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introducing the 0.1 eV levels into ZnSe in comparable
concentrations.

The ZnSe crystals were doped with Al to produce high
e-type conductivity samples. Undoped crystals often
show high resistivity after heat treatment or irradiation
which makes it difficult to perform electrical measure-
ments at low temperatures.

The correlation between irradiation and thermal
treatments has also been observed in CdS and CdTe.
For example, comparable electron irradiation of an
unfired CdTe sample (characterized by curve A of
Fig. 1, Ref. 1) produces a crystal showing the same
characteristic behavior as a sample Ared for 30 min at
900'C in saturated Cd vapor (curve 8 of Fig. 1, Ref. 1).
CdS crystals appear to require much larger irradiation
dosages to produce the double acceptor center in similar
concentrations.

The defect described in Ref. 1 and this letter appears
to be the dominant electrically active defect produced

in the n-type II-VI compounds by short metal vapor
6ring or by electron damage. If other defects are pro-
duced, they are either unstable at room temperature or
are not electrically active in m-type material. The
observation of the described double acceptor center in

CdS, CdTe, and ZnSe suggests the general nature of
this defect in the II-VI family of compounds.

It has been suggested that a defect of the type re-

ported here may be responsible for part of the edge
emission spectra seen in II-VI compounds. ' However,
a relationship between the emission intensity of the
optically observed center and the defect concentrations
obtained from electrical transport measurements has
not yet been established.

The authors acknowledge the aid of B.B.Binkowski,
L. H. Esmann, and W. Garwacki in the preparation of
the crystals and W. A. Colliton for assistance in the
irradiation.

e R. E. Halsted and B.Segall, Phys. Rev. Letters 10, 392 (1963)
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The magnetic properties of the hexagonal antiferromagnet CsMnF3 have been investigated by magnetic
susceptibility, torsion, electron resonance, and nuclear-antiferromagnetic double resonance. Torsion meas-
urements establish a transition to an antiferromagnetically ordered state at 53.5'K. A weak sixfold anisotropy
in the transverse plane and a large axial anisotropy along the c axis corresponding, respectively, to the fields

36K,/&=1.1 Oe and ZI/3f = —7300 Oe are detected. Susceptibility measurements at 4.2'K establish an
exchange Geld B~——3.5)&105 Oe. The temperature dependence of E;was observed from 4.2'K to the transi-
tion temperature and compared with spin-wave and molecular field theory. From paramagnetic resonance
measurements an isotropic g value of 1.9989+0.003 is determined. Magnetic resonance measurements below
the transition temperature with the applied field in the transverse plane show a weak sixfold anisotropy
consistent with the torsion measurements. Measurements out of the transverse plane confirm the large
axial anisotropy. In the temperature range from 0.3 to 4.2'K there is an additional temperature dependent
anisotropy field H~ r =9.15/T Oe directed along the sublattices. This field arises from the hyperfine interac-
tion with the Mn'5 nuclear magnetization. Assuming parallel ordering within the transverse planes with
adjacent planes alternately magnetized, a calculation of the classical dipolar interactions and of the ligand
Geld anisotropy arising from the displacement of the nearest neighbor Quorines gives a combined axial
anisotropy field E&/M= —7965 Oe. The in-plane anisotropy due to second-order dipolar interactions is
estimated to be =2 Oe in reasonable agreement with observation. The strong coupling between the nuclei
and electrons affords an opportunity to observe the Mn~s nuclear resonance indirectly by monitoring the
position of the electron resonance field. A saturation of the nuclear magnetization is observed at 668 Mc/sec
which is (3&1)% smaller than the calculated average hyperfine field of 689+7 Mc/sec. This indicates the
presence of a zero-point reduction in the electron spin.

I. INTRODUCTION
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INCR the late 1940's, great strides have been taken
in the discovery and experimental observations of

antiferromagnetic compounds. In the last few years

f Supported by the U. S. Atomic Energy Commission.
*Present address: Varian Associates, Palo Alto, California„
f National Science Foundation Cooperative Fellow.

the compounds XMnF3, where X represents Na, K,
and Rb, have been of considerable interest. Like many
other double fluorides, these compounds exist in
the perovskite-type structure. ' ' Extensive crystallo-
graphic' ' and magnetic' ' investigations have been

' R. L. Martin, R. S. Nyholm, and N. C. Stephenson, Chem.
Ind. (London) 1956, 83 (1956).

~ Yur P. Simanov, L. R. Batsanova, and L. M. Kovba, Zh.



HEXAGONAL AN T I F ERRO MAGNET CCsMnF3

a = $.

FIG. 1. Sketch of ho half of the unit cell that shows t
'd-6 nganese sites.

carried out on KMnF3. This
at room temperatures and it becomes a

n 3. is compound is ar

f o b1 ' N'
Ho b lo 81 5'K

cow its eel Tem er
+n

the ma netic
e static ma ne

i)

Mnl
F2

g

nl F

ig y nonlinear ma ne
'

p
ransition is attribute

F2)
c12

g o

F2
I

F2

Ca I )

p
csl

The magnetic properties of RbMnF h
studied. '~ "In contr t

n 3 have also been
F2

Qn

on rast to the corn lex

s J

behavior of KMnF
p ex 'ow-temperature

Mnl
F2 F2 2

n 3, this corn ound
t bl

kbl f
)

Mnl

Mnl

low temperatures t str cu ic
corn oun is

s is cr stal str
'

cu ic

b
F2 F2)

c = l5,074 g

the same stru t
n rast to t e above c

uc ure as the he o
compounds has

BaTio ' "" Th
exagonal form of

e dimensions of the
11 =6213 0003 A .074a0 004 A th 1' '"'f C""d F "n' "hth'M

h P6
Quorlne octahed 1 h 1

i 3'mmC.
ra oes between the la

es are given in a a er

uonne neighbors arran

b Z,lk,„L„,„d ."'g'n'1 '1'" p"k'"g th' ""t
m2(D ). Th

Neorgan. Khim. 2, 2410 (1957
the point symmetr

'A. Okazaki and Y. Suemuneuemune, J. Phys. Soc. Japan 16, 67

4K.

uemune . . pan, 671
e interesting feature f th' ee

'
e o is structure

s . , 3 (1961).

p n ~
67 e si es. ne third of th

e is that there

dK. o, h . . 12

the manganese

ak~awa K Hirak

n~, occupy the cent
thd tht h th eir corners with other octahedra,

orhss . , n . astings, Acta

e. e remaining two

. Beckman, A. J. Hee er A.

e manganese atoms desi n
in d~sto~t~d Au o ine octa edra th t h

7

th o ith th

1961).
n . . Portis, Ph s. Re

o er octahedra. %h
t of th M

1475 (1960)
symmetry abo t th M

e n~ sites is 3m

niversity of California, berkeley, 1961 stomS are dist

"A. J.Heeger, A. M. Portis D

s a,re istorted out of their closed a,c

rtis, D. T. Teaney, and G. W'

y ~ os ~

no a ect greatl t

d . . ', Ph . So. 7, 625 2.69 to 3.52 A.

, in International ic proper-

hexagonal structure oruc ure on its magnetism. A

0 o of h'

enson Phys. Re~. I etter

e

a~aly~~s f th

. Ph . S . 8, 55 (1963). iscuss the res
t,b 1 t

torsion measurements will be res

y Soc 8 obtained at 4 2 K.

n, K. Lee, and D. H. Tem

establish that th
a,ntiferroma t 11gne ica y with a lar e
anisotropy Low fi ld

ickinson L. Katz
~K. Lee and . . ', u m

e wi e derived. A discussion of the c t '
e contri-

ee and A. M. Portis, Bull. Am.ee and . . ', u . m. Phys. Soc. 7, 612 (1962).



butions to th e anisotro
h t h lxia anisotro

e will sh

g 'po

ou e resonance The m
e electrons and than t e nuclei, will be d

3 x10
i i

Ma
I

gnetic susce tib

I

vo

0
Ql

pe =-si

Fn. 2. Force

g ti

is lnforce is.;t.. "

ope =- s1

'i

4
H (kOe)

2~T R. R. McGuire, in. R r, in Solid State Physzcs e

1~ . . R-MGi dC

TemPergt@p e

va e communication

erived.

II. SUSCEPTIBILITY MII. SU: MEASUREMENTS

y
'

ent8, 1 ResultsExyerime

emagnetic
'

i ig tic susceptibilit

bl h' h h
e apparatus was c 1'b wi

crystal.
wi a MnF2 single

siti
orsion m

i ion to an ordered s
measurements ts (next section a

i erent tern erat
e susceptibilit'

)

(2 10.6X10 '
oe (

' — . X10 ' emu/rn 1o e and/, x(
tibilit d t

valu b db T

AND W)T T

40

i

Ma
' 'n s Fgnetic torsion, CsMnF

(0001j plane

20

E

0d)

0

Q
D
U

o -20

K,g =11

-60—

1

30~ 90 120 1

&12.0&

150 180

Field

&10.0&

Fn. 3.L

d irection

4 2'K
ow field ma n

' 'on measureme
eoretical curve

Not th ~
y

ergence of sixfoldo symmetry

60~

Inteterpretation of Resul

not observe a
apolation in the

any hysteresis or

an antiferro
at the slope Qf the

in the transverse, '
sppp

gnetizations lie
r&ses from thor o —'ar

e total suscept~b~l t agnetizations are

A graph of H asas a function of H

ppo t y pe

h d k
PPo y-'

y teresis eras obser
o a en parallel to the c axis.

Hysteresis er e
'

e c
e to the c axis.

fhf
the sample.

e ree rotational sa suspension of



HEXAGONAL ANTIFERROMAGNET CsMnFII 147

parallel to the plane, it is not unreasonable to assume
that since there is sixfold symmetry in the plane, there
will be domains of magnetization along three equivalent
easy directions in the plane. As long as the applied field
is below the critical field for flopping (II, 10' Oe) the
total measured susceptibility would include a parallel
contribution according to the relation

where X& and XII are, respectively, the susceptibilities
perpendicular and parallel to the magnetizations. At
4.2'K, yll is nearly zero so that the average suscepti-
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FzG. 4. Intermediate- and high-Geld magnetic torsion measure-
ments in the f0001) plane at 4.2'K. For fields up to 5 kOe, dis-
continuities occur along the (12.0) directions and for imlds greater
than or equal to 6 kOe, a pure sixfold dependence is observed.
Note the torque at high fields is independent of the field.

bility is smaller than the perpendicular susceptibility
by a factor of —,'.

