
P I-I V S I C A I R E V I E W VOLUM I: 132, NUM 81.14 4 15 NOVL&'M HER 1963

Quantum Theory of Kinetic Equations for Electrons in Phonon Fields
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A method is presented which yields a kinetic equation for the time development of the one-electron density
matrix for dynamically independent electrons in phonon and other arbitrary static 6elds of force under the
inQuence of a weak but otherwise general external dynamical disturbance. The exclusion principle, the
finiteness of the phonon energies, and the quantum-mechanical nature of the processes involved are taken
into account rigorously. The effects of the electron-phonon interaction are described only in the Born
approximation. A kinetic equation for the steady state is also derived in an arbitrary one-electron repre-
sentation. An iterative solution of the kinetic equation is discussed and the power absorption due to direct
and indirect transitions is derived from the general kinetic equation. The case of a uniform but oscillating
electric 6eld is considered in detail for free, Landau, and Bloch electrons, for which special kinetic equations
are derived. A "local density matrix" —useful in the calculation of space-varying densities of various physical
observables —is introduced and a kinetic equation for it is obtained from the general theory. Applications
of it are made to the case of free and Landau electrons for disturbances of arbitrary space-time variation.
The applicability of the method to more general situations is indicated.

1. INTRODUCTION

INETIC (transport or master) equations have
been very useful in fundamental and practical

studies of the irreversible phenomena of approach either
to thermal equilibrium or to a driven steady state.

In the study of solids the steady-state response to a
weak external disturbance has been the object of a
great deal of experimental and theoretical work. In the
usual models of a solid such a steady state depends
crucially on the impurities in the solid. The commonest
examples of these are static impurities, that scatter
the electrons elastically, and the dynamical lattice
vibrations, that can change not only the momentum
but also the energy of the electrons.

The basic theory of transport for the case of scattering
by static impurities has been given rather recently in the
well-known work of Kohn and Luttinger' ' and others. '
In these works the usual Boltzmann transport equation
(and generalizations) for the occupation probability
in the case of a weak, uniform, and static electric field
was established on the basis of quantum statistical
mechanics without unnecessary statistical assumptions.
It was proved' quite generally that in the case of static
impurities the exclusion principle for the electrons has
no eEect at all on the scattering term of the transport
equation. It has also been recognized4 that other
subsets of the density matrix, more useful than its
diagonal elements when a magnetic field is present,
satisfy analogous transport equations.

In the case of scattering by phonons, where the elec-
trons scatter inelastically, the exclusion principle plays
a very important role and the transport problem is more
involved. This has been studied by various methods for
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special cases. Gurzhi' has derived a transport equation
for the distribution function for free electrons on the
basis of a method due to Bogoliubov. ' Lang and the
author' have developed the transport equation for a
static and uniform electric field along the lines of the
work' for the static impurity scattering. Konstantinov
and Perel" have used a diagrammatic technique to ex-
tract a transport equation for free electrons from the
general expression for the linear response due to Kubo'
and Lax." Gurevich and Nedlin" and Horing and the
author" have also developed transport equations for elec-
trons in a uniform magnetic field of arbitrary strength
(Landau electrons) and a weak, uniform and static elec-
tric field. Recently, after the work reported here was
finished, Yamada' has presented a transport theory for
free electrons for weak but space- and time-varying
electric fields starting from Kubo's" formalism.

In this paper" we present a direct and general
method for the derivation of a kinetic equation for the
one-electron density matrix for electrons in phonon
and other arbitrary fields of force. The unsatisfactory
repeated random phase assumption is avoided in this
treatment. The kinetic equation is valid for all times
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2. EQUATION FOR THE ONE-ELECTRON
DENSITY OPERATOR

We consider the total system of electrons+phonons
under the influence of an external dynamical disturb-
ance, and are interested in the linear response of the
system of electrons.

The statistical density operator of the total system
6tr satisfies the Liouville equation (Pi=1)

d(Rr/dt =i/(Rr, Xr5, (2.1)

(, 5 denoting, as usual, the commutator. Xr is the total
Hamiltonian

(2 2)Xr=X+ 5(t),

and it is not of the MarkoKan type. For the steady
state this results in a collision operator that depends on
the frequency of the driving Geld. Specifically, we
consider in the next section the case of dynamically
independent electrons under the action of a weak but
arbitrarily space-time-varying dynamical disturbance.
From the equation of motion for the density matrix for
the system of electrons+phonons, we derive an equation
for the time development of a one-electron density
matrix, linear in the disturbance. A kinetic equation for
the steady state, if it exists, is also derived, valid in an
arbitrary one-electron representation. Arbitrary static
external Gelds are included in the "unperturbed"
motion of the electrons, i.e., are treated without
approximations. The eRects of the exclusion principle
are treated rigorously. The quantum-mechanical nature
of the various electronic processes is fully described by
the kinetic equation. The eRects of the scattering by
the phonons are studied only for normal substances
and in the first Born approximation. The eRect of the
driving disturbance on the scattering is derived without
any additional assumptions and for arbitrary space-
time variations. The application of this method to more
general situations is discussed briefly in the last section
and will be reported in another publication.

In Sec. 3 we discuss the general iterative solution of
the kinetic equation and use it to compute the power
absorption from the driving Geld of force. Both direct
and so-called indirect processes are automatically
described in this way. The special case of a uniform and
oscillating electric fieM is discussed in Sec. 4, where
from the general theory more specialized kinetic
equations are derived for free, Landau and Hooch
electrons. In Sec. 5 we define a one-electron 10caI
matrix (i.e. , depending Parametrically on position as
well as time) which can be used in the evaluation of
local densities of physical observables like the density
operator, and derive a kinetic equation for it (or rather
its Fourier components) in an arbitrary one-electron
representation and for variations of arbitrary wave-
length. We apply this to the special cases of free and
Landau electrons.

All these kinetic equations have a fairly large Geld of
applicability in the study of semiconductors and metals.

X,=g B(i)=Q a„a„ta„. (2.8)

The one-electron representation is chosen here for
convenience to be that which diagonalizes H, i.e.,
H

~ p) =~„~p). a„t, a„are the creation and annihilation
operators, respectively, for the electrons in the state

~ ti)
and satisfy the fermion anticommutation relations,
{a„,a.}=0, {a„,a„t}=8„„.The phonon Geld is described
by

X~=K.~.(ba'bc+2) (2.9)

b, , b, being the creation and annihilation operators,
respectively, for the phonon q with energy co„and obey
the boson commutation relations, Pb„b, 5=0, Lb„b;t5
=b«. Here q= (j,q) stands for both the polarization
index j and the wave vector q, covering the Grst
Brillouin zone, of the normal modes of osciHation of the
lattice. The electron-phonon interaction can be taken
quite generally to be, in the usual approximation of
small lattice displacements from the equilibrium

where 3'. is the Hamiltonian of the system of
electrons+phonons including any external static fields
of force and P(t) denotes the interaction of the electrons
with the external, in general time-dependent, disturb-
ance. In order to obtain the linear response of the
system, we assume that just before the external
disturbance is turned on, say at t=0, the system is in
thermodynamic equilibrium at temperature T= (kp) ',
i.e.,

tRr (0)=f(X)=—exp (—PX)/Tr {exp (—PX)};X—=X—{.X. (2.3)

X is the operator for the total number of electrons in
the system and { is the Fermi energy in the presence of
the electron-phonon interaction, determined from
Tr{Kf(X)}=S,= total number of electrons. It is then
clear that the linear response of the system is described
by

e (t) = e&(t)—f(X), (2 4)

which satisGes, to the Grst order in the external dis-
turbance, the inhomogeneous equation

dN (t)/dt= iLN (t),X5+ie(t), 3 (0)=0, (2.5)

with 8 given by, since K commutes with K,

(2.6)

The system in the absence of the external dis-
turbance is described by the Hamiltonian

X=X,+~=X.+X„+~. (2.7)

K, is the Hamiltonian for the dynamically independent
electrons, each one of which moves in accordance with
the Hamiltonian H that includes any external static
Gelds of force. In the occupation number represen-
tation, which proves convenient for our purposes, we
have
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conlgur ation,

'U =g P c»(q)a„ta„(b,+b,t), (2.10)

where c„„(q)=(ti~c(q)~i) are the matrix elements of
the one-electron operator c(q), which describes in a
self-consistent approximation scheme the interaction
of an electron with the vibrating lattice. Since 'U is
Hermitian, c(—q) =ct(q), where —q= (j, —tI). The
interaction with the external disturbance can be
written in this representation in terms of the self-
consistent one-electron operator F(t) as

r(t) =P S(i)=g I'„.(t)a„ta„ (2.11)

provided the matrix elements F„,exist.
The expectation value of an observable g of the

electronic system that is a sum of one-electron ob-
servables J, i.e.,

Eq. (2.17), so that the total number of electrons be
conserved.

