r by 6rst equating the y
and s components, and then letting x' —+ x. Thus we

"R.H. Psrrnenter, Phys. Rev. 118, 1173 (1960).

APPENDIX

Dependence of po on Width of Finite Slab

For a given number density of electrons E/V the
chemical potential p, and hence po, defined by (24),
will vary with the thickness of the slab. To see how this
goes, we calculate the density according to the relation,
valid at zero temperature,
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shall need

G„„(x,x')

and A6), we can writethese relationships ansing
for &o( —lm)

ImG;„(x,x')

, ',k ) =— d&iG„„(x,x',ki) . (A3
(2m)' 2)r

b 12), as well asUsing tne reenh G n's function given y (
(17), (16), and the relations

=———
i

1+— dy f„(x&,x&)
2'l 2Ã

+t)[co+ p( 'y
l
ZLl')' 'gi 1—— dye(x&, x&

we get

G„(x,x')

8 b = 2itÃ(CO~+E~) )

6*2—b*2——2im((u„—e„),

sinb (d—x&) sinbx&cg „) '~ slil

sinbd[2@a(y+(e ~)[

(A4) (A11)

i~—to +i~ andwhere C~ are contntours ranging rom —'

'/'. Having obtainedcrossing the real a
'

xis at 2m(p, + e
' —&x without the di-we can now let x —& x wi

kenverge
' '

we should have met had we ta envergence diKculties we s ou a

EV h h hre onl interested in, rSince we are o
e ma average over x:'t a function of x, we mayensity as

sinb*(d —x&) sinb*x&(+i1—l

en/ —[2m(p—An)1 (

(A5)

S 1
p(x)dx.

p

(A12)

Letting

f„(x&,x&) =
siny(d —x&) sinyx&

sinyd

the x integration at once, t e
'

e inte ral
ered in (14). This givesth same as encountered in . ieing e

~ -'[-'- l~l'j'"and noting t a ih t 'f (o —+ —ice, then e„—+
'

=—ie, we get
d

dx lim ImG;„(x,x'

xx' =—
i

1—
l dyf„(x&,x&)G;„(xx) 1

1+— dy ——cotyd
254% 4 6 o+ yd

(A13)

1 —
l dy f„(x&,x&) . A7

[&m(u+~)) "'

For o) (0, when co —+(v&ig, we have

1
+~[+("+l~l')")i, —,

Then, using

i(i~i' —')'(' 0&~&—i~i
-=-l~l+%6 Nj

(Ag)

X 2
leo Im

V
(A14)

e, '
(A7) de ends on cv implicit y y

'
itl only throughHence, since ep

6) wwe see at once that

~ 6 '/ be the variable of jntegra-
h C, i l,tlon in the integrals along the pat s

we get

ImG;„(x,x') =0 0&~& —
l 5 l

.

For a& &—
i ~ I we have

(A9)

V (2m)'

(k'/2m —p)

[(a2/2~ p,)2+
l
~—

l
q»20

[2t)i ()p,+e)j»2 -+ [2m ([(iw e)g»2

()I —e '" — [2m, ([ia e)$»' (A10)[2()N([()—e)]»2 ~ — m, [i e

dy —cotyd A15)
Cy

to crossing the realwhere CI, runs from —'
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axis at k. Now obtain the result for a normal metal simply by letting
6 —+ 0, yielding

j. —2m~

dy —cotyd = n(k),
Cy

E
kdkn(k),

V mdp
(A18)

X 1
kdk

V 2xd p

{k'/2m —p)
n (k) . (A17)

[(k'/2m —p)'+
I
6

I
q' '

where n{k) is the largest integer contained in kd/pr.

Hence,

«n [[2m(~+ p) yi'] (A19)

where pp is dered by (24).
To show that (A17) and (A18) are essentially the

same, we must invoke the cutoff at coD. This insures
that 6 is zero whenever p =—(k'/2m) —p is greater in
magnitude than co~. The only difference between (A18)
and (A17), then, is that the latter involves the integral

As d ~pp, we have n (k) ~ kd/pr, and (A17) gives the
standard form for an infinite superconductor. We can while the former involves

dt. 1—— n[[2m(p+ p))'"]

1— n[[2m(p I 'I)J"][ p+
I
gIqin

de 1— [n[[2mbs+ p)3'"]—n [[2m(„—
I
.

I )j'"1}
[p'+

I
g

I

pj'~'

(A20)

&D E.

=I„+ dp 1— [n[[2m(p+ p)1'~'] —n[[2m(p —p)j"~']}
L"+ I

~I'j'"

where in the last line we have used the antisymmetry of p/[p'+ Id, I'g'~'and thesymmetryof n[[2mg —
I
pI)]'~'],

under e ~ —e.
Thus we see that I, and I„,and hence (A17) and (A18), are the same everywhere except within the regions

where the greatest integers contained in [2m(p, +&p~)]'~'d/w are different; that is, in the narrow regions about the
resonances. Even there (A17) and (A18) differ only by something on the order of ~z/p. If we ignore these small
differences, we may evaluate 1V/V from (A18) as

or

ppd)'
—

I n(po) —pn(pp) Ln(po)+ l j[n(p )+1j,
V

pp' xd sV—+ n(po)[n(pp)+ll[n(pp)+1j,
2m mn (pp) V 6d'

(A21)

(A22)

in agreement with Thompson and Blatt. '
The resonances occur at l =ex, or

d = nor/P p
= [n (n+ —) (n —1) U/31' y'. (A23)