For 6elds much larger than II„the susceptibility is
observed to be larger in the transverse plane. This is
also an indication that the magnetizations lie in the
plane.

III. TORSION MEASUREMENTS

Experimental Results

The anisotropy of a single crystal of CsMnF3 was
investigated by torsion measurements in a uniform held
from 4.2 to 77'K. The apparatus is quite similar to that

Fio. 5. Field dependence of magnetic torsion in the f0001)
plane at 4.2'K. This is a plot of the torque divided by the Geld
versus the Geld. At lour Gelds, the torque is proportional to H'.

used by Stout and Griffel" and Heeger. ' The crystal is
mounted to the same Teflon cradle and quartz rod used
in the susceptibility measurements and the beryllium-
copper wire is attached to a rotating torsion head. A mir-

ror, attached to the rod, determines the orientation of the
sample with respect to a zero-field position. The torque
is then determined by rotating the torsion head back
to this position, To measure the torque as a function
of temperature, a heater was wound around the copper
can containing the freely suspended sample. A copper-
constantan thermocouple, with a reference temperature
of 77'K, was used to measure the temperature. Except
for the measurements of the torque as a function of
temperature, all the measurements were carried out at
4.2'K. The sample weighed 20.5 mg.

Low-6eld torsion measurements in the transverse
plane are shown in Fig. 3. The theoretical curves are
also shown. At very low fields a sin2p dependence
predominates. %ith slightly greater field, a sin4y de-
pendence is observed, and finally a sixfold dependence
emerges for greater applied fields.

For intermediate and high 6elds, the angular de-
pendence of the torque is shown in Fig. 4. For applied
fields up to 5 kOe, discontinuities were observed along
the (12.0) directions, suggesting that the sublattice
magnetizations are along these directions in zero field.
For fields greater than or equal to 6 kOe, the discon-
tinuities vanish, giving rise to a pure sixfold dependence.
This indicates that the magnetizations are being freely
pulled around by the applied 6eld. Zero torque is
always observed when the field is along the (12.0) and
(10.0) directions. These two plots indicate the (12.0)
directions correspond to minimum energy orientations
and the (10.0) directions correspond to maximum energy
orientations.

The 6eld dependence of the torque in the transverse
or {0001}plane is shown in Fig. 5. This is a plot of the
torque divided by the field versus the field applied
along the two principal directions in the plane. The
torque divided by field is just the net moment perpen-
dicular to the applied 6eld. For fields up to 600 Oe, the

'8 J. W. Stout and M. Gri6el, J. Chem. Phys. 18, 1449 (1950).
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Magnetic torsion, CsMnF3
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FIG. 6. Magnetic torsion in the f21.0}plane at 4.2'K. The torque
is zero with the field along the (00.1) and (12.0) directions.

torque along the two directions is proportional to H'
This indicates the absence of a weak ferromagnetic
moment in the plane. Vpon attaining a maximum at
approximately 900 Oe, the torque decreases to a
constant value above 9 kOe. Coupled with the obser-
vations of sixfold symmetry for fields greater than or
equal to 900 Oe, a critical field H, of about 900 Oe is
indicated. No hysteresis was observed with the field
parallel or perpendicular to the transverse plane.

The angular dependence of the torque was also
observed in the (21.0} plane. This is shown in Fig. 6
for fields up to 7 kOe. The torque is zero with the field
along the (00.1) and (12.0) directions. The torque for
applied fields of 500 and 7 kOe have a period of 180'.
The torque at the intermediate field, 1 kOe, has in
addition a small sin40 dependence. These measurements
reveal the presence of a large negative axial anisotropy.
The transverse plane is, therefore, an 'easy' plane.
The torque has twofold symmetry in this plane because
of the uniaxial symmetry of the c axis. The presence
of the small fourfold dependence for an applied field
of 1 kOe is due to the fj.opping of the magnetizations
in the plane.

Finally, the temperature dependence of the torque
parallel and perpendicular to the transverse plane with
fields from 800 Oe to 7kOe was observed. No torque
was observed above 53.5'K. Since the torque in the
transverse plane at high fields has sixfold symmetry,
one would expect the torque to be directly proportional
to the sixfold anisotropy energy, E3. And in fact, it
will be shown in the next section that for fields much
greater than the critical field for flopping, the torque

is given by
r = —12E3 sin6 po,

where po is the position of the applied field Ho with
respect to a (12.0) direction. Figure 7 shows the tem-
perature dependence of the torque, i.e., the sixfold
anisotropy energy. A field of 6 kOe was applied along
a direction 45' with respect to a (12.0) direction.

From these torsions measurements, we have found

(1) no evidence of either a weak ferromagnetic moment
in the transverse plane or a screw structure, (2) a weak
sixfold anisotropy in the plane, (3) an antiferromag-
netic ordering with a large negative axial anisotropy,
(4) a critical field of 900 Oe, (5) the (12.0) and (10.0)
correspond, respectively, to the easy and hard di-
rections, and (6) a transition at 53.5'K to the dis-
ordered state. These measurements are consistent with
the susceptibility measurements.

At low fields, the magnetic moments may be in six
equivalent directions in the transverse plane. If all six
equivalent domains were equally present, there should
be sixfold symmetry in the torque at all fields. However,
because there are deviations, we conclude that there
exists at low fields inequivalent population of spins
along the six directions.
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Theory of Torsion and Anisotropy

In this section we derive low- and high-held ex-
pressions for the torque. We then discuss the tempera-
ture dependence of sixfold anisotropy energy. Finally,
we calculate the magnetic dipolar and ligand field
contributions to the anisotropy. We will show that the
ligand fields due to the distortion of the fluorine
octahedra and the classical magnetic dipolar inter-
actions give rise to a large negative axial anisotropy
consistent with experimental observations. Although
no specific calculations are carried out for the sixfold

anisotropy, we will show it not to be unlikely that this
anisotropy arises from second-order dipolar interactions.

In deriving the theoretical expressions for the torque
(and in a later section the expressions for the electron
and nuclear resonance) we assume a two sublattice
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model consistent with experimental observations. That
is, we assume the magnetizations to lie in the transverse
plane along the (12.0) directions with a negative axial
anisotropy energy E& cos'8. The sixfold anisotropy
energy in the plane is given by E3 sin'0 cos6p.' With
the angles defined in Fig. 8, we have for the total energy

U= —(Mi+M2) Ha+) Mi. M2
—Ea(sin'ei cos6q, +sin'02 cos6ipm)

+~Et(cos ei+ cos 02), (1)

where E~&0 and E3&0.

FtG. 8. De6nition of
the angles used. The s
axis coincides with the
(00.1) direction. The x
and y axes are parallel,
respectively, to the
(12.0) and (10.0) di-
rections. X

(T2.o)

&oo.&)

Y
0.0)

Lozv-Iii eld Theory

We proceed to derive an expression for the torque
in the transverse plane for low fields. By low 6elds, we
mean 6elds smaller than the critical fmld H, . Ke
assume unequal spin populations along the six equiva-
lent directions in the transverse plane. We let Op=0~
=02= ~m. We initially concern ourselves with one of the
six equivalent directions. The energy is

U E3(cos6pi+cos6(p2) )iM cos(yr+ p2)

+MHe)cos(ye+ ip~)
—cos(q 0

—ipt)) . (2)

The torque is then given by

T= MHOLsin(ya —
q i) —sin(&pp+ rpg)]. (3)

Now we introduce the new parameters 4 and 6:

Hp'. Ke find

sin24 —(Hp/72E 3) ) sin2'q o

—(He2/72E3X)' sin2q e cos2pe. (8)

Substituting into Eq. (6) we have

7'= (HP/2X)( L1—-,'(HP/72E&X)') sin2&pp

+—'(HP/72E8'A) sin4q o

+—,'(HP/72ES) )' sin6q o) . (9)

Now we take into account that there are six equivalent
directions with unequal spin populations. Let ap, u~,
and u2 represent the fraction of the total spins along
the six directions such that

Because the parameter is given by 4 =4'(Ha) we assume
a small change in 4 due to the angular variation of the

(4) small applied field Ho. Since

where 6 is small. The sublattice magnetizations are
induced by the applied field to cant slightly away from
the easy directions. The amount of canting is given by
6 and the position of the net moment due to the canting
is given by C. Rewriting the energy and torque ex-
pressions in terms of the new parameters, we have

41r=p=0, ir/3, 2m./3,

which follows from the definition of C, we have

To lowest order in Hp, i.e., Hp«H„6 0 and

(12)

r= (HP/2X) sin2(pp —4).
The equilibrium position is then given by

(6)

U = —2E3 (1—18LV) cos64 —) M'(1 —2h')
2MHeh cos(q a

——4), (5)
7 = (HP/D. ) sin2(q p

—nm./3)

is the torque due only to the spins along the mth direc-
tion. Therefore, to 0(Ho'), the total torque due to the
spins along the six directions is

2H~+H~, a cos64 2Hg

Hp cos(po —4&) Hp cos((pp —4) H2 — 1 H2 2-

(7) r= Q a„1—— sin2(pe —m/3)
2X 8 72E3)

where Hs ——XM and H~, 3=36E3/M. We assume
Hz))H&, 3, which is quite valid from experimental
observations. Substituting Eq. (7) into Eq. (5) gives
an expression of the energy as a function of pp and 4.
Now we solve for 4 in terms of ya by taking c)U/c)4 =0
and expanding in powers of the applied field to order

1 HP
+—

~
sin4(yo —e7r/3)

2 72E )t)

3 Hp
+— sin 6 ( po —m /3) . (13)

8 72ESX

tan2f = ~&3(ae—a2)/(2 (ae+a2) —ai)

Carrying out the sum and defining a phase factor t
"H. S. Belson and C. J. Kriessman, Suppl. J. Appl. Phys. 30, given by

175 (1959). J. Smit and H. P. J. Wijn, Iierrites (John Wiley 8z

Sons, Inc. , New York, 1959),. 14
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and a constant Therefore the equilibrium orientations are given by

D = (p (op+op) —gi)/cos2+p

we have finally,

'r= (Hp /2X)$1 —ip(HpP/72E&), )'jD sin2 (happ
—{)

H 2 P

+18Ep( D sin4( pp+—
E72EpX E 2

pi p +Lpp kpr+{3+&

where from Eq. (19)

p= (Hp/2He) cos{ .