Since we shall be interested only in the case of small
electron-phonon interaction, it is convenient to work in
the interaction picture. That is, we put

(R'(t) =exp(iXot)(R(t) exp( —idiot), (2.18)

and similarly for 'U'(t) and 8'(t). Equation (2.5) then
reads

dIR'(t)/dt=iL(R'(t), 'U'(t))+ie'(t); (R'(0) =0. (2.19)

In this picture the one-electron density matrix is

p„,'(t) =Tr(a,—ta„(R'(t)}= exp (isa„„t)p„„(t), (2.20)

where or„„—=co„—~„. The electron-phonon interaction
takes the form

V'(t) =P P Pc„.(qt)b, +c„,t(qt)b, t)a„ta„(2.21)
pv q

(2 12) where

c„„(qt)= expLi(co„.—co )t)c„,(q) . (2.21a)

can be calculated from the one-electron operator pr(t),
defined in the ~ti)-representation by the matrix

(pr)„„=Tr{a„ta„(Rr}. (2.13)

The expectation value of g is then

(g)—=Tr{g(Rr(t)}=P J»)pr(t))„„=tr(Jpr(t)—}, (2.14)

where tr denotes the trace operation in the space of
one-electron operators. For such observables the linear
response is accordingly described by

An equation for dp„„'(t)/dt is easily obtained from
the definition of p„„'(t) and the equation of motion for
(R'(t). In carrying out the operation (2.20), and the
similar operations to follow, with the commutator
L(R', 'U'), we note that, because of the invariance
property of the trace under cyclic permutations, we can
write Tr(a„ta„L6I','U')}=Tr{t 'U', a„ta,)IR'}. Since 'U' is
quadratic in the fermion operators, we can make use of
the commutation relations

(ua a)pap av)=ax ahab) p ap a)b'av,

and thus And

p(t)=p (t) p—
where

—c„.(qt) p„„'(I)—c„,t(qt) p,„-'(t)}, (2.22)It is clear from the definitions that pz, p, and po are
Hermitian operators. In addition, since the total with the initial condition p„„'(0)=0. Here
number of electrons is a constant of the motion, we have

(2.15)
—p„„'(t)=id„„'(t)+i g {c„„(qt)p„„'(t)+c.,t(qt)p, „-,'(t)

p„„=Tr(u„ta„IR}, (po)„„=Tr(a, a„f(BC)}. (2.16)

trpr(t) = trpo ——E„ trp(t) =0. A„„'(t)= exp(i(u„,t)A„.(t)
2.17 —=exp(i~„.t) Tr(a„ta„O!(t)}, (2.23)

The first equation determines the Fermi energy {'in the
presence of the electron-phonon interaction. Finally,
from the definition (2.13) it is seen immediately that
the diagonal elements of p&(t) in any one-electron
representation are non-negative. These properties
characterize p~ as a one-electron density operator.

The object of this section is then to derive an equation
of motion for the one-electron density operator p(t)
from the corresponding equation (2.5) for (R(t). It is
convenient to carry this out in the ~ti)-representation
Grst and then generalize it to an arbitrary one-electron
representation. This equation must preserve, of course,
the Hermitian nature of p(t) and its traceless property,

and the 3-indexed quantities are other reduced density
matrices of higher order defined by

p„i„'=Tr(a„tabb, (R'}, pg), s' ——Tr(a,ta)b, tIR'}. (2.24)

It is clear that in this picture the coupling of dp„„/dt
to the higher order density matrices comes from the
commutator L(R',"U') and is therefore proportional to
the strength of the electron-phonon interaction (to be
denoted from now on by the dimensionless param-
eter X).

An equation of motion for the higher order density
matrices can be obtained in the same manner Q.OID.
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(2.19).We thus 6nd, for example&

again with the initial condition p„„,(0)=0. Here

A „.,'(t) =Tr{a„ta,b, g'(t) },
pv) pv =Tr{av a)ap av6t },

p.) q
q'= Tr{ a. tag b; b q(R' },

p„),q
q'= Tr{a„ta)bq bqtS') .

(2.25a)

(2.25b)

A similar equation can be written for dp„„-/dt, since

p„„-,'=p„„,'*.The new matrices that enter this equation,
e.g., p„„«.', pp qq, are defined in an obvious way: the
fermion indices always appear in pairs denoting
creation and annihilation operators in this order,
whereas the boson indices appear in any number and
sequence, the creation operators being indicated by a
bar over the corresponding boson index.

It is now clear that in this manner we can write
down a system of coupled equations, each one giving
the time derivative of a reduced density matrix in
terms of other reduced density matrices of higher order.
Such a system of equations is characteristic of a number
of many-body theories. We shall be interested here ex-
clusively in normal substances and seek to obtain an
approximate equation for p„,(t) valid for sufEciently
small X. Such an equation with the eGects of the elec-
tron-phonon interaction taken into account in the lowest
order, i.e., X', can be obtained in the following way.

We 6rst seek to express the 4-indexed density
matrices dered by (2.25a) and (2.25b) in terms of the
one-electron density matrix p„„(t),in an approximation
valid for small ). We accomplish this by examining
both in the absence of electron-phonon interaction.
We thus 6nd that we may approximate for X&0

,„„.'(t) = .„-,'(t)=op, ), (2.26a)

p.~.— (t) =~- (~'.+1)p~'(t)+O(~), (2.26b)

p„- '(t) =8 X p, '(t)+0(X), (2.26c)

PK)L+v (t) SKSdlpvp (t) qqKbcvpgjl (t)+SpbpvpgK (t)
+(1—n„)b„)p„„'(t)+O(X). (2.26d)

Here we have put

Xq=Tr~{bqtbqfPu))=kexp( coq) —13 'v (2 27)

i.e., the Planck distribution function for phonons in
thermal equilibrium, and

r4=m(co„) =Tr,{a„ta„f(X,—fed))—
= LexpP(o)„—i q)+1j—', (2.28)

—p„„,'(t) = iA„„,'(t) —i Q c„y (qt) p„g„„'(t)
d't

"'
+i P {c,„(q't)p„, '(t)+c,„(q't)p„- '(t)

«q'

cvz(q t)Ppxqq' (t) evict(q t)Ppzqq' (t))v (2.25)

the Fermi distribution function for the electrons. It
should be noticed that t'q is the value of the Fermi
energy in the case of X=O and is determined from
P„n„=trPq'q'=X, LcomPare (2.17)]. In arriving at
(2.26d) we have made use of the relation

—p„,'(t) = (S'{t,p'(t)))„„+iA„„'(t)+8„„'(t). (2.29)
dt

A„„'(t) is given by (2.23) and

8„„'(t)=P c„.(qt) drA, „,'(r)

+c„„t(qt) drA, „q'(r) c„„(qt) dr—A,„q'(r)

—c.,t (qt) dr A „„(r), (2.30)

where A, „q' should for consistency be taken only up to
order X, as given through (2.25a). The operator
g'{t,p'(t) }can be expressed in terms of the correspond-
ing operator S in the Schrodinger picture operating
on p(t) as

(g'{t p'(t)))"=e'"""'(~{tp(t))) ~

with
t

(~{t (t))) =+ d { ("—)

(2.31)

gee vrev)v fg v—X(r),+'e v'vvvvrgj' X —
( )vjr

—p„,(t—r)e-'" "'W),),""*(r)

—p&„(t—r)e-'"-'W„."~(r)}, (2.32)

~"""(r)=Z 'c(q) (cq)L.(&q+1 ~.)e '""
+ (1V +e )e'"") (2.32a)

Here we have made use of the relations c(—q) =ct(q),
iV q= Eq and or, =co,. Also we have not written down a

Tr,{a„tata„ta„f(X, fp—K)}
8—.),8„vent„qt„+b„very„e, (1 qq—„).

The symbol O(X) indicates that the additional terms
vanish for X=O.

Using expressions (2.26) in (2.25) for dp„„'(t)/dt and
integrating with the use of the initial condition, we
obtain p„„,'(t) as a functional of p„.'(t), with coeflicients
correct up to order X. An analogous functional is
obtained for p„„q'(t).

When these functional expressions are substituted in
(2.22) an equation is obtained for the one-electron
density matrix p„,'(t) with coefIicients correct up to
order P'. This can be written after rearrangement as
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few terms associated with the zero-point oscillations
of the lattice which are of no consequence in all the
applications we have investigated. (Note that the oper-
ator S operates in the space of one-electron operators
rather than state vectors. )

In the Schrodinger picture (2.29) reads

B„,(t) =P dr{P„x(t—r)
«X 0

where

Xge-'"~"'V„""()+e '" "'V "&(r)$

P„.(t r)e '" i—V,„ii(r—)-.
—Fi, (t—r)e '"""'V.„""(7)), (2.36)

V„„"i(r)=m„(1 I ) P c„ t(q)c„„(q)

+~A„„(t)+B„„(t). (2.33)

This is the equation of motion for the one-electron
density matrix p„„(t),valid for all t in conjunction with
the initial condition p„„(0)=0.The meaning of the
various terms is clear. The 6rst term, which can be
written as —iLH, P(t)j„„, describes the effects of the
unperturbed motion of the electron as an independent
particle. The second gives the effects of the electron-
phonon interaction alone to second order and, as it is
seen from (2.32), it shows "memory, " i.e., it makes
dp(t)/dt depend on all previous values of p(t). A„,(t)
is the "driving" term, and it should be kept up to
order X' for consistency. It is found from (2.23), (2.6),
and (2.16) that

A„„(t)=LP„P(t)g„„. (2.34)

Upon expanding f(fC) in powers of X up to X', we find
A =A i '+A 'o), where

A „,~o~ (t) = (e„—N„)P„„(t)=p~(H), P(t)]„„(2.35)

describes the effect of the external disturbance alone;
A„„&o)(t) is its correction to order X' due to the fact that
the electrons were in thermal equilibrium in the presence
of the vibrating lattice before the external disturbance
was turned on, and therefore their energies were
shifted from their unperturbed values. Since we shall
not be interested in the energy shifts in any detail, we
shall not write down the explicit expression for A „„&"(t).
B„„(t)=exp( —iso„„t)B„„'(t)is proportional to the driving
disturbance and to )P and it is found from (2.30) to be

describes the effects due to the interference between the
external disturbance and the electron-phonon inter-
action. In contrast to A &"(t), however, it not only gives
the consequences of the shifts of the electronic energy
levels but also describes the effects of the external 6eld
on the scattering.

