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Integrating by parts between the limits 0 and x yields
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On integrating the factor cos(s+s)P by parts again, a

contribution of order 1/(s+is)s is obtained, but the
integrated term clearly vanishes at both limits. A
further integration by parts yields a nonvanishing term
of order 1/(s+ts)s, thereby confirming the result (6.15)
quoted in the text. In a similar way, one may derive
all the other asymptotic expressions of the Green's
function elements which are quoted.
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The spin-lattice relaxation in liquids has been investigated on the basis of quasicrystalline models for
them. Explicit expressions for spin-lattice relaxation time T~ are derived for the jump-diffusion model
and the stochastic model. The theory has been applied to the case of water and the constants used in the
calculation are derived from the experimental data on the cold-neutron scattering. The spin-lattice
relaxation is found to be quite insensitive to the details of the models.

I. INTRODUCTION

~'UCLEAR spin-lattice relaxation involves the ex-
change of energy between the nuclear-spin system

and the "lattice" of the Inaterial in which the spins are
located. The rate at which the thermal equilibrium is
established among the nuclear spin-energy levels is ex-

pressed in terms of a parameter T1, called the spin-
lattice relaxation time. Bloembergen, Purcell, and
Pound have discussed a general theory of relaxation in
liquids and have shown that T& can be expressed in
terms of the Fourier transforms of the correlation func-
tion of the interactions coupling the nuclear spins to
the lattice of the liquid. "In ordinary liquids, the im-

portant relaxation mechanisms are the couplings of the
nuclear spins to the random translational and rota