From Eq. (3), we have for the torque

r = —2MHp sing sin&.

(22)

(23)

(24)

(25)

27 Hp' In the limit of { and p small and Hpp&ipHz, pHe the

(16) torque is
&72Eg j

We note that to lowest order in Hp, v- Hp'. Also if the
spin populations are equal D and { vanish, leaving
only a sixfold dependence of the torque, which is as
expected. Our assumption that the (12.0) directions
correspond to the easy directions in the plane is con-
sistent with experimental observations.

+p~ +1,2 g& ~ (17)

We let q i, p
——+y+ p where the small amount of canting

toward the field is given by t.. The energy is given by
Eq. (1) and the equilibrium conditions are obtained by
setting

8U/pjpi = 8 U/Brp2 Owit——h Oi ——Op =-',n-.

In terms of the new parameters, the conditions are

6Ep sin6(y+ p)+) M' sin2e
=MHp sin((pp —(p —e),

(18)
6Ep sin6( —q+ e)+) M' sin2p

=MHp sin(happ p+ p) .—
Expanding to first order in e and assuming strong
exchange coupling Hz&)H&, 3 and H@)&Hp, we find

and
Hp sin(q p

—q)/2He (19)

24Ep) sin6q =Hp' sin2(q —qp). (20)

Solving this expression graphically, we find pp —
q =-',x

which is what we expect for stable equilibrium. In the
limit of Hp))H„we let qp —pp= pier f where l

—is a
small deviation from —,'m. Substituting into Eq. (20),
we find

High-Field Theory

We derive expressions for the torque with Hp in the
{21.0} plane and in the transverse plane. We assume
Hp»H. and Hp»H~, 3. In this case, we expect the
magnetizations to Qop into a perpendicular orientation
with respect to the field. Let us first discuss the case
where Hp is in the transverse plane. As the field is
rotated in the plane, the magnetizations follow, always
oriented approximately perpendicular to Hp. That is,
the angles are given by

m p=2MHp/(2Hs+Hg, p)

and for Hp parallel to the (00.1) direction

(26)

m. =2MH p/(2He+H~, i) (27)

where Hg, i=El/M and mp and m, are the induced
moments along the two respective directions. With
Hp at an angle Op with respect to the c axis, the energy is

2 sin gp 2 cos8
U= —MBp' ~ (28)

2Hs+Hg, p 2Hs+Hg i

Expanding in terms of Hg, p/H@ and H~, i/He and
neglecting H~, 3 with respect to H~, ~, we find the
following expression for the torque:

MHp'
Hg, ~ sin20p.

2H~'
(29)

We note that Eqs. (26) and (27) also determine the
susceptibility parallel and perpendicular to the c axis.
Kith H~, 3(&HE, we have

(xp
—x~)/x p1 2H~/(2H g+H~, i)—. (30)

Therefore, if Hg, ~ 104 and By, i0', the diR'erence in
the susceptibilities is of the order of 1%.

Temperature Deperldeuce of Aui, sotropy Energy

The temperature dependence of the anisotropy
energies in antiferromagnets is fairly well understood
theoretically in two limiting temperature regions. The
two regions are the region at very low temperatures
where spin-wave theory is appropriate and the region
at very high temperatures where the Weiss molecular
field theory is appropriate. In this section, we will
review the basic results in these two regions.

At low temperatures Pincus'P used spin-wave calcu-

We now consider the case with the field in the {21.0}
plane. With Hp along the (12.0) and (00.1) directions,
we determine the equilibrium positions and find for
Hp parallel to the (12.0) direction,

|= (12EpX/Hp') sin6qp. (21) '0 P. Pincus, Phys. Rev. 113, 769 (1959).
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lations to derive the following relation

E(T)/E(0) = fM(T)/M(0))f "&"+'&, (31)

Ahn& site Mn2 site

AM 1 (a' H~r1
1+

'

I
-(S+1)

M(0) S i6 H~ ) 3 T~

r 2

(T T)
x~l

&Ta T~z&
'

where E(T) is the anisotropy constant corresponding
to the Nth order surface harmonic, M(T) refers to the
sublattice magnetization and E(0) and M(0) refer to
the corresponding quantities at absolute zero. This
relation is only valid over a temperature range such
that hM/M(0)«1. Short-range interactions are as-
sumed such that this derivation does not apply to the
dipolar (long-range) contributions to the anisotropy.
Zero-point Quctuation' is also included. This result is
analogous to the Abulov-Zener" result for the short-
range interaction contribution to the anisotropy energy
in ferromagnets.

Calculations of M(T)/M(0) at low temperature have
been made by Anderson, " Kubo, " and Eisele and
Keffer'4 using spin-wave theory. The result is"

Y2

Mn gr
~/

120

X1

mn
&~l

Z2
„x&00.»

x(12.0)
30o

& &t0.0&

B (Y).""That is,

Fn. 9. Fluorine distortions in CsMnF&. The coordinate systems
at each Mn2+ site, the general coordinate system and their relative
orientation to each other in the unit cell are shown.

where the lattice factor for cubic lattices of dimension
8 1S

F (33/2/~2) (res) (1~2) (lg)3/2

and

M(T) =~sNgIJgSB, (Y),

where y= (gpoSH. &f/kT).

Li gored Fi eld Arcisotropy

(33)

f T T ) 6 Tgg ~ 1 f TA@'tt ( TIr'1
l

cosl F
tT+Tgz& w' T ~=rF & T) l Ti

E~ is the Hankel function, S is the total spin, Z is the
number of nearest neighbors, HE and Hg are the
exchange and anisotropy energies, —,'S is the number of
magnetic ions for each sublattice,

k Ta gtlsHogi (y„——/2xr) j, —
and T~s ——(ky/k)$2H~Hs+H~' j" is the temperature
corresponding to the gap in the spin-wave spectrum
for an antiferromagnet.

The quantity rrI(T/TIr, T/T&J.) takes into account
the suppression of spin-wave excitation because of the
energy gap and it approaches unity for T/T»»1.

According to the molecular field theory in the high-
temperature region, the anisotropy energy is propor-
tional to the square of the spontaneous magnetization
of each sublattice where the spontaneous sublattice
magnetization is given by the Brillouin function,

s' P. W. Anderson, Phys. Rev. 86, 694 (1952).
"N. Akulov, Z. Physik 100, 197 (1956); C. Zener, Phys. Rev.

96, &335 (&954)."R.Kubo, Phys. Rev. 87, 568 (1952).
'4 J. A. Eisele and F. Eever, Phys. Rev. 96, 929 (1954)."F.Ketfer (to be published).

Ke now consider the anisotropy energy arising from
the ligand field acting on each of the two Mn'+ sites
(Fig. 1). This energy can be expressed as a function of
the spin of the Mn'+ ion. In order to calculate the
symmetry of the ligand field, we regard the surrounding
F ions as point sources. The fiuorine displacements
about the Mnj and Mn2 sites are shown in Fig. 9."
Also shown are the individual coordinate systems and
the general coordinate system (x,y, z). The magnitudes
of the displacements are determined from the x-ray
analysis" with the point symmetry about each site
preserved. The Mn~ sites are surrounded by a distorted
octahedron of Fs sites which are displaced by $r, while
the Mn2 sites are surrounded by three F~ and three F~
sites which are respectively displaced by $s and $s.
The Quorine displacements and distances to the Mn'+

' T. Nagamiya, K. Yosida, an, d R. Kubo, Advan. Phys. 4
(1955).

» ft is noted that T. Nakamura (Phys. Rev. 128, 2500 (1962)j
has studied the temperature dependence of the magnetic
anisotropy with tetragonal symmetry for an antiferromagnet
near the Neel point. He 6nds the magnetic anisotropy to have a
singularity of order (T T~) 'I'. —

» Because of the relatively low symmetry (P61/tame) of the
structure at room temperature, the lattice distances and space
group, to a good approximation, are the same at low temperatures.
In all our discussions, we will assume the same crystal structure
at all temperatures.
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sites are

Mn~ site, $~
——0.0262a~,

aq ——2.1185 A,

),=2.12 A;

Mn2 site, $2= 0.044a2,

$,=0.1117a2,

a, =2.118 A,

) 2 ——2.12 A,

) 3=2.144 A.

out of the transverse plane, U 2E,(88)'= ', M—H~"'(88)',
and therefore, the effective anisotropy 6eld II~"'

3E—,/M.
Now the single-ion anisotropy energy determined

earlier by torsion measurements in E.MnF3 is equal to

DyE = 2E—,/XS'= —9.6X 10 "ergs/ion,

where &=0.035 is a unit of strain in this lattice. ' The
effective anisotropy field per unit strain is thus given by

H&ett —3D1S/gtjs= 10 9X104 Oe. (37)

Note that $3 is four times larger than $~.