It should be pointed out that it can be easily verided
from the structure of the operators S, A, and 8 that the
solution of (2.33) is indeed a Hermitian operator, as it
should be. The kinetic equation (2.33) must also pre-
serve the property Trp(t) = 0, Eq. (2.17), which guaran-
tees that the total number of electrons is conserved. This
indeed is true, since Trp(0) =0 and d Trp(t)/dt= 0, as it
can easily be proved from (2.33).

The solution of the kinetic equation (2.33) describes
the complete time development of p(t) from t =0 to very
large times, where presumably a steady state is attained.
A kinetic equation for the steady state itself, when it
exists, can be obtained from (2.33) on the basis of the
following argument. We take F(t) to be given quite
generally by

(2.37)F(t)=Z '"'P( )

where P goes over the same frequencies as in (2.37).
Thus (2.38) describes for very long times a steady state
p" (t)=g„e'~'p(ru). In order to find an equation for
p(cv), we substitute (2.38) and (2.37) into (2.33) and
study it in the limit t ~ . The inhomogeneous terms
are found to be simply

A(t)=P e'"'A(o&), B(t)=g e'"'B(~). (2.39)

Here A(co) =A~ (~)+A('~(cv) with

A (~)= lpoiF (o~)j and A (o& (a&) = Lri (H),F(co)j. (2.40)

Similarly from (2.36)

B"(~)=2 {F.i(~)L&"""(~»+~)+».""(~-+~)3
—F„„((u)n„„i"(o&„i+re)

F&,„(a&)z„„"&(o—o„„+oo)), (2.41)
where

p && (g) = dre »&V &&(r)—

where for each a& the summation P goes over oo and
Thus, since F(t) is Hermitian, we must have

F(—co)=Ft(co), which serves to define the operator
F(—~) in case F (o&) is independent of &u. Now we seek
a solution of (2.33) of the form

p(t) =Z e'"'p(~, t); p(oi, t) ~ p(~), (2 38)

P

+ (1V,+1)e'"o' dke&"~~"o& ' . (2.36a)
0

LWe have not written down in (2.36) a couple of terms
of the same type as those we ignored in (2.32).) It

=n„(1—n.)Q „c. (t)qcg( )q
c

P

X EP(x+oo,) dze*&"~"+""

P

+ (X,+1)8(x—a&,) Che'&"~ (2.41a)
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and
./1&

8(x)= dre '*"=s8(x) i—
~

—
~

0 &xi„
(2.42)

W'„,""(r)=0 for r) r. , (2.43)

The expression for S{t,p(t) }for long times is evaluated
by noting that for an i zPrtite lattice W„.""'(r), as given
by (2.32a) (or at least after the summations over ~X

have been carried out), tends to zero for large values of r.
More speci6cally, we have

The correctness of this equation is substantiated in
Appendix A, where it is obtained by the method of
Pourier transforms.

As (2.46) indicates, it is desirable to write the kinetic
equations for p(co) and p(t) as operator equations, valid
in any one-electron representation. We shall exhibit
this only for p(a&), the case of (2.33) for p(t) being
entirely analogous. A(cu) has already been expressed
in that form, as given by (2.40). From (2.41) we And

that we may write

(g g 'LCa7 T

P

X ds{N,e "«" '+(N +1)e"&"' '}

where r, is some correlation time for the vibrating B(o&)=P
lattice. Therefore, for t) r, the upper limit of the 0

integral in (2.32) can be put equal to r, . Thus the values
of p(co, t) that enter the integral are from p(co, t—r,) to
p(~, t), which for t —+ 00 can be taken, in accordance

0
with (2.38), to be equal to p(a&). Therefore, we have

S{t Z e p(, t)} Z '"'S( )p( ), (244)

where

(S(~)p(~))"
=2, {p"(~)(~"'"(~.x+~)+~"""*(~-—~)3

—p,.(~)~~),""'(~~,—~)

—p)„(c0)w„„"~(a)„„+or)}, (2.45)

the m's being given by

u „""(x)= dre '*'W„,""(r)— .

0

=g c..t(q)c&, (q) L(N,+1—~„)8(*+~,)

+ (N, +rt„)8(x—(o,)]. (2.45a)

The singular part of 8(x) may be interpreted to give in
(2.45) the effects of scattering in the usual form of
"scattering-in" minus "scattering-out" due to the emis-
sion and absorption of phonons, with due consideration
of the exclusion principle for the electrons and the con-
servation of energy in the various collision processes. It
should be noted that the presence of the driving fre-
quency co in S(co) is due to the "memory" of S{t,p(t)}.
The regular part of 8(x) may be taken to describe in
(2.45) the "renormalization" of the unperturbed elec-
tronic energy levels due to electron-phonon interaction
(to order X'). It should be noted, however, that these
terms depend on co and thus they are not simply shifts
of the resonance frequencies, but they contribute to the
shape of the absorption line, just as the scattering terms
do. The other terms of (2.33) after the substitution of
(2.38) are quite simple. Thus, if a steady-state solution
p&'&(t)=P„e'"'p(co) of (2.33) exists, p(~) satis6es the
equation

nvp(a&)= —i)H, p(cu)j+S(co)p(co)+iA(cu)+B(co). (2.46)

X$c(q),e '~'$F (~),rt(H) e'~ct (q)

Xe *~(1—rt(H)))e'~'$. (2.47)

Similarly, (2.45) can be put in the form

S( )p( )=Z c(q) d e '"'e ' '{p( )c'(q)a"(» )
Q 0

f.(H, r—)c'(q)p(~)}e' ', (248)

where

where

B(~)= —S(~)r(~)+D(~)

..( )=~.."'( )/( + ").

(2.49)

(2.49a)

is the nonsingular part of the one-electron steady-state
density matrix in the absence of any electron-phonon

g, (H, )=(N,+1- (H)) -'-"
+(N,+I(H) )e'"" (2 48a)

These operator expressions for B(co) and S(~)p(~) are
very useful in various applications and in particular
will be used in Sec. 5.

From the dehnitions it is clear that we must have

p (—(o) =pr (co), 2 (—~)= —At ((o) and B( ~)=Bt (co),—
which are, strictly speak. ing, the definitions of these
operators for —co. From the structure of the operators
entering (2.46), it can be veri6. ed that the solutions of
(2.46) do satisfy the relation p(—cv)=pt(&u). Also the
relation trp(co) =0, which expresses the conservation of
the total number of electrons, is obvious from the
operator expressions of S(~)p(cg), A(co) and B(~) as
commutators.

In order to gain some insight into the meaning of
the various terms of B(cu) and to facilitate later appli-
cations, it proves useful to observe that
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interaction, as it can be seen immediately from (2.46). of 8(x). The latter terms result from the electronic
InD(co) there are twokindsof terms thatare associated energy shifts, and as such they should be combined
respectively with the singular and nonsingular parts with A„„c"(co). If we ignore them, D(co) is found to be

F„r,(co)
D„,(co) = (c,P"—1) g Lnr, (1—n„)u„„""(co„r,+co)+n„(1—n„)u„„""(co„„+co)j

where

Fr„(co)

„""(*)= Z .'(q) .(q)L(&.+1)~( + .)+&.~( —.)j

~ ()
nr, (1—n„)u„P"(co„r,+co)— n„(1—n, )u„r,""(co„„+or)

(Op«GO y 40gp GO y

+P Q(F„r,(co)Ln„(1—n„)u„,""(cor,„—or)+nr, (1—n,)u„,""(or,.—co))
«X

—n„(1—nr) LF'„.(co)u.,""(cur,„—co)+Fr„(co)u,r '"(co,.—co))), (2.50)

(2.50a)

P„r,(or) =F„r,(co)8, g„. (2.50b)

The second term in (2.50) that is proportional to P
arises from the terms of (2.41a) with vanishing ex-

ponents, and it can make a Gnite contribution in
special cases. It is worth pointing out that for a static
external disturbance, i.e., co=0, the ffrst term of D(co)
vanishes in general and the second term combines with

(S(0)r(0))„,to just give, as far as the relaxation effects
are concerned,

B(0)= —S(0))n (H+F) n(H) —5, (2.51)

where n(H+F) is to be taken up to terms linear in F.
That is, in the case of a steady external disturbance the
collisions have in general the effect of forcing the elec-
trons to relax to a state characteristic of thermo-
dynamic equilibrium for fermions in the presence of
the external field, as it is expected on physical grounds.
For disturbances oscillating in time this is clearly not

true; the process of relaxation is disturbed by the Gnite

frequency of oscillation of the external field, the end
result thus depending on co and the "collision frequency"
as given by B„„(co) without any assumptions. The
situations for which F(or) is not a regular function of or

should be examined individually. The physical meaning
of the various terms of D„„(or) is not entirely obvious
in (2.50). We shall see, however, that in the calculation
of the power absorbed (see next section) away from
direct resonance they assume the clear physical interpre-
tation of describing the indirect processes of absorption
or emission of the quanta of energy of the external
disturbance through the simultaneous emission or ab-
sorption of phonons.