The potential in the region of each of the Mn'+ sites
as a function of the fluorine displacements is first
determined in the respective coordinate systems. "The
potentials about the Mni and Mn2 sites are written to
fourth order in the distances from the site and to erst
and second order, respectively, in the lattice distortions
$~ and (2, ~. A transformation to a set of crystal axes is
then carried out. Since the single ion anisotropy energy
transforms in the same way as the potential, it can be
immediately written as an expansion in powers of the
spin components. The magnetic energy per unit volume
is then written in terms of the sublattice magnetizations
M~, ~

———,'1VgpoS~, 2. Finally, in terms of the polar co-
ordinates, the magnetic energy per unit volume for the
Mni site is

Uo& =Eg"' sin'8g+E2&'& sin48g

+E~&'&' sin'8~ sin28~ cos3y~ (34)

From Eqs. (36), we see that the single-ion anisotropy
energies for the Mn~ and Mn2 sites are proportional to
Pg, and

The effective anisotropy fields due to the two sites are
then determined to be

Hg"'(Mng) = (10.9X 104) = 1450 Oe
a(KMnFg)

and

L(& —
& )+(1/(2a~))(&3'+&2'))

Hg"'(Mn2) =
4a (KMnF q)

X (109X104)= 1035 Oe,

where a(KMnF3)=4. 172 A. Since there are twice as
many Mn2 sites as there are Mn~ sites, the average
effective axial anisotropy 6eld is

and for the Mn2 site is

U &"=E~&" sin'82+E2"' sin'82

E2 Sill 82 S111282 cos3q 2 (35)

H&"(crystal) = 1170Oe.

Di potar Anisotropy

(38)

where E~"', E2&" and E2"' are proportional to —$~
and E~"', Eg"', and E2t" are proportional to —($3—$2)
and —($32+$22). The angles are de6ned in Fig. 8. Since
all the coefficients are negative, we see that the crystal-
line fields arising from the distortion of the nearest
neighbor fluorine octahedrons give rise to a negative
axial anisotropy. That is, the transverse plane is an
easy plane.

To obtain an estimate of the anisotropy, the po-
tentials to lowest order are given by

C &'' = -', Dggg[2S, 2—(S,'+S ')$

1
g)(2l —gD2 ($3 $2)+ ((32+) 2)

282

XL2S.'—(S'+Su') j

(36)

where D2=4D&." The energy is therefore of the form—(-,'E,) (3 cos'8 —1). Assuming a small displacement 88

K. Lee, thesis, University of California, Berkeley, 1963
(unpublished) .

The anisotropy due to classical dipolar interactions
will now be determined. From the hexagonal symmetry
of the structure, it is obvious that classical interactions
will not give rise to any anisotropy in the transverse
plane. This is because the dipole-dipole term in the
Hamiltonian 3CD is only quadratic in the direction
cosines, whereas the term in the anisotropy energy
describing the sixfold symmetry is written to the sixth
power in the direction cosines. Assuming parallel
ordering within transverse planes and antiparallel
ordering between adjacent planes, we will show that
classical interactions give rise to a negative axial
anisotropy. A brief discussion follows on the origin of
the sixfold anisotropy in the plane.

To determine the dipole field at a given Mn'+ site
in the hexagonal structure we utilize the fact that the
undistorted hexagonal structure can be obtained by
two interlaced face-centered cubic (fcc) sublattices.
This should give a good estimate of the dipole field at a
hexagonal site because only the Mn2 sites are displaced
by 0.21 A from the center of gravity of its octahedron. "
The (00.1) directions correspond to the (111)directions
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in the fcc structure, in which case the transverse planes
correspond to {111)planes.

With ferromagnetic ordering in the planes and anti-
ferromagnetic ordering between adjacent planes the
hexagonal stacking of the Mn'+ sites along the (00.1)
direction is given by

~ (+)&(—)&(+)~(—X'(+)C(—)~ (+)&(—)

where A, 8, and C denote the different crystallographic
positions of the six Mn'+ ions in the unit cell and the
(+) and (—) notation denotes the relative spin di-
rections. The distance between each plane of the
undistorted structure is 0.41a, where a=6.213 A is the
distance between Mn sites within a plane. For one fcc
lattice the ferromagnetically ordered stacking along
the (111)direction is given by

~ (+)&(+)c(+)~(+)&(+).
where the distance between (111) planes is (s)'"a
=0.82a. Interlacing this lattice with one which has the
inverted stacking along its (111)direction,

c(—)&(—)~(—)c(—)&(—)~(—) . .

we obtain the hexagonal stacking above. The distance
between (111) planes of one sublattice with (111)
planes of the other is now equal to 0.41a.

We recall that classical dipolar interactions fail to
yield cubic anisotropy. The anisotropy at a given site
in one of the fcc sublattices is therefore due to the array
of dipoles of the other fcc sublattice. McKeehan" has
computed the dipole 6elds in certain cubic arrays of
equal parallel dipoles. These fields are computed for
high symmetry positions. For a fcc lattice the dipole
field at a (4 i~i~) position is zero because of the local 43m
point symmetry.

Since we are interested in the dipole field at the (-', —',s)
position which corresponds to a dipole position in a
(111) plane of the other fcc sublattice, we determine
this 6eld by carrying out a field expansion about the
(i~xiis) position

(s—sp)'
H(s) =H(ss)+ (s—ss)Ho+ Hs + (39)

2

where z denotes the axis in the (111)direction, s= (is)'"u,
ss ——(ss)'I'a, H(ss) is the diPole field at ss, and
Ho= —P~&, BH(s)//c)s, and Ho, —P,&; &Ho(s)/——c)s;

are, respectively, the quadrupole and octupole fields.
The negative sign in H@ and Ho, is introduced because
we are carrying out the summation from the field
position (4'i~i~) to the dipole positions. From the usual
expression for the dipole 6eld, we have

1 7

Hq —3p g — (3s,r——,P—5s,'),
(40)

)1
Hs. = 3ii P ~

— (3r„4 30s,'r,P+35s,4) . —
«~ kr, ,

40 I,. &. McKeehan, Phys. Rev. 43, 913 (1933).

Hg) (s s s) =4530 Oe. (42)

This is then the dipole 6eld due to one sublattice at
the position of a dipole belonging to the other sub-
lattice. The energy of interaction is, therefore, + sH&3E.

We know the energy of interaction between two
arrays of dipoles is just —KD(1—3 cos'|)), where 0 is
the polar angle measured from the c axis. For dipoles
parallel to the transverse plane, Ull= —E~ and for
dipoles perpendicular to the plane U, =+2ED. Since
we have calculated U& ———,'HDM)0, we see that the
transverse plane is a plane of minimum energy. Dipolar
interactions, therefore, tend to align the spins parallel
to the transverse planes. "

Again assuming a small displacement M out of the
transverse planes, the energy is

U-3E 60'=-'H «'MM'

Since ED——~HDM, the effective dipolar anisotropy field
is given by

H~"'(dip leo) = —,'H~ =6795 Oe.

By summing Eqs. (38) and (43), we have for the
total eRective axial anisotropy field

Hx, r'"= 7965 Oe. (44)

We have seen that crystalline fields and classical
dipolar interactions give rise to a negative axial anisot-
ropy. If the dipoles are treated as quantum dipoles, we
expect that observed sixfold anisotropy in the trans-
verse plane can, thus, be understood. This reasoning
follows from the fact that quantum dipoles can be
thought of as precessing about their classical direction
or their axis of quantization. The energy of the hex-
agonal array of dipoles, which can be considered as
two fcc arrays, depends upon the direction that axis
takes with respect to the crystal axes. This was 6rst
worked out for a cubic ferromagnet by Van Vleck4'

using second-order perturbation of the dipolar inter-
action applied to energy levels in the Weiss molecular
field. He considers the anisotropy to originate from an
eRective coupling energy

BCD(QM)=g D,;(S,'S;—3r;,—(S,'r, ;)(S; r;;)]
z ~ l

4' J. I. Kaplan has shown fJ. Chem. Phys. 22, 1709 (1954)j
that for MnO which has antiferromagnetic ordering between (111)
planes, magnetic dipolar interactions with next-nearest neighbors
align the spins parallel to these planes."J.H. Pan Vleck, Phys. Rev. 52, 1178 (1937),

For a given fcc sublattice with all dipoles parallel to
the (111)direction, this summation is extended to the
seventh nearest neighbors. We find for the quadrupole
and octupole 6elds

Ho —8——8.57@/a4,

H p, +2——56.411'/a'. (41)

With H(ss ——4) =0, we finally have for the dipole field
at the (sss) position
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plus a quadrupole-quadrupole coupling term, both
taken between nearest neighbor spins. D;, is a tem-
perature-independent coupling constant which need
not be equal to g'ti&'/r, . With the dipoles treated
quantum mechanically, there are terms nondiagonal in

P; 5,'. XD(QM), thus giving rise to cubic anisotropy.
Pearson4' has considered the dipolar anisotropy in

antiferromagnetic cubic lattices. He obtains the cubic
anisotropy from a general spin-wave calculation of the
zero-point dipole-dipole energy and finds that this
anisotropy is of the same magnitude as in the ferro-
magnetic case.

We can determine an estimate of this in-plane
anisotropy field by noting that it is approximately
equal to the square of the nearest neighbor interaction
energy divided by the exchange field. With d equal to
the distance between nearest neighbor Mn ions, we
find for this field

H~, s (gtrrrS/d')'/H&= 2 Oe.

Interpretation of Results

(45)

IIg —&M=3.5X10' Oe. (46)

The expressions for the torque for low applied 6elds
is given by Eq. (16) and plotted in Fig. 3. The fi to the
experimental data at the two lowest 6elds where the
two- and fourfold terms dominate is quite good while
the fit at the higher 6eld where the sixfold term emerges
is only fair. We believe the two and fourfold terms are
due to antiferromagnetic domains while the sixfold
term arises from the symmetry of the plane. Wall
displacement would thus play an important role as the
field is increased to 600 Oe. This wall motion would
then cause a poor fit at the higher field since wall
displacements were not taken into account in the
theory. To determine E3X, which arises from the sixfold
symmetry of the plane, we Fourier analyzed the 600 Oe
data. We find E~X=1.09)&104 Oe'. Using the value of
X obtained above, we 6nd for the sixfold anisotropy 6eld

H~ s ——36Ks/M=1. 12 Oe. (47)

This is in reasonable agreement with our estimated

"J,J. Pearson, Phys. Rev. 121, 695 (1961).

From the experimental susceptibility and torsion
results, we may conclude that CsMnF3 has antiferro-
magnetic ordering with negative axial anisotropy. With
a spin Tnodel such that the magnetizations are in the
transverse plane and a critical 6eld of 900 Oe indicated,
a good estimate of the exchange field can be made from
the susceptibility measurements. We see from Eq. (30)
that for measurements at high 6elds yb should be larger
than x, by 1%.We note in Fig. 2 that this is consistent
with our observations. Assuming x„(4.2'K) to be
nearly zero such that 1/)i=x(4. 2'K) =39.7X10 ' emu/
mole and calculating M=13 850 emu/mole, we find
for the exchange field

Hg, i——'7500 Oe.

This is in satisfactory agreement with the theoretical
value of 7965 Oe obtained from crystalline field and
dipolar calculations.

From Eq. (25) we see that by observing the tem-
perature dependence of the torque in the transverse
plane at high fields, we are actually observing Es(T).
Assuming Ks(0)X= 1.09X10' Oe' we plot Es(T)/Es(0)
versus T' in Fig. 10. The 6eld of 6 kOe is applied at
45' with respect to a (12.0) direction. The temperature
dependences of Es(T) and M (T) according to spin-wave
theory are given by Eqs. (31) and (32). Since tr= 6 and
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FiG. 10. Temperature dependence of the anisotropy energy E3.
The open circles are the experimental points for Itq(T)/Its(0).
Also shown is the experimental temperature dependence of
E,(T)/3P(T), represented by the square points. The dashed
lines are best fits to the experimental points. The dependences
according to spin-wave theory and molecular field theory are
indicated, respectively, by ( 1—19P(T/T&)'g and ( B&is(T/Tz)g'
where Bsl s(T/Trr) is the modified Brillouin function.

value of 2 Oe. We also note that Eq. (16) gives the H'
dependence observed at low 6elds. With this value of
Ks)i, the critical field for flopping is H ~ (72Es)~)'t'~900
Oe which is consistent with observations.

For the high-field results we see that Eq. (25) yields
a sixfold dependence independent of the applied 6eld.
This agrees with the observations at high fields. Using
the data obtained at 9000 Oe, we calculated Hg, 3= 1.1
Oe, which agrees with our low field results.

The high-field expression for the torque in the {21.0}
plane yields the observed twofold symmetry and gives
us a Ineans for determining the axial anisotropy 6eld
JI~,i. From the high-6eld data, we find
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m=1, we have

Es(T)/Es(0) =1—198(T/Tiv)' (49)

We also note in Fig. 10 that for 30'K&T &45'K, the
torque is independent of the temperature. This is in
agreement with molecular field theory as Ei(T) o- M'(T)
and therefore v- is independent of the temperature.

From torsion and susceptibility measurements we
have thus shown CsMnF3 to be antiferromagnetically
ordered. Because of the presence of an easy plane, we
were able to determine the axial anisotropy field, which
is 10' larger than the in-plane anisotropy. The tem-
perature dependence of Ei(T)/M'(T) and Es(T) were
also observed and the temperature region where spin-
wave theory and molecular field theory are valid were
shown. We now proceed to investigate the dynamical
magnetic properties.

IV. ELECTRON RESONANCE MEASUREMENTS

Experimental Results

In this section we discuss the results of paramagnetic
resonance in the temperature range from 298 to 63'K
and of antiferromagnetic resonance in the temperature
range from 0.3 to 4.2'K. Two standard X-band micro-
wave spectrometers of the conventional magic-T design
were used. One spectrometer, utilizing a rectangular
reflection cavity which resonates in a TE&0& mode, was
used from 298 to 63'K and from 4.2 to 1.7'K. The two
temperature ranges were obtained by pumping on
liquid oxygen and liquid helium, respectively. The
other, a low-temperature spectrometer (described by
Ruby et al.4s), was used to take data from 1.5 to 0.3'K.
It utilizes a cylindrical cavity resonating in a TE»&

'4 T. Oguchi, Phys. Rev. 111, 1063 (1958).
4' R. H. Ruby, H. Benoit, and C. D. Jerries, Phys. Rev. 127,

51 (1962).

for T&&T~. By fitting this expression to the data, we
find 8=0.64. In Fig. 10 we see that the rapid decrease
of Es(T) agrees with spin-wave theory for T: 10'K.
At high temperatures, Es(T) is proportional to the
square of the sublattice magnetization given by Eq.
(33). The square of the modified Brillouin function is
also plotted in Fig. 10 and we see that Es(T) agrees
with molecular field theory for 35'&T&T&. As yet,
there is no satisfactory theory which would satisfy the
large intermediate temperature region.

The temperature dependence of the torque in the
{21.0} plane gives us an experimental observation of
Ei(T)/M'(T). The main contribution to Ei is the
long-range dipolar interactions. Therefore, in the spin
wave region, we expect Ei(T) M"(T).44 From Eq.
(29), it follows that for Hs ——6 kOe and Os=25', the
ratio E,/M' is given by

Ei(T)/M'(T)
=4.3r(T)X10 ' (50)

E,(o)/M'(o)

120 I& ~l l I l
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4' R. G. Shulman, K. Knox, and B.J. Wyluda, Bull. Am. Phys.
Soc. 4, 166 (1959).

47 L. R. Maxwell, Am. I. Phys. 20, 80 (1952).' L. R. Maxwell and T. R. McGuire, Rev. Mod. Phys. 25, 279
(1953).

4' T. Moriya, Phys. Rev. 117., 635 (1960).

mode and attains the low temperatures by adiabatic
demagnetization. Because of the large signal-to-noise
ratio, field modulation was not required.

Using a speck of diphenyl-picryl-hydrazyl (DPPH)
with g=2.0036 as a marker, we observe in the para-
magnetic region a single resonance line with an isotropic

g value of 1.9989~0.003. Considering the amount of
covalent bonding observed in KMnF3, 4' the deviation
from the free electron g value is not unexpected. As
the temperature was lowered toward the Neel point,
the resonance line was observed to decrease in amplitude
with a corresponding increase in the half-width at half-
amplitude. This large increase, shown in Fig. 11, has
been observed in other antiferromagnets such as
MnF2. ' "In contrast to this increase Teaney" observed
that the linewidth and amplitude of the resonance
line in KMnF3 remained constant as the temperature
was lowered through its Neel point. This may be related
to the fact that KMnF3 is nearly cubic, whereas MnF2
and CsMnF3 are highly anisotropic.

A single resonance with a half-width at half-amplitude
AH1 ~2

——12~3 Oe was observed at 4.2'K. This is about
as narrow a resonance line as has been observed so far
in an antiferromagnet. As expected, the resonance field
in the transverse plane showed a sixfold angular vari-
ation consistent with the torsion results. The resonance
field was a maximum and a minimum with Ho, respec-
tively, along the (12.0) and (10.0) directions. This is
shown in Fig. 12, which is a plot of the angular de-
pendence of the resonance field in the transverse plane.
In another measurement the sample was strained,
causing an increase of the line width to AH&i2=40~5
Oe and a distortion of the sixfold symmetry. We found
that the crystals could be strained quite easily by
applying an excessive amount of GE-7031 varnish. A
half-width of 40 Oe was not unusual for a strained
sample.

Figure 13 shows the resonance field as a function of
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the angle 4 in the f 21.0} plane. The angle 4 is meas-
ured with respect to a (12.0) direction. Since the
resonance field is directly proportional to (cos%) ' only
the component of the static field in the transverse
plane contributes to the observed resonance. This is
not surprising considering the presence of a large
negative axial anisotropy energy.

Proceeding from 4.2 down to 1.7'K,
, the resonance

line was observed to shift to a lower field position. The
line width correspondingly narrowed slightly to
AH&/2

——11~1 Oe. Below 1.5'K there were as many as
six lines with a peak to peak separation of the highest
6eld and lowest field lines of only 16 Oe. At 9.6 kMc/sec
the multiple lines appear at resonance fields of 3 kOe
and lower. Of the six lines, there was one that was
always more prominent than the others. The total
half-width was 11&1 Oe. These lines were definitely
not observed at 4.2'K. As the temperature was lowered
to 0.3'K, the lines shifted to lower field positions and
decreased in amplitude with a corresponding broad-
ening. At 0.3'K, the resonance field was well below
500 Oe. Figure 14 shows this shift in the resonance field

of the most prominent line as a function of temperature.
The dc field was applied along the two principal di-
rections in the transverse plane. The square of the
resonance field was found to be a linear function of 1/T
This is shown in Fig. 15.

This strong temperature dependence at liquid-helium
temperatures was first observed in KMnF3 by Heeger
et a/.""Heeger" has shown that this temperature
dependence at low temperatures is the result of a
strongly temperature-dependent anisotropy field seen

by the electrons due to their hyperfine interaction with
the Mn" nuclei. Each sublattice sees this anisotropy
field H~, y pointing along its equilibrium direction and
the 1/T dependence originates from the nuclear sus-

ceptibility. The temperature dependence of the sixfold
anisotropy in this temperature region, as given by Eq.
(47), contributes very little to the observed effect.

The fact that Hss is linear in 1/T confirms earlier
observations that there does not exist a weak ferro-
magnetic moment. If such a moment had existed, there
would be a term HOH~, ~ in the resonance condition
which is proportional to 1/T, where H~ c represents
the various mechanisms which would give rise to a
canting of the sublattices """"

It is interesting to note that the apparent microwave
cooling of the nuclei as observed in"" KMnF3 was not
found even at the relatively low temperature of 1.8'K.

Theory of Magnetic Resonance Frequencies

From our experimental observations, we saw that
in the presence of a large negative axial anisotropy,
only the component of the static field in the transverse
plane contributes to the resonance condition. The

10— 1 ! 1 1 1 l i 1
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FIG. 13. Magnetic

resonance in the
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4.2'K. The angle +
is the position of III'0

with respect to a
(12.0) direction.
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FIG. 14. Temperature dependence of the magnetic resonance
6eld in the transverse plane. The temperature-dependent hyperfine
anisotropy field is given by Hz, z =9 15/T Oe. .

s' P. Pincus, Phys. Rev. Letters S, 13 (1960),
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magnetic resonance frequencies will, therefore, be
considered in this section with the static field confined
to the transverse plane. Again the molecular field
approximation for a two-sublattice antiferromagnet
will be assumed. We will first derive the resonance
frequencies with the static field at an arbitrary angle
to a preferred or easy axis. The static field will be
assumed to be much larger than the critical field for
Qopping. The characteristics of the normal modes are
determined for Ho ——0 and for Ho applied perpendicular
to a preferred axis. Finally, we discuss briefly the rf
susceptibility.