We note that with (2.49) the steady-state kinetic
equation (2.46) can be written as

icop (co)= i' p (co)3+S(co)Lp (co)—r (co)3
+iA (co)+D(co) . (2.52)

For the case of a time-independent driving Geld the

3. ITERATIVE SOLUTION AND POWER
ABSORPTION

A general solution for the steady-state equation
(2.46) is too difficult due to the complexity of the
scattering operator S(co). For special systems (2.46)
simplifies somewhat, as we shall see in the next section.
Here we are interested in the case of a general one-
electron Hamiltonian H and interaction F(t) under
circumstances that a solution in powers of the electron-
phonon interaction exists. Insight into the meaning
of the various terms is obtained by studying the rate
at which energy is absorbed from the driving Geld.

We seek a solution of the steady-state equation (2.46)
in powers of the electron-phonon interaction,

p(co) =p"'(or)+p'"(co)+

The solution for X=0 is clearly

(3.1)

p„„c'r (co) =iA „„&'&(co)8 (co„,+co)
=r„„(or)+inA „„C'r(co)8 (co„,+co), (3.2)

where r(co) is given by (2.49a). We note that in case
co„.+co=0, division by i(co„„+co)should be interpreted
as multiplication by rcpt(co„.+or). This can be veriffed
directly from (2.33) for dp(t)/dt for X=O, or from
Appendix A. Thus, in the case of direct resonance, i.e.,
for co„„+co=0with A„„"r(co) WO, the density matrix in

kinetic equation for the steady state is

0= i/B, P5+—S(0)fp n(H+F)—)+itLn(H), F5, (2.53)

since S(0)n(H) =0, where only the relaxation effects of
the electron-phonon interaction are included.

The "memory" effects of the kinetic equation (2.33)
for the time dependence of p(t) can be approximated so
as to yield a MarkoKan equation for dp(t)/dt for lnzg
times involving only the instantaneous value of p(t).
We consider this in Appendix B.
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the absence of electron-phonon interaction is partly
singular. However, the induced current, and conse-
quently the absorption, can be finite in many cases
of interest. There are special cases where this is not
true and then a more accurate solution of (2.46) is
required for these sharp frequencies. The regular part
of (3.2) gives rise to the unperturbed "reversible"
current.

pc'&(co) can be found from (2.46) by iteration. Thus

Since d3C/dt= i(5:(t),3C) it is clear that

P(t)=i Trje.(t)P(t),X/}. (3.6)

P= Pi+P2, (3.7)

For the system under consideration here this can be
evaluated in terms of the one-particle operators. In the
steady state the nrem power absorbed from an external
field of single frequency ~ is then

where

p„,&" (cd) =G„,((u)8((o„,+(u), (3.3)
where

Pi i P——tr(p(a&) LF (—o&), H]}, (3.7a)

G(co) = S(co)p (u)+id (co)+8 (u) . (3.3a) P2=~ 2 2 (p".(~)+p"-.-(~)}LF(—~), ~R)j" (3 7b)

This iterative solution is clearly a poor one for ~ close
to direct resonance, where a nonperturbative solution is
appropriate.

In the following, we shall be interested in p&" (cd)

for cv away from direct resonance. In such a case, we
note that pco'(cd)=r(a&). As a consequence we have
G(co)=D(&u), if we ignore the terms describing the
effects due to energy "shifts, "and thus

Q„ indicating a sum over cg and —c0 and p„„, being
determined from (2.25).

We shall evaluate (3.7) using the perturbative
solution (3.2) and (3.4), and thus obtain expressions
for the direct and indirect power absorption.

From (3.2) and (3.7a) we get, after some rearrange-
ment, for the direct power absorption

p""'(~)= (—~)D,.(~)/(~..+~)v. (3.4)

where

Pc'&=+ n„(co„~„)W„„&'&, (3 8)

It is easy to see from Appendix B, Eq. (B8), that in this
case the MarkoKan approximation yields an identical
expression for p~c" (&o), as it should, since the Markoffian
approximation is valid for sufFiciently small X. It
should be noticed that for co away from direct resonance
the second term of D„„(cd) vanishes except possibly for
co=0. This case arises when F„„(0)NO for states ~tc),

~
v) on the same energy shell; this is rcot, according to

our definition, a case of direct resonance, since although
F„.(0)WO we have A„,co' (0)=0.

It shouM be evident that the perturbative solution
(3.2) and (3.3) can be derived, and thus its correctness
checked, directly by solving the equation of motion of
(R(t), (2.5), in power series of X and then performing
the operation (2.16) to obtain the corresponding p(t).

A slightly better solution of (2.46) is obtained by
first combining all the terms of (S(&o)p(~))„„that involve
p„,(cd) with the first two terms of (2.46) and iterating
afterwards. It is then found that instead of the sharp
resonances at the unperturbed differences co„—co„, reso-
nances are obtained at slightly displaced energy differ-
ences due to the energy shifts and somewhat broadened
by the life times of these states due to electron-phonon
interaction. The appropriate expressions are easily ob-
tainable from (2.46) and shall not be written down here.

The rate at which the electron+phonon system
absorbs energy at time t from the driving field can be
taken as

W "'=W "'(co)+W &"(—(u)

W„„co&((u) =2x
i
F„„(c0)i'b((o„„+(v).

(3.8a)

(3.8b)

When this diverges the iterative solution of the kinetic
equation is meaningless.

For the indirect power absorption we get, to begin
with, from (3.4) and (3.7a)

P&"' ——Q Q D„„(&o)F„„(—(o) . (3.10)
pv O) v CO

Clearly P2 makes a contribution of the same order. The
determination of p„„,(cs) to the desired order in X from
(2.25) and (2.26) proceeds as in the previous section.
The result when combined with (3.7b) is simply

Thus 8'„,&'& has the physical significance of a direct
transition probability rate from state

~
tc) to

~
v) due to

absorption (W„,& '(co)) or emission (W„„&&(—u)) of
quanta of energy ao. Intuitively, the exclusion principle
would have indicated the presence of the factor (1—e„)
in (3.8). It is easy to see that indeed (3.8) can be
written with this factor, since W„„&'&=H/„„"'. The
direct power absorption can also be written as a
balance between absorption and emission of quanta
co) l.e.)

P(t)= —Se =- Tr e.z(t)—X
dt dt

(3.5) P~"'= —2 & D"(~)F"(—~) (3.11)
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Thus, for the indirect power absorption we get

40 P v Q) Q)

XD,.(~)F,„(—~). (3.12)

According to our previous discussion of D„„(o&) for o&

away from direct resonance, the second term in (3.12)
can possibly make a contribution only for ~=0. Using
the expression (2.50) for D„„(o&),rearranging terms here
and there and making use of the nature of the equi-
librium distribution functions m„and X„we can write
for the indirect power absorption

pie&= p (s&+t&,p, &» (3.13)

E„&2) is the power absorption for co&0 and it is

P &'& =o& P ts„(1—e.)$W„,&'& (o&)
—W &'& (—o&)] (3.14)

with

W„,&'&(o&) =2~ P tcV„„(qo&)~'DV qt'&(o&„„+o&,+o&)

F"(~)c-(q) c"(q)F-(~)
M„„(qce)=g — . (3.14b)

COPtt M P GOtt V 0) P

P„&') clearly represents the indirect power absorption
due to electronic jumps from state ~tr) to

~
v) due to

absorption (or emission) of quanta of energy o& with
the simultaneous absorption or emission of phonons. "
The W„„&s&(+o&) have the physical significance of
transition probability rates for these processes, and
they should be compared with W„„"&(+o&).They are
in agreement with the usual formulas of second-order
time-dependent perturbation theory. Eo&') is the power
absorption for or=0, for the case where the iterative
solution exists. From (3.12) and (2.50) we have

Pe&'&=P Q N„(1—tt„)

XQ 2~{1V,5 (c0„„+o&,)+ (1V,+1)5(o&„,„—ros) )

Xc,„t(q)(F(0),[F(0), (q)]),„, (3.15)

where F(0) is given by (2.50b). In the particular case
where the selection rules on F„q(0) are such that only
the diagonal elements F», , (0)=F&,&, are nonvanishing
on the same energy shell, (3.15) assumes the simple
form

Pe&'& =tl Q r&„(1 ts,)W„,(F —F.—,)' (3.16)

'6 The contribution to I'„(2) of the terms of B(ro) and S(co) that
were ignored is &o Z, 2~ [tr(r(cu)c(g) }['b(co ar,)—

+ (1V,+1)8(o&„„—o&,+o&)], (3.14a)

where the matrix element is

has the obvious physical signi6cance of a transition
probability rate from state

~ tt) to
~
v) due to absorption

or emission of phonons. In the following section we shall
discuss such a system.