The temperature dependent anisotropy field Hz, z

arising from the hyperfine interaction gives rise to the
additional terms —rrml M, —nms Ms in the energy
where

12

]0

I
Q0
0

6
Q

Hg i elm= (A——/gps)(I, ). (51)

(I,) is the average nuclear spin, ml, s are the nuclear
magnetizations of the two sublattices and A is the
hyperfine coupling constant. This field H~, ~ looks like
an axial an.isotropy field along the equilibrium direction
in the transverse plane. We will initially neglect this
contribution, but will include it in the final result. In a
later section on the theory of electron-nuclear double
resonance modes, this contribution is included explicitly.

Static Field at Arbitrary Angle in Plane

0
0 0.5 l.0 ],5

1/T ('K '}
Fro. 15. Resonance field squared as a function of 1/T.

2.0

The static field Ho is assumed to be larger than H,
and it is oriented at an arbitrary angle q 0 in the trans-
verse plane. Initially neglecting the hyperfine energy,
the total energy is given by Eq. (1) with the angles
defined in Fig. 8. Expressed explicitly in terms of the
angles, the energy is

&=KM'[cos8l cos0s —sin0l sin0s cos(ooi+ iIIs))

+MHo[sin0s cos(Ipo+ ys) —sin0l cos(q o
—Ip,))

—Es[cos6y, +cos6q, )+-',El[cos'0l+cos'0s). (52)

Since E~&)E3, we neglect the perturbation out of the
transverse plane due to E3. The equilibrium conditions
are just given by Eqs. (21), (22), and (23).

We now solve for the resonance frequencies following
a procedure which does not require the transformation
to two new coordinate systems. This procedure is quite
general and considers only the small angular motions
of M, and Ms. Circular precession of the magnetizations
is not assumed. For small oscillations M&, 2 and by~, 2

about the equilibrium positions, the angular coordinates
are given by

s8 rps'[MHo»n(l —e) —X3II' cos2e
+36E's cos6(6—e))

+X+ [COS2eh OIl8 &ps+80t88s)

+s &0i'[MHo»n(f+ e)+KM' cos2e+E,)
s802'[MHo sin(f —e) —XM' cos2e —El) . (5&)

The coeKcients of the linear terms in 5p~ and bp2
vanish in the limit of strong exchange, giving the
relations

—MHo cos(f+ e)+AM' sin2e —6Es sin6(6+ e)—=0,'
(55)

MHo cos(| —e)+AM' —sin2e+6Es sin6(d, —e) —=0.
These relations just give the equilibrium conditions
obtained earlier. To a good approximation, the equa-
tions of motion are

8U

M BMig
(56)

(52), expanding to second order in M and 8&p, we have

U= ,'8Ipls[MHo sin(-f+e)+AM' cos2e

36Es cos6(h—+e))

0l, s= sa.+80g, s,

pl, 2= W (all 6)+e+8pl, 2 )

(53)
BU

Maw, ,
where 6= Ipo+l and e and l are given by the definitions
(21) and (23). Substituting these relations into Eq.

Assuming an exp(iaaf) dependence we have the usual
four by four secular determinant. Expanding the terms
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and
(rpr/'y) =Hp 2Hz—Hg, s cos6pp

(happ/y) = 2H~H~, r.

Since the hyperfine field looks like an axial anisotropy
field its effect on the resonance condition for an anti-
ferromagnet is 2H+H&, &,

"" where H&, ~ is given by
Eq. (51) and HE))H&, z. Therefore, we finally have
for the two modes

(ppr/p) =Hp 2H@H—g, s cos6pp+2H@Hg, z' (5g)

and

to second order in ~, we obtain

(&p/y)' ,'Hp—'(1+sin'f) H—sHQ, 3 cos66+HsH~, r

&[HeH~, r—sHp'(5 sin'|' —1) H—sH~, p cos66]. (57)

With l given by Eq. (21) and 6= ps+a, the two reso-
nance frequencies are

{o} H, =O

x &oo.&)

Low-frequency mode

{b} H, ii(to.o)
R (00.1)

z (00.1)

x V
I

/

High-frequency mode

x &OO.»

(res/y)'= 2HEHg, ,+2H~Hg, r, (59)

x

Ho

Low-frequency mode High-frequency mode

Fro. 16. Normal modes (a) with Hp ——0 and (b) with Hp applied
along a (10.0) direction. The angle n is given by equation (7) with

1
happ

=4—
gled

Normal Modes and rf SNscePtibility

where the positive sign in the hyperfine term arises x
from the fact that the coupling energy nmM is a
minimum along the equilibrium directions. With
Hp 10', 2H~ 10 H~ 3 1, H~, ~ 104 and H~, z 1
at 4.2'K, we see that or~ corresponds to the low-fre-
quency mode which we observe at X-band and or&

corresponds to the high-frequency mode.

Now we consider the characteristics of the normal
modes with Hp ——0 and with Hp applied perpendicular
to a preferred axis. The normal modes are determined
by finding the ratios of the angular displacements
8pr/8pps, Mr/Mp, Mr/her, and Ms/8&ps from the secular
determinant. For the first case where Hp ——0, the ratios
for the low-frequency mode, co&, are found to be

8(p,/8 (ps ———M, /M, = —1,
(60)

Mr/8 q r ———Ms/8(p p
———ip(0),

where p(0) = (H~, s/2He)'~' and the ratios for the high-
frequency mode, ~2, are found to be

8q r/5ps= Mr/Ms=+—1,
(61)

Mr/8(pr= Ms/8 ps—+iP(0)——, ,

where P (0)= (2H@+HE,s)/(2HEHg, r)'~'. For 2H@~10',
H~ r 10', and H~, s 1, these ratios are p(0) 10 ' and
P(0)~10. The (0) notation designates this case where
Hp= 0. p(0) and P (0) are just the eccentricities of the
elliptical orbits described by the motion of the mag-
netizations. The characteristics of the normal modes
are, therefore, determined from Fig. 8 and these ratios
and these modes are shown in Fig. 16(a).

For the low-frequency mode, the magnetization
vectors Mt and M& precess at frequencies &p&(0) counter-

"C.Kittel, Phys. Rev. 82, 565 (1951).
ss F. Keller and C. Kittel, Phys. Rev. 85, 329 (1952).

clockwise (or clockwise) about their respective equi-
librium directions and they are out of phase by +. They
describe equal size ellipses with the ratio of minor to
major axes equal to p(0). There is a small net oscillating
moment in the z direction.

For the high frequency mode, the magnetization
vectors precess counterclockwise (or clockwise) at
frequency a»(0) about their respective equilibrium
directions, but they are in phase. They describe equal
size ellipses with the ratio of major to minor axes equal
to P(0). There is a net oscillating moment in the y
direction.

From Fig. 16(a), we see that the rf susceptibility can
be determined quite simply from the Kramers-Kronig
relations. It can be shown that y"(~p)= (7tpppp/2hppr),

where x" is the imaginary part of the rf susceptibility,
orp is the resonance frequency, xp is the static suscepti-
bility, and Ace& is the half-width at half-intensity. There-
fore, for the low-frequency mode, with an rf field H&

parallel to the z axis,

and for the high-frequency mode, with H& parallel to
the y axis,

X"(~s) = sX"(~p/~~s) (63)

where y, and y&, are the static susceptibilities parallel
and perpendicular to the c axis.

Let us now consider Hp applied perpendicular to the
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preferred direction. The equilibrium positions of the
two sublattices are canted toward the 6eld by an angle
6 given by Eq. (7) with pp ——C=-', n. . The resonance
frequencies are given. by Eqs. (58) and (59) with
cpp= ~71. The ratios of the angular displacements have
exactly the same form as Eqs. (60) and (61) except
that the eccentricities of the orbits are changed. In
this case we have

(H p+2HsH~ s)'~'

susceptibility x&=x(T&), we find &Hi~. =50 Oe, com-
pared to the observed value AHt~s(298'K)=75 Oe.
Considering the approximations that were made in
obtaining the above relation, the comparison is fairly
good.

At liquid-helium temperatures, it is obvious we are
observing the low-frequency mode, tet. Equation (58)
not only satisfies the observed sixfold symmetry, but
by comparing with the experimental observations it
shows the (12.0) directions to be the easy directions.
We can also determine H~, 3 by the relation

(2Hs' sH p'+—H~Hg s)

(2HzsH~, i) '"

(64) Hp(aHp/ap p)

HA, 3

6H~ sin6pp
(65)

where p 10 ', P 10 for Hp 3&&10'. The relative
phases are not changed.

However, as shown in Fig. 16(b), the net oscillating
moments for the low- and high-frequency modes are
different from those in zero field. In the low-frequency
mode the magnetizations swing back and forth in phase
such that the net moment oscillates elliptically in
essentially the xy plane. Because of the large eccen-
tricity ( 10 ') we may assume that the moment is
only rocking in the transverse plane. In the high-
frequency mode the net oscillating moment is always
pointing along Hp. This is just due to the motion of the
magnetizations being in phase.

Interpretation of Results

The broadening of the paramagnetic resonance line
with a corresponding reduction in the absorption as the
Neel temperature is approached is characteristic of all
noncubic antiferromagnets. Maxwell and McGuire'7 "
have earlier reported such observations. Tsuya and
Ichikawa" derived an equation for the linewidth as
the temperature approaches the Neel point. However,
they neglect any anisotropy energy that exists and
their result is valid only for simple cubic and body-
centered cubic structures. As yet we know of no satis-
factory general theory explaining these observations.