4. THE CASE OF A UNIFORM ELECTRIC FIELD
IN SIMPLE SYSTEMS

In this section we make the 6rst application of the
equation for the one-electron density operator (2.46) to
the case where the driving field is an oscillating, uniform
electric field. We shall take it to be oscillating with a
single frequency ~, and thus we may write

F(t) = —eE r coso&t (4.1)

A number of physical situations of interest are
encompassed in this case; e.g., the electromagnetic
properties of semiconductors and some of the properties
of metals can be studied on the basis of this model. In
these cases the physical observable of interest is the
induced current. The one-electron current operator is

J=ev= ei(H, r], (4.2)

since both the electron-phonon interaction and the
driving disturbance (4.1) are taken to be independent
of the momentum of the electron.

In most cases of interest it happens that only a
subset of the matrix elements J„„in a representation
that diagonalizes B is diferent from zero. For the
calculation of the macroscopic current it is then
sufficient, according to (2.14), to know only a corre-
sponding subset of the density matrix p„,. It is then of
interest to inquire whether and under what conditions
it is possible to derive an equation for the desired
subset of the density matrix from (2.46) for the whole
matrix. We investigate this below considering three
special cases of interest.

A. Free E1ectrons

For free electrons H =p'/2m, where p is the
mornenturn operator. For basic one-electron represen-
tation we take running plane waves, (r

~
k) =0 't'

Xexp(ik r), with periodic boundary conditions, charac-
terized by the wave vector k and energies o»=k'/2r&s.
The current operator J= (e/m)p is then diagonal in k,
and we are thus interested in the occupation proba-
bilities p&s(o&)= f&, (o&) (The vector .character of k and q
will not be denoted explicitly when used as subscripts. )

In ending an equation for f&, (o&) from (2.46), we note
that the only term that could bring in other matrix
elements of p(o&) is, obviously, the scattering term
(2.45). Since the matrix elements of c(q) in the running
wave representation fnr the phonons are ci,i (q) ~ 8&, ,», &

where

W„„=2&r Q i c„,(q) i sf', 8(o&„„+o&,)

+ (1V,+1)5( „„—,)] (3.16a)
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ie
Bss(to) = —P Sss (ce) —E ~;is„+Ds(to), (4.6)

k' 2Mtesa =remi: 4 s", res v =tea a 4"s (4 3)

from (2.45a) it is clear that the quantities te„„"",that (2.49) and (2.50),
enter the expression (2.45) for (S(~o)p(co))», obey the
selection rules

Thus, the effect of the electron-phonon interaction
alone on the rate of change of the steady-state occu-
pation probability fs(&v) is described solely in terms of
all other occupation probabilities fs (&o). Explicitly, we
find

(&()p()) =E[f'() '()—f() ()j

where

X(isv (1—us)u»" " (~» +~)
+rr (1—u )u, "'"'(,+ )). (4.6a)

where

res s(or) =m. Q ~
cs g, (q) ~'((X,+1—ns)[8(cess +to,+o)

Here again, only the singular part of 8(x) has been
written down. For o&=0 (4.6) can be proven to give
B»(0)=0. Thus, the steady-state occupation proba-
bility fs(co) satisfies the kinetic equation

+&(to» +tos —to)j+P',+Is)[8(oi» —o +co)

+b(oi» to, te—)]) —(4.4a)

plays the role of a transition probability rate from state
~

k') to
~
k) due to absorption and emission of phonons

with due consideration of the exclusion principle for
the electrons. " In (4.4a) we have written only the
terms that describe the relaxation effects of the electron-
phonon interaction; the terms for the energy "shifts"
can easily be obtained.

Of the remaining terms of (2.46) the homogeneous
one is [II,p(&0)$» ——0. The inhomogeneous term that
describes only the accelerating effect of the electric
field is, according to (2.40),

e—-E Vsris+Ds(~) (4.7)
2

The summation over k' in (4.7) and (4.6a) can be
carried out trivially due to the selection rule
css'(g) ~ Bs,s'

For suKciently high frequencies, i.e., for co~„&)1,
where r„denotes the order of magnitude of the relaxa-
tion effects of the electron-phonon interaction, (4.7)
has an iterative solution, namely,

fs(to) = (ieE Vsws/2')+ (Ds(oi)/ioi) . (4.8)

ie
iA»&'& (c0) = ——E [n (p'/2ris), r]„„

2

(4.5)

The first term gives rise to the unperturbed polarization
current, whereas the second yields the irreversible
current oscillating in phase with the electric field. Using
it to evaluate the mean rate of energy absorption from
the electric field we find, corresponding to (3.14),

The use of (2.40) in evaluating A» "&(u) for the driving
interaction energy (4.1) in the plane-wave representation
may be considered objectionable, since (2.40) was
derived for the case of an F with regular matrix elements
in the chosen representation. Although this is not true
in the case under consideration here, it can be proved"
independently that (4.5) is correct. The last term
B»(co), that describes the effect of the electric field
on the scattering, can be proven" to be, in analogy to

'~ Since we have restricted ourselves from the start to the
response linear in the external 6eld, the exclusion factors are not
given here in their usual form (Ref. 8). It can easily be verified,
however, that for co =0 (4.4a) is just the linear in the electric 6eld
part of the usual (Ref. 8) scattering operator.» The method of proof consists in arranging 6rst the operator
r in a commutator with some function of H, and then taking
matrix elements. This gives well-de6ned results since Pr, f(H) jsI
are regular. (See Refs. 1 and 8.) The calculation of (4.6) is some-
what lengthy and will not be given here. An alternative way to
obtain these results is to consider an inhomogeneous electric Geld
and find the limit as the wavelength goes to inanity (see Sec. SA).

8„&'&=a)P res(1 —es )

where

u»"' '(ops s —oi) . (4.9a)

For lower frequencies, i.e., for coo.„&1,these expressions
are not applicable and a better solution of (4.7) is re-
quired. It is easy to see that (4.9a) is identical to (3.15a)
for F(co)= —(e/mc)A(o~) p= (—ie/2nuo)E. p. This is
just the description of the interaction Hamiltonian in a
different gauge for the electric field. Since it has well-
defined matrix elements, the formulas of the previous
section are directly applicable.

The form of the scattering opera, tor (4.4), and in
general the kinetic equation (4.7), for the case ~=0
was established independently by Lang' and the author. '
Apart from the narrowness of scope of these works,
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however, additional assumptions were made which are
avoided in the present treatment. The case of an
oscillating electric field has been treated by Gurzhi'
and more recently (after this work was finished) by
Yamada. ' They have derived kinetic equations
identical to (4.7) by entirely diferent methods, special
to the case of free electrons. The expression (4.9) for
the indirect power absorption was first arrived at, and
its importance for the understanding of the volume
absorptivity of metals at low temperatures was empha-
sized, in the well-known work. of Holstein'9 by use of
s .cond-order time-dependent perturbation theory and
an intuitive introduction of the exclusion principle.

B. Electrons in a Magnetic Field

For electrons in a uniform magnetic field B in the s
direction, the Hamiltonian can be taken to be
H= (1/2m) (p—eAp/c)', where Ap ——(O,Bx,0) is the vector
potential. Its eigenfunctions can be characterized by the
quantum number L=O, 1, 2, , and the two-dimen-
sional wave vector k(k„,k,), namely,

(r~ /k)=Pt(x —X&) exp(ik„y+ik, s), (4.10)

where gt are the harmonic oscillator eigenfunctions and
Xp= kp/ply)p withcdp= ~e~8/mc=cyclotronfrequency.
The energy eigenvalues are ~t&= (/+-,')~p+k, '/2m. The
current operator J= (e/m)(p —eAp/c) is then diagonal
in k; in particular, the transverse components J
obey the selection rule (/'k'~ ~'„„~lk) ~ 8p~tb p &, ,whereas
the longitudinal one is totally diagonal, i.e.,(l'k'~ ~, ~/k)
~ 6& &51, I,.We are thus interested in the subset of density
matrix elements diagonal in k.

As in the case of free electrons, it is easily seen that
this subset satisfies a kinetic equation, i.e., the scatter-
ing operator (2.45) couples matrix elements only of the
same subset. This is again a consequence of the selection
rule for the electron-phonon interaction in this represen-
tation, cp, , p&(q)~8&, ,+&.. In fact, in many cases
stricter selection rules exist for the w's, (2.45a). For
example, in Appendix A of Ref. 4 it was proved that
for a large class of c(q), hatt

' ——0 unless m m'=l l'— —
This enables one to find kinetic equations for even
"smaller" subsets of the density matrix. In particular,
for a longitudinal geometry, i.e., E~~B, the subset
consists merely of the occupation probabilities pt p, p, (cu)
=—fthm(co), which is suf5cient for the evaluation of

(g,). For a transverse geometry, i.e., ELB, the subset
consists of pp, , t p(&o) with l =/+1, which again is
sufhcient for the determination of (g*,„).More generally,
however, we can derive from the kinetic equation
(2.46) for the density matrix p„,(&a) an equation for the
desired subset by eliminating the undesired subset, as
in the case of elastic scattering. 4 We shall only state
below the final results.

For the case of a longitudinal electric field E= (O,O,E,),

'9 T. D. Holstein, Phys. Rev. 96, 535 (1954).

the kinetic equation for ft&(co) is entirely analogous to
that of free electrons, on account of the selection rule
st&, t & "8tp5». Thus, all equations from (4.4) to (4.9)
are valid in this case, if we replace k by (/k), k' by
(/'k') and E k by E,k, .