It is of interest to compare our observations with
Anderson and Keiss' prediction for the exchange
narrowed dipolar linewidth. "They derive the general
relation for the half-width at half-power

AH i(s =H~'/H~,
where

Hu'= (5 1)(g~n&)'S(S+1),
H~ 2 83(J/gran)/S——(S+. 1)jv',

J is just the exchange integral, S=2, and E is the
density of spins per cm'. Using the usual molecular
field relations for J"' and the value of the measured

'P N. Tsnya and Y. Echikawa, Phys. Rev. 83, 1065 (1951).
'4 P. W. Anderson and P. R. Weiss, Rev. Mod. Phys. 25, 269

(1953).

With H~ 3.5)&10' Oe and data such as that plotted
in Fig. 12, we calculate H~, 3 1 Oe. These results are
consistent with our static measurements.

To determine H~, z, we assume H~, ~=1.1 Oe, and
fit the experimental data shown in Fig. 15 to Eq. (58).
Ke find

H~, r =9.15/T Oe. (66)

V. NUCLEAR-ANTIFERROMAGNETIC
DOUBLE RESONANCE

The strong temperature dependence of the anti-
ferromagnetic resonance field in the liquid-helium
temperature range, as shown in Figs. 14 and 15, provides
a means for observing the Mn" nuclear resonance.
With the dominant hyper6ne interaction proportional
to the nuclear magnetization, it is possible to observe
the nuclear resonance absorption by monitoring the
antiferromagnetic resonance field at a fixed microwave
frequency. By supplying rf power at the nuclear reso-
nance frequency to saturate the nuclear magnetization,
a shift of the antiferromagnetic resonance to its high-
temperature position is expected. Relevant theory by
deGennes et al."gives the expressions for the frequency
co~ of the nuclear modes in a ferro- and antiferromagnet.

5 P. G. de Gennes, F. Hartmann-Boutron, and P. A. Pincus,
Compt. Rend. 254, 1264 (1962); P. Pincus, P. G. de Gennes,
F. Hartmann-Boutron, and J. M. Winter, J. Appl. Phys. 34, S
(1963); P. G. de Gennes, P. A. Pincus, F. Hartmann-Boutron,
and J. M. Winter, Phys. Rev. 129, 1105 (1963).

This is compared to the values of 9.7/T Oe observed
in KMnF ""and 9.43/T Oe calculated for RbMnFs '7

The reason for the single resonance line degenerating
into at least six lines at temperatures below 1.5'K is
understood as due to the resonance field being close to
the critical fmld for Bopping. These lines may then
arise from individual domains. To obtain a better
understanding of these lines, lower frequency (3—6
kMc/sec) measurements should be made.

From torsion measurements, we measured
H&, &

——7500 Oe. The high-resonance mode given by
Eq. (59) should, therefore, occur in the liquid-helium
temperature region at &p/27r 200 kMc/sec or 1.5 min.
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This theory predicts that at a given temperature T,
there is a characteristic rd~(T) and it should be possible
to partially saturate the nuclei. However, Heeger
et ut. ,

"*"mortis et at.'6 and Witt and Portis'4 have
observed in KMnF3 that at a given T and above a
threshold rf field, H, ~, the nuclear modes can be excited
at any driving frequency between a»(T) and y&&a
=&NO.M. The unexpected behavior is explained by a
spatial variation in nuclear frequency as the result of
electronic pinning. " The regions resonating at the
driving frequency can then grow at the expense of
those regions resonant at ~rr(T). In this section, we
report on the double- (nuclear-antiferromagnetic)
resonance measurements in CsMnF3. We also determine
the hyperfine field A(S) for the two Mn" sites and
derive the macroscopic equations for the nuclear-
electron spin system coupled by the hyperfine
interaction.

t

Double resonance, CsMnF3
3 5 — 4.2'K

(a} v =9.505 kMc/sec

aH& =45 Oe

3.4—
0
Ol

Q0
0

3e3

.0 Oe/Mc

Experimental Results

A 1-mm size crystal is mounted at the center of a
small single loop rf coil which is mounted Qush to the
side of the rectangular cavity used earlier. According
to the normal modes, an enhancement to the rf suscepti-
bility is obtained with the microwave field H& perpen-
dicular to the static field Ho in the transverse plane. It
would be advantageous then to have the rf field H, ~

also in the plane. However, due to the geometry of the
cavity, H, & is always perpendicular to H&. We, therefore,
mounted the sample on a 45' polystyrene wedge such
that the transverse plane was at a 45' angle with
respect to H~ and H, g. Ho was applied in the plane along
a (10.0) direction.

A sample strained (f)Hi~s ——43+2 Oe) with excessive
GE-7031 varnish and an unstrained sample (EHifs
=11%2Oe) were used. Figures 17(a) and 17(b) show

the antiferromagnetic resonance field position as a
function of the applied rf frequency. With no rf exci-
tation, the resonance field positions for the strained
and unstrained samples were 3.29 and 3.12 kOe, re-
spectively. The resonance field was observed to shift
to a higher field position corresponding to a high-nuclear
temperature. In the case of the strained sample, a total
shift of 220 Oe was observed from 624 to 668 Mc/sec
(region I). A discontinuous drop to the zero rf position
occurs at 668 Mc/sec which indicates a saturation of
the nuclei. However, another region (II) where the
hne shifts by 80 Oe occurs from 671 to 677 Mc/sec.
In the case of the unstrained sample, the same eGect
is observed in the two regions except that it was ex-
ceedingly more diKcult to shift the resonance field
above 665 Mc/sec. This is compatible with the theory
of spatial variation in nuclear frequency due to elec-
tronic pinning in the region of volume imperfections
and strains. The electron resonance positions above 668
Mc/sec are shifted slightly to higher fields due to
heating. In both regions, as the rf power is increased,
the high-GeM line was observed to grow at the expense
of the low-field line. At intermediate rf power levels
there is a partial shift such that the high- and low-field

lines are simultaneously present. Both field positions
are independent of power. This emergence of the line
at a definite higher field position was observed also in
KMnF3. '4 "In both samples, we observed that as the
driving frequency approached higher frequencies, more
power was required to shift the line to its high-field

position. This is consistent with theory. "We also note
that the data within region I falls on a straight line
which has a slope of 5.0 Oe/Mc/sec.

a (b) v =9.551 kMc/sec
o '

h, Hy =12 Oe

302 .0 Oe/Mc

e

1

620
l t t l

640 660
Radio frequency (Mc/seel

I

680

FIG. 17.Antiferromagnetic resonance Geld at 4.2'K as a function
of radio frequency for a (a) strained and (b) unstrained sample.
Ho is parallel to a (10.0) direction.

Hyperfine Field and Nuclear Magnetic
Resonance Modes

The hyperfine field A(S) is determined. for the two
Mn" sites by making corrections for the volume of the
distorted F octahedrons. Ogawa" has determined the
Quorine volume dependence of A from paramagnetic
resonance measurements of Mn'+ in KMgF3, KCaF3,
and KsMgF4 by plotting A versus (Mn —F)', where
Mn —F is the bonding distance. We can obtain a good
estimate of A (Mni) and A (Mns) from a plot of Ogawa's
data. With V(Mni —Fs)=12.67 A' and V(Mns —Fs,
Mns —Fi) = 12.05 As we find A (Mni) = (92.3&0.9)
X10 4 cm ' and A(Mns)=(91.9&0.9))&10 4 cm '.
"S. Ogawa, J. Phys. Soc. Japan 15, 1475 (1960).
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A =y(H pe+HI. +H~, s+Hg, r),
&=y(H pe+Hz+H~, I+H~, r),
C=ya~,
D = y31 (HpQ+H3I),

E=y~H~.

A (Mnl)(S)/h= 692&7 Mc/sec (67)
and

(74)A (Mns)(S)/h=688&7 Mc/sec. (68)
W'e will show that the nuclear resonance frequency is

directly proportional to p&O, M, where nM is the hyper-
fine Geld at the nucleus and y~ is the nuclear magneto-
mechanical ratio. Since the Mn~ and Mn2 sites are
equal to one third and two thirds, respectively, of the
total Mn'+ sites, we have for an average saturation
magnetization frequency

And according to the equilibrium conditions the co-
eKcients of the linear terms vanish. Since we are only
interested in solving the nuclear equations of motion,
we assume the electron resonance conditions (58) and
(59). At these relatively low nuclear frequencies, the
electrons follow adiabatically the fields given by A/y
and 8/y. Therefore, we determine the displacements
of the sublattice magnetizations as a function of the
displacements of the nuclear magnetization by setting
BU/B8(p1, 2 —BU/B801 2

——0. The displacements are

(y~erMp)/22r =689&7 Mc/sec. (69)

We now derive the nuclear resonance frequencies
for the coupled nuclear-electron spin system. An
average hyperGne Geld &~0,M which does not make a
distinction between the two Mn'+ sites will be assumed.
To simplify the algebra, Hp())H, ) is again oriented
perpendicular to the preferred axis in the transverse
plane. With ml(03, tos) and m2(84, q 4) denoting two
sublattices and ~ml~ = ~ms~, the total energy is given
by Eq. (52) plus the additional terms

8 lp I,2—(ynm/to I ) (A 8 32s, 4 CBp4,3)—,
MI, 2——(perm/to22) (8803,4 C804, 3)—,

(75)

where co&' and coP are the electron resonance frequencies.
After substituting Eqs. (75) into expression (73) for
the energy we determine the equations of motion to a
good approximation by

—mHpLsin03 sin 323+sin04 sin 324)
—nmM/Sin01 Sin03 COS(321—ys)
+sin02 sli184 cos(322—324)

+cos01 cos03+cos02 cos047,

BBq 3 4/Bt= W (p~/m) (BU/B8034), ,

BÃ3,4/Bt =a (y~/m) (BU/BB ps, 4)
(76)

(7o)

Neglecting zero-point excitation such that (S)=32, we where
have

where 8~, 8~, y~, and y2 are deGned in Fig. 8, 83 and 84

are the polar angles measured from the s axis and q 3

and y4 are the azimuthal angles measured, respectively,
from the +x and —x axis. To determine the equilibrium
positions, we let 8&=82= ~~=~3 ~4 p& p2
323 ——324=0, and set BU/Be=0= BU/BQ. With
IIg, p=nm and H~=nM, we Gnd

Hp(1 —(m/M))
and Q= e+H p/H~.