For a transverse geometry we may take E= (E„O,O).
Denoting the desired subset by

f.(~)=p.(~)(~t.~i+'t. t i)~p—p (4.11)

Zy CO ZV~~r GO~), M G)~1 ~ Q)~r &
—

CO

—ft. (~)~),i"'*(~u—")
fil (~)~»—"'(~pl +~)} (4.12b)

is also independent of k„. D«(cv) is given by (2.50)
and r(~) can be obtained from (2.49a) and (4.12a), and
both are independent of k„.

For the special case of co=0 a kinetic equation for
the one-electron density matrix has been derived before
by Gurevich and Nedlin" and Horing and the author"
by diGerent methods. The equation of Gurevich et cl.
is in complete agreement with (4.12) for co=0, whereas
that of Horing et al. differs slightly in the structure of
the scattering operator; the difference stems from the
fact that in the latter work the MarkofBan approxi-
mation (see Appendix 8) was made. Equation (4.12)
is valid for arbitrary frequencies ~ and thus it gives a
quantum-mechanical description for the well-known
phenomena of cyclotron resonance, Faraday rotation,
etc., of conduction electrons in semiconductors, in the
temperature region where scattering by phonons is the
dominant mechanism.

where y= (/k), p= (l'k'), we find for /'=/~1 (dropping
the common k)

o= —'( + «)f«( )+(&( )Lf( )—( )7) ~

+iAtp"'(~)+Dtp(&o), (4.12)

on account of the selection rule x„„~8g,, ~+~8I,~. The
matrix elements of F(co)= (—e/2)E, x are now regular
in the representation ~/k) and thus all formulas of Sec. 2

are directly applicable. Thus, (2.40) gives in this case

Att & &(cu) = (—e/2)E, .(2euop) ' '(mt —et )
X$(/+I)'"bt, ~i+/'"bt, t i7. (4.12a)

Ke note that it is independent of k„, the quantum
number that determines the center of localization
of the wave function (r~/k) in the x direction. This is
also true of the other inhomogeneous terms of (4.12).
This raises the possibility of a solution ft&, t.p of (4.12)
that is independent of k„, i.e., representing a spatially
uniform distribution of electrons, which is the solution
of interest for the calculation of the usual conductivity.
This is indeed possible, since, with the ansatz of a
k„-independent f(cu), it is easily proved from the
structure of S(~) and (r ~/k) that

(g(~)f(~))«
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For frequencies ~ suAiciently away from the cyclotron
frequency &do a perturbative solution of (4.12) exists,
and it is given by (3.2) and (3.4). From (3.2) it is easy
to obtain the steady-state unperturbed "reversible"
current. The irreversible current due to collisions can
be calculated from (3.4), or directly from the indirect
power absorption given by (3.13). For &o/0, this is de-
termined from 3.14. For ~=0 it is easily checked that
the selection rules for F„q(0) are such that the simple ex-
pression (3.16) is applicable, in accordance with other
works'"" for this particular case.

(r~ sk)= u, k(r) exp(ik r), (4.13)

where s is the band index, k the wave vector restricted
in the first Brillouin zone, and u(r) has the periodicity
of the lattice; its eigenvalues are denoted by co, A,. The
current operator J= (e/m)p is again diagonal in k,
although it has in general both intraband and interband
matrix elements. We are thus interested in the subset

C. Electrons in a Periodic Potential

For electrons in crystalline solids the one-electron
Hamiltonian is H=(p'/2m)+V(r), where V(r) is a
periodic potential with the periodicity of the crystal.
Its eigenfunctions can be written in the well-known
Bloch form

From (2.40) and the well-known relationship between
matrix elements of position and conjugate momentum
operators we get

iA„&o&(&o)= ( e—/2m)E p„(rt, e—, /&o, &—o, ), (4.15b)

where p„=(sk
~ p ~

s'k). For the intraband matrix
elements, i.e., s'= s, it can be proved that (4.15b) holds
if it is understood that the ratio e,—e, ,/'~, —co, assumes
its limiting value as the denominator approaches zero
smoothly, i.e., it becomes e,'—=de(&o, &)/d&o, s. The
operator r(&o) is given by (2.49a) and (4.15b). The
operator D(&o) is more complicated in this case. The
complication arises from the fact that while the inter-
band matrix elements F„(&)o(s'Ns) are regular, the
intraband elements F„(&o) are irregular and should be
treated as in the case of plane waves. Denoting their
respective contributions to D(&o) byD&"&(&o) and D&'&(&d),

we have D=D"+D"', where D.. '"'(&o) is given by
(2.50) with the understanding that only the interband
elements F,„( )&d(r'Wr) are to be summed over in (2.50).
It is worth noting that in this case the last term that is
proportional to P contributes nothing. By a calculation
analogous to that in the case of plane waves, D„&"(&o)

is found to be, since [rs(H), rf„= (1/im)p„m, ',

D &" (&o)

fpv(&o) = psk, a' t(&0)5a's ) (4.14)

where p= (sk), v= (s'k').
As in the previous two cases, this subset satisfies a

kinetic equation. The scattering operator (2.45) couples
matrix elements only of the same subset, since for a
quite general electron-phonon interaction we have"
c,s, I„. (q) ~,hs, s+,+x, where K is a vector of the re-
ciprocal lattice. This is a consequence of the lattice
periodicitv. Since k, k, and q are all restricted in the
first Brillouin zone, there is only one K which sa, tisfies
the selection rule. This in turn guarantees that the
w's of (2.45a) combine matrix elements only of the
subset f„„(&d) Thus, f„.(&o) (dropping the common k)
satisfies the kinetic equation

where

(g( )f( ))-
=Q(f.x(&o)[w.. ""(&o,x+&d)+w, ,'*(&0, „—&o)j

—f„(~)wax""*(&ox.—~)

fx"(~)w-"'(~- +—~)) (4 15a)

~R. Kubo, H. Hasegawa, and N. Hashitsume, J. Phys. Soc.
Japan 14, 56 (1959)."P.N. Argyres and L. M. Roth, J. Phys. Chem. Solids 12, 89
(1959).

~ See, for example, R. E. Peierls, Quanta Theory of Solids
(Clarendon Press, Oxford, 1956), p. 126.

+(p, , —p„„)N, (1—e„)u,, ""(&o„,+&o)j. (4.16)

All these expressions are valid for arbitrary ~. For
~=0 we note that all expressions are regular except
for g (0)r "& (0) and D "~(0), which, however, when
combined give 8&"(0)= —$(0)r&'&(0)+D&"(0) a well-
defined value. It is worth noting that for the diagonal
elements we have 8„&"(0) =0, as in the case of plane
waves. For this case of a static electric field, one may
further reduce the subset f„(0) by considering only
the occupation probabilities f„(0).A kinetic equation
for f„(0) can now be found from (4.15), as in the work
of Kohn and Luttinger, ' by expressing the interband
elements f,. (s'As) in terms of the diagonal ones. One
thus finds, again in the second order for the electron-
phonon interaction, the transport equation

O=g [f„„(0)W„,—f„(0)W,„]——E Vga(&o, a), (4.17)

where 8'„„=2w„""(&o,„) is the commonly conjectured"
transition probability rate. The factor s in (4.17) is
due to the fact that, according to our definitions, the
steady-state density matrix for this case is f&'& =f(&o=0)
+f(—&o=0)=2f(0). Finally, it should be borne in
mind that the elimination of the interband matrix

~' See, for example, E. H. Wilson, Theory of Metals (Cambridge
University Press Cambridge, 1953).
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elements from the kinetic equation brings in additional
restrictions about the "smallness" of the electron-
phonon interaction.

In the absence of electron-phonon interaction and for
co&0 the direct power absorption is, according to (3.9),

F"&=4)res Q g e, (F„(co)('
sge' k

Xp(M, .+~)—8(~„.—o))g, (4.18)

which clearly converges. (The extra factor 2 is for the
spin. ) It should be observed that in (4.18) we could use
the vector potential gauge, i.e., F (&o)= (—ie/2nuo)E p.
In fact, for the power absorption due to indirect
transitions it is expedient to use this gauge, since then
F (&o) has regular intraband and interband matrix
elements and thus the expressions of the previous
section are directly applicable. Thus, the indirect power
absorption, either intraband or interband, is given by
(3.14).

5. EQUATION FOR THE LOCAL DENSITY
OPERATOR AND APPLICATIONS .

In many instances we require the expectation value
of the density of an electronic observable at the point x.
For observables of the form g=P, J; we have for their
densities at x

g(x)=2 g {J;8(x—x;)+8(x—r,)J;)

=-,' P (p,
~
Jb(x—r)+b(x—r)J~ p)u„te„, (5.1)

where r is the position operator and x is a c number. )In
(5.1) we restrict our attention to operators J that are
linear functions of the momentum operator p plus
arbitrary functions of r. The current operator is of this
type. For arbitrary one-electron operators J, we need a
more general "symmetrization" procedure than that
indicated in (5.1).j The expectation value of g(x) can
be expressed as

we write

p(xt) =0 ' Q Q expL —i(a"x—cot) jp(ea&) „(5.4)

p (eoo) = ~~{R(e(o)+Rt(—e—(o)}

R(obl) =p(M) exp(co I)=p(4l)e(o) .

(5.4a)

(5.5)

where H, is defined by (5.6) and

c(q)) dre '"'e '"'{R(ao))ct(q-)g,~(H.,r)
0

g, (H, r)ct(q)R—(e&o))e'"", (5.7a)

A kinetic equation for R(eoo) is obtained from the
corresponding one for p(&o), Eq. (2.46), by operating
on it with c(e) from the left. The abstract expressions

(2.47) and (2.48) for B(co) and S(ra)p(&o) are most
convenient for this operation. In commuting e(e) with

the various operators, we only need to notice that it
commutes with any function of the position operator r,
whereas for the momentum operator p we have pe(o)
=e(e)(p+o). Thus, for any operator, say H=H(p, r),
we have

Ho(e) = e(e)H(p+e, r) —=e(e)H. . (5.6)

In general, the self-consistent electron-phonon inter-
action operator c(q) could depend on the momentum p.
Although there is no basic difhculty with this general
case, we shall restrict ourselves for- economy to the
usually adopted approximation of a c(q) independent
of y. It is then clear that the kinetic equation for
R(e)o) is

iooR(mo) = —i{HR(mo) —R(oco)Ho}+S(m))R(e&)
+i{n(H)F(mo) —F(ear)N(B.)}+8(e(o), (5.7)

where

j(xt) —=Tr{g(x)(Rz (t)) = tr{Jpz (xt)), (5.2) p(a&) =g
0

pT (xt) —=—,'{p&(t)b(x—r)+8(x—r)pr(t)), (5.3)

this is, the symmetrized product of pz(t) and the
projection operator 8(x—r)= ~x)(x~ at the point x. We
note that p~(x, t) is a Hermitian operator. Although it
does not have all the properties of a density operator,
e.g., its eigenvalues are not non-negative, we shall refer
to it as a local one-electron density operator, because
of its property (5.2j. For the linear response we are
interested in p(xt) =pr(xt) —po(x), where p(xt) and
po(x) are defined by (5.3) with p(t) and po replacing
pg (t).

It is of interest to inquire whether we can find a
kinetic equation for p(xt). It is more convenient to work
with its Fourier components. Thus, for the steady state

P

ds{X e "~&" *&+(X +1)e"~"' *')
0

X/c(q))e '~'{F(a(o)e(H,)e*~ ct(q)

Xe '~'(1—m(H. ))—e(H)e'~ct(q)

Xe ' (1—~(H))F(e~))e'~"1

F(ea) =F(oo) e(e). (5.7c)

In writing (5.7) we have ignored the term A ~2 (~)e(e).
Note that no restriction on the magnitude of e has been
made above. Particular applications of this kinetic
equation to simple cases will be made below.

A kinetic equation for the corresponding quantity
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in the x space, namely R(x,co)=p(co)8(x—r), can be
obtained either by taking the Fourier transform of (5.7),
or directly from (2.46) with the observation that
II(yr)8(x —r) =5(x—x)II(y+iV, r), V, operating to its
left. Similarly, an equation can be obtained for p(xt).

It is of importance to prove that the approximations
made in deriving the kinetic equation (5.7) have not
destroyed the principle of the local conservation of
electrons. This states that for the Fourier components
we must have

The second term Ji gives rise to paxt of the polarization
current density ji(xt) = (—e'/mc)A(xt)np(x), where

qqp (x)= tr{ppb(x —r) }is the equilibrium electron density.
We shall concern ourselves from here on with the
evaluation of the more interesting part of the current
density j(xt)=tr{Jp(xt)}. As in the previous section,
we shall seek kinetic equations for the subset of the
local density matrix sufhcient for the evaluation of the
current density j(xt) in a convenient representation
for some simple systems.

(oe(aa).=a" i(mv), (5.8)

where n(mo) and i(aw) are, respectively, the particle
and particle-current densities. Considering only the
parts linear in the external disturbance, we have from
(5 2)

qi(m)) = tr{p(apo)},

i(a&a) = tr{vpp(ace)+vi(&o)pp(a) },
(5.9)

(5.10)

ei
Jx=J+Ji=ei (P,r]+ A

mc
(5.13)

wherevp+vi(~o) =iLB+F(a&), x] is the velocity operator.
Now (5.8) is proved to follow from the kinetic equation
(5.7) forR(api) and the correspondingonefoxRt( —a—

&a)

by simply taking the trace of their average. From the
structure of $(ace)R(apo) and B(apo) as commutators,
it is clear that these two terms contribute nothing to
the trace. Thus, we may write, making use of the
invariance property of the trace,

coN(mo) = tr{p(co)l II,p(a) j+ppl F((o),p(a))} . (5.11)

For a general one-electron Hamiltonian of the form
II= (1/2m)l y+Ap(r)]'+ V(r) = (-', )mvp'+ V (r), we can
easily see with the help of (5.6) that

LII,q(a)$= p(a) {(1/2m)a'+a vp}
=-', {p(a)a p+v.aV(pp)}a.

Thus, the first term of (5.11) gives tr{p(aa&)a vp}.
Similarly, for a general interaction of the form F(co)
= a(rpo) y+g(r), we find that the second term of (5.11)
yields tr{pp(a)a" vi(cu)}. Substituting these two results
in (5.11) we obtain a proof of (5.8). The restriction to
an electron-phonon interaction independent of the
momentum of the electron was made only for simplicity.
The general case is more involved.

In the following we shall apply the kinetic equation
(5.7) to some simple systems of interest. We take the
external disturbance to be a general electromagnetic
field with potentials A(rt) and C (rt), so that

F(t) = (—1/2c){J A(rt)+A(rt) J}+eC(xt), (5.12)

where J=eiPI, rj. A physical observable of interest is
then the induced current density, since this consti-
tutive equation in conjunction with Maxwell's equations
determines the electromagnetic properties of the system.
The one-electron current operator is

A. Free Electrons

For free electrons J=(e/m)y and thus the macxo-

scopic current density, when evaluated in the represen-
tation of plane waves

l k), is

j(ap))= (2e/m)Qp(k+ ', a)f-p(apo), (5.14)

where f&( a)~o=—(klR(ace) lk) plays the role of a "distri-
bution function. " The extra factor of 2 is due to the
spin and the second term arises from expressing the
contribution of R»t( —a—co) in terms fp(apo)

A kinetic equation for fp(ace) is obtained from (5.7)
by simply considering its diagonal matrix elements in
the lk)-representation. It is important to note that in
this case II = (y+a)'/2m and thus the plane-wave-
state vector lk) is an eigenvector not only of II,

lk)=~plk), but also of II„ i.e., II lk)=~p .lk). It
is then clear that the 6rst two homogeneous terms of
(5.7) for ipofp(api) are simply (—i)(pop pip+, )f&(—m&)

For the same reason, the scattering term (klS(mo)
&(R(ace) lk), as given by (5.7a), can be expressed in
terms of fp (apo), because, as in the previous section,
c»t(q)cp p(tI) ~bp p . Thus we And

(8 (apo)R(a~o))»

=P {fp (a~)qcp p(a~) fp(a~)qe» —(«)}
=—g S» (api) fp (ap&), (5.15)

where

ETC'

=+ I c&'& (9) I L P +1—'I + )t (& '. + —& +&)

+ P +&pp )e(~p'p+ +~ +~),

+ (+q+1 qpp)tt(pip, p'+q+ pop+—po)

+(gq+qqp)e(pii p+, (oq+pi)$. (5.15a)—

LActually the summation ovex k' in (5.15) can be
carried out trivially if we make use of the selection rule
cp p(q) ~8~,p+q, we shall not, however, indicate this
explicitly. j Similarly, the inhomogeneous terms of
(5.7) can be expressed in terms of the matrix elements

(klF(ace) lk)=—Fp(apo), which from (5.7c) and (5.12)



QUANTUM THEORY OF KINETIC EQUATIONS 1541

are found to be

Fg(OM) = (—e/0) {(1/tlC) (k+-,'e)
~ A(eM) —c (OM)), (5.16)

where A(eM), C(eM) are the Fourier components of
the external potentials. Thus the kinetic equation for
fq(eM) readS

p(M—+Ma, a+.)f~(OM)

+& ~» (OM) {f~ (eM) f~ "—'(OM))

+i(ng —ttg+.)F~(OM)+D~(OM). (5.17)

As before, we have written

(kiB(OM) jk)= —p 5» (eM)fI, &p&(OM)+D, (OM),

matrix
f„„(OM)=E„„(eM)lI», (5.18)

(~(OM)f(OM))II

where p, = (lk) and v= (l'k').
A kinetic equation for f«~ (OM) (dropping the common

k) is easily obtained from (5.7), if it is noticed that, on
account of the arrangement of the coordinate axes,
II.