2Hz+2H~, r+H~, s

Since at 4.2'K, HE))H~ r+H~ 3 andm/3II(&1, we have

e—Mp/2H@, and Q Hp((1/2H@)+ (1/H~)) . (71)

Just as before we assume small angular motions of Ml,
ml, M2, and m2 such that

0;=-2'2r+80;, 2=1, 2, 3, 4

321 2= e+8321 2 )

%3,4=Q+83234,
Substituting into Eqs. (52) and (70) and expa, nding
to second order in M, bq, we have for e and 0 small

(tiI/'r)A (83212+8(p22) + (JtrI/y) ~ (8012+8022)

y (m/~) C(8&18&2+801802)

+2(m/VI3)D(BV 3+ VB4' +80'3+804)

(m/ tN )E(83218ios+ 83228 f4+801803+802804), (73)

On solving the secular determinant, we find for the
nuclear resonance frequencies

(-.IA.) =H;L-1- (-p/-, ) 7, (77)

(~~,2/V~)'=H~'D (~pl»)'j — (78)

where (top/y)2 = 2X3IIam would be the antiferromagnetic
resonance frequency in the hyperfine anisotropy Geld

alone and y~H~ is the saturated nuclear resonance
frequency. The nuclear resonance frequency squared is,
therefore, depressed by an amount proportional to the
nuclear magnetization. We see also that even with no
external field the nuclear resonance frequencies are
split where the low- and high-frequency nuclear modes
correspond respectively to the low- and high-frequency
electron modes. This splitting is due to the presence
of a weak sixfold anisotropy in an easy plane (large
negative axial anisotropy) which gives rise to elliptical
precession of the electron resonance modes. These two
nuclear modes are exactly analogous to the two nuclear
modes for a canted antiferromagnet. ""'

From the secular determinant, we determine the
relative amplitudes of the two nuclear modes. For the
low-frequency nuclear mode, loll, 1, 84os/8324= —1,
803/M4=+1 and for the high-frequency mode, coN, 2,

8323/8324=+1, Ms/804 —1. Correspon——ding to the low-

frequency electron mode where Ml and M2 rock

"A. iaaf. Portis, G. Il. +itt, and A. J. Heeger (to be pnbiishedl.
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together in the transverse plane t Fig. 16(b)], the
low-frequency nuclear mode represents also a rocking
together of m~ and 12 in the plane. This rocking of the
nuclear magnetizations in the plane is therefore being
driven by the low-frequency mode of the electrons.
For the high-frequency mode I& and m2 oscillate x
out of phase and perpendicular to the transverse plane.
Let us now consider the enhancement factor relating
the effective rf field seen by the nuclei to the applied
rf field, H ."Kith B applied along the preferred axis
perpendicular to B0, it can be shown quite easily that
the enhancement factor is given by

v 650 "

Le

2 630-

Theory
I

l l l I I llll
O

Nuclear resollance
'hhn in CsMnF2

I
' 'I I I I I II

O~-

iI—4(eo/coi, a) (~/~) (Ho/Hz) (79)

For the low-frequency mode, q 10', and for the high-
frequency mode, which was shown earlier to be in the
far-infrared, q 1. Therefore, in the presence of the
low-frequency mode, it is difficult to observe the high-
frequency mode. In fact we see from the normal modes
that the excitation of the high-frequency mode occurs
when the rf field is parallel to the dc field.

An estimate of the amount of frequency depression
for the lo'w-frequency mode at 4.2'K is given by

which is relatively large.

Interpretation of Results

The partial shift of the antiferromagnetic resonance
as a function of rf power is due to the partial saturation
of the nuclei. The extent of the saturation is sufIicient
to shift the nuclear resonance up to the driving fre-
quency. Driving at p&n3f fully saturates the nuclear
magnetization and gives rise to the maximum possible
shift in the antiferromagnetic resonance. Reducing the
driving frequency reduces the amount of saturation
and the antiferromagnetic resonance field drops
accordingly.

Since we have derived the nuclear resonance modes
assuming an average hyperfine field, the above results
should be valid for nuclear driving frequencies up to
the calculated average saturation at (y~cxMO)/2m.
=689&7 Mc/sec. However, we observe a saturation at
668 Mc/sec which is (3&1)%smaller than the expected
value. This indicates the presence of a zero-point
reduction in the electron spin (S) expected from spin-
wave calculations by Anderson" and Kubo" and from
calculations involving linked-spin-cluster expansions
by Davis. "%ith four nearest neighbors and 5= ~, as
for the Mn2 sites in this compound, spin-wave theory
and Davis perturbation expansion predict, respectively,
a 7.88 and a 4.36% reduction in (S). The observed re-
duction is in reasonable agreement with the two ex-
pected values.

'8 A. M. Portis and A. C. Gossard, Suppl. J. Appl. Phys. 31,
205 S (1960).I H. J&, Davis, Phys. Rev. 120, 789 (1960),

3 5 10
1 1

1'
1 1 1111 1 1 I 'I 111

50 ]00 500 l000
NucIear temperature ('Kj

FIG. 18. Mn" nuclear resonance frequency versus
nuclear temperature.

It is interesting to note that in KMnF3, with six
nearest neighbors, there was at best a (0.5&1)%
observed reduction. ""Spin-wave theory and Davis'
calculations predict, respectively, a 3.12 and 2.49%
reduction. The zero-point excitation is, therefore, more
easily observed in materials with fewer nearest neigh-
bors which is in agreement with the two theories.

The results above 668 Mc/sec are not well under-
stood. The observed effects may be due to regions of
smaller zero-point excitation. More extensive experi-
mental measurements and theoretical study are needed.
Our discussion is, therefore, restricted to region I.

Combining Eqs. (58) and (77) for the low-freqeuncy
electron and nuclear modes, we find Hp/p~
= (cubi/yy~H~) =5.1 Oe/Mc/sec for y~H~/27i=668-
Mc/sec. This is in agreement with observations.

From a comparison of the observed rf frequency-
resonance fieM relation with the observed temperature
dependence of the antiferromagnetic resonance field
(Fig. 14), we can determine the temperature dependence
of the nuclear resonance frequency. Figure 18 shows a
plot of the nuclear resonance frequency (the driving
frequency) as a function of the extrapolated nuclear
temperature. The data are those of the strained sample.
The observed reduction in nuclear resonance frequency
with decreasing nuclear temperature is in excellent
agreement with theory. The frequency extrapolated to
high temperatures appears to be 668 Mc/sec which is
in accordance with a 3% zero-point reduction in the
electron spin.

SUMMARY

Whereas KMnFS is a canted antiferromagnet and
RbMnF3 is a simple cubic antiferromagnet at low
temperatures, we have shown from static and dynamical
magnetic measurements that below 53.5'K CsMnF3 is
a hexagonal antiferromagnet with a large negative
axial anisotropy. Throughout our investigation we have
assumed a, two-sublattice model, a space group P6ii/mme,
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at low temperatures and a magnetic unit. cell identical
to the chemical unit cell. From the measurement of
an average perpendicular susceptibility at 4.2'K, an
exchange field Hg ——3.5X10' Oe was determined. From
torsion measurements we determined in the transverse
plane a critical field H, 900 Oe and a sixfold anisotropy
Hg 3 —1.1 Oe and along the c axis the axial anisotropy
Hg, g= —7500 Oe.

Assuming a magnetic spin model with the sublattice
magnetizations lying in the transverse plane, low- and
high-field expressions for the torque were determined
and were found to be consistent with experimental
observations. The (12.0) directions were established to
be the preferred axes. A calculation of the ligand field
anisotropy arising from the displacement of the nearest
neighbor fiuorines and a calculation of the classical
dipolar interactions show a combined axial anisotropy
of —7965 Oe. The sixfold anisotropy E3 arising from
second order dipolar interactions was estimated to be
=2 Oe. The two calculated anisotropy fields are in
reasonable agreement with the torque and resonance
measurements.

The temperature dependence of E3 was observed
from 4.2' to the transition temperature and the regions
where spin-wave theory and molecular field theory
appear to be valid are shown in Fig. 10. We have
found that E~/M' decreases much more rapidly with
increasing temperature than expected from spin-wave
theory and also that it is constant over a high-tempera-
ture region in agreement with molecular field theory.

Paramagnetic resonance measurements show a de-
creasing absorption and increasing linewidth as the
temperature is lowered from 298 to 63'K. This effect
was also observed in other noncubic antiferromagnets.
An isotropic g value of 1.9989&0.003 was determined
in this region. Magnetic resonance measurements at
4.2'K show a sixfold anisotropy consistent with the
torsion measurements. A half-width at half-amplitude
of 12+3 Oe is observed which is about as narrow a

resonance line as has been observed for an antiferro-
magnet. Due to the presence of the easy plane, we
observed the resonance out of the plane to be due only
to the component of the static field in the plane. From
4.2 to 0.3'K a large temperature-dependent shift in
the low-frequency antiferromagnetic mode exists as
expected. This shift is due to the temperature de-
pendent hyperfine anisotropy field O.m determined to
be equal to 9.15/T Oe.

The two antiferromagnetic resonance frequencies
were derived with HD in the plane and the normal
modes and rf susceptibility were discussed for the case
where H0 is applied perpendicular to the preferred axis.
The results are in agreement with observations.

The strong coupling between the nuclei and electrons
afforded an opportunity to observe the Mn" nuclear
resonance indirectly by monitoring the position of the
electron resonance field. There exist two regions in
which we could shift the electron-resonance line. In
the first region a saturation of the nuclear magneti-
zation occurs at 668 Mc/sec which is (3+1)'Po lower
than the calculated average hyper6ne leld of 689+'7
Mc/sec. This suggests the presence of zero-point
reduction in electron spin expected from spin-wave
theory. Expressions for the frequencies of the two
nuclear modes were derived and it was shown that the
low-frequency mode is dominant as expected. The
observed reduction in the nuclear resonance frequency
with decreasing temperature is in excellent agreement
with theory.
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