~ p) =H.
~
lk) =MI,~.~

lk)—=M„+.( p), where the last
equality defines ~„+.. This, along with the selection rule

c»~t(q)c&«I, (q) ~bt, ~I,~~ (the integral quantum numbers
are not indicated here) gives

0= —i(M+MI, &+,)fII'(OM)+(&(eM) f(OM))&~

+I (« t'ai+—.)F«(OM)+B«(OM) (5 19)
Here

D~(OM) = (e'"—1) E
Fg~ (ItM) Ft,(OM)

M+M p'.p'+r M+M a, a+o

where

fg&p&(OM) =F1,(OM)(eg, ttg+ )/—(M+Ml, ,g+,) (5.17a)

=2 {f.~( OM)LwIv""(MI. ~+.+M)

+wi 2"*(e,MI+. ,.—M)1

fI.(O—M)we, "'*(e,M ~+. I M), —

f~I (OM—)w„„"'(M„,I+,+M)), (5.19a)

with

Q»~ (ItM)

)({I,(OM)+I, (OM)) . (5 17b) where w« ""(x) is given by (2.45a) and w&I""(e x) is
obtained from w« ""(x) (for the same x) by the substi-
tution co„—+ co„+„p denoting any state. Similarly,

B«(OM)
=N„.(1 I, )~ g—

~
c» (q) ~'flq, r(M, ,,+. M,+M)— =g{F.x(OM)[~«" (MI, ~+~+M)

+ (X,+1)b(MI;,g+ +M,+M)j. (5.17c)

In (5.12b) we have exhibited only the terms that come
from the singular part of e(x). An equation similar
to (5.17) has been derived by Yamada. "

A kinetic equation for the semiclassical distribution
function f(k,x,t) is obtained from (5.12) by expanding
the coeflicients of f~(OM) and FI, (OM) in powers of e,
keeping the leading terms and then taking Fourier
transforms. The second term of (5.17) yields then the
usual "drift" term v V f. Such a kinetic equation is
thus correct for disturbances of long wavelength,
namely o&(k, where k is the wave vector of the electrons
of importance in the evaluation of the current density.

In the limit e —+ 0, one recovers the results of Sec. 4A.

B. Electrons in a Magnetic Field

For electrons in a uniform magnetic field B in the
2 direction, it is convenient to use the vector potential
Ap = (0 Bx,0), where now the x axis is taken to be,
without loss of generality, perpendicular to the plane
of B and the wave vector e. Thus e lies in the same
plane as the k of the ~lk) representation. For the
calculation of the current density in this representation,
it is sufficient to consider, according to the discussion
in the previous section, the reduced local density

+Vg„(e, M„,I+ +M)j F (IO) M„ V—I(e, MI, y+ +M)

—Fgi (eM)V„„"'(M„,p+,+M)), (5.19b)

where v«""(x) is given by (2.41a) and v«~'"(e, x) is
obtained from v« ""(x) by the substitution M„~ M„+..
Note that in (5.19b) as well as in (5.19) only the
diagonal in k matrix elements of F (OM) enter. These can

,be found from (5.12) and J= (e/IN)/p —(e/c)Ap(r)] in
'terms of the Fourier components of A and 4, and shall
not be exhibited here.

The case of electrons in a periodic potential is more
complicated. In the Bloch representation the kinetic
equation cannot be simplified as in the previous two
cases, due to the fact that the Bloch state is not an
eigenfunction of H, .

6. REMARKS

It is well to emphasize that the kinetic equation
(2.33), or (2.46), has been derived for an arbitrary
one-electron Hamiltonian B. Thus it presents a sufB-

ciently general and convenient starting point for
further applications to more interesting physical
situations, e.g., the hopping process, the mixed-
scattering case, etc.

The major restrictions of the theory presented
here are that the electron-phonon collisions are de-
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scribed only in their lowest Born approximation and
)hat only the response linear in the external disturbance
is given by the kinetic equation (2.33). With regard to
the first limitation, it is of course of extreme importance
to have a systematic approximation scheme to replace
(2.26), so that higher order in X effects can be described
and the dimensionless "parameters of expansion"
deduced. Furthermore, nonperturbative approximation
schemes are required for non-normal substances. It is
also of fundamental and practical interest to have a
theory for a more general response than the linear re-
sponse to the external disturbance. It is not dificult to
see that the approach of this paper can be generalized
in these directions.

It should also be pointed out that in this paper we
have been interested in the response only of the elec-
trons. The response of the phonons, however, is equally
important. In the basic approximation (2.26) we have
electively expanded the response of the phonons in
powers of 3, which in the lowest approximation amounts
to keeping the phonons in thermal equilibrium. It
should, however, be evident that we can introduce the
phonon density matrix Tr(b, tb, (R(t)) and find a
system of coupled kinetic equations for it and p„„(t) by
the appropriate generalizations of (2.26). This, how-
ever, is most naturally and economically done in
conjunction with the extension of the theory to disturb-
ances of arbitrary strength.

Finally, another restriction of the theory is the one-
electron approximation. Dynamical correlations among
the electrons can, however, be treated along similar
lines.
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APPENDIX A

The complete solution of the kinetic equation (2.33)
for p (t) can be obtained by the method of Fourier trans-
forms. Introducing the transform

From (2.30) it is found that

(A3)

where 8„,'(e,' cv) is given by (2.41) with the substitution
of 8(&u) by 0(e) =1/ie. From (2.34) and (2.40) it is also
evident that

(A4)

p(t) =
2' 00—lg

~fep(e)e'" (A6)

with it)0, the time evolution of p(t) for t)0 can be
obtained by analytically continuing p(e) in the ap-
propriately cut e plane and deforming the contour in
(A6) in the upper half-plane, so that we may use the
techniques of complex integration. In the limit of an
infinite lattice the contribution of the poles at ~„„—~„
etc., vanishes at t —+ 00 and the steady-state solution
is obtained from the contribution of the poles ce, if we
assume that the contribution of the singularities of
(i(e+2) S(e)l —' vanishes at t ~~. We thus find

p(t) ~ Z e'"'p(~) (A7)

From their definitions it is clear that 2„.(e) and B„„(e)
are analytic functions everywhere except on the real
axis, where both have poles at e=co and B„,(e) has
additional poles at e= &e„„—ce„etc.The solution of (A2),
which can be written formally as

p()=P (+~)—$()l 'L~()+B()l (A5)

with Zp= (H,pl, will t—hen have the same singularities
on the real axis plus additional ones (such as branch
lines along the real axis) arising from Li(e+2) —S(e)l '.
Since now

+oo

with

p(~) = I:i(~+~)—$(~)l 'b~ (~)+B(~)l (A7a)

with e in the lower half of the complex e plane, and
similarly for A„„(e) and B„„(e)we obtain from (2.33)
and the initial condition p(0) =0 the following equation
for p(e):

'(+ ")P"()=($()J())"+i~"()+B"() (A2)

with p(e) analytic in the lower half-plane below a line
parallel to the real axis, since p(t)=0 for t(0. Here
use has been made of the faltung theorem in the
evaluation of both $(e) and B„„(e).$(e) is given by
(2.45) with the substitution of 8(&o) by 8(e)=1/ie.

Thus p(rd) satisfies the kinetic equation (2.46). Knowl-
edge of the analytic properties of (i(e+2)—$(e)l '
gives not only the steady state but also the approach
to it; it shall not be studied here.

APPENDIX B

For sufficiently small 3 we can And a MarkoKan
approximation to the kinetic equation (2.33) by the
following suggestive argument.

It is observed that for t&)v, the upper limit of the
integrals in (2.32) can be taken as infinity, on account
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of (2.43). It is then clear from (2.29) that for t))r,

—p'(t) —i drA i'&'(r) = O(X') .
dt 0

(81)

An integration yields in the Schrodinger representation

—p, „(t)wing""*((ag„)—pg„(t)w„„"&(o)„i,)) (84)

the w's being given by (2.45a). C(t) is found to be

C(t) =P e'"'C(a&) (85)

where
C()=(~()—g ) (), (85a)

$(~e) being given by (2.45) while

..( )=A.."'( )/( ..+ ). (85b)

r„„(co) differs from «„„(co), (2.49a), in that there is no

p„,(t—r) = e'"~"'p„,(t)—i dr'e '"I'""
0

XA„,&»(t—r')+O(X'), (82)

which upon substitution into (2.32) gives

S{t,p(t)) =3Mp(t)+C(t) (83)

plus terms that can be ignored if r,/r, «1, where r„
is a measure of the effects of collisions and is of order
X '. Here S~ is the scattering operator in the Markoffian
approximation, namely,

(g (t))"=2 { ~ (t)L,.""( ")+ """( ~ )7

principal part in r„„(~). When the denominator of
r„.(co) vanishes, C(co) is understood to equal its limiting
value as the denominator approaches zero smoothly;
C(cu) is regular, as it can be verified from its original
expression. Note that away from direct resonance, i.e.,
for roWco„„with A„„&0&(~)WO, we have r(~)=«(ce). If
we denote the density operator in the MarkoSan ap-
proximation by p~(t), it obeys for t))r, the equation

—pcs (t) = —iLH, piLf(t)7+S~p~(t)
dt

+iA (t)+B(t)+C(t) . (86)

The corresponding equation for the steady-state
solution pir &'& (t) = P„PM(au) exp(isn't) can now be found
immediately to be

p ()=—Ãp ()7+&w ()
+iA (a))+B((o)+C(o)). (87)

The method of derivation of (86) and (87) indicates
that, in addition to the other conditions on the small-
ness of t which are also necessary for the more accurate
equation (2.46), they are valid if r,/r„«1 Mor. e
quantitative criteria are obtained by comparing the
solution p~(&o) with p(~) of (2.46).

Note that because of (85a) and (2.49) we can write

i~p~(&)
= —iL&,P ( )7+g LP ( )—«( )7+iA( )+D( )

+Lg()-I 7L ()- ()7 (»)
Away from direct resonance the last term vanishes and
(88) differs from (2.46) only in the structure of the
scattering operator. Note that S~ does not depend on co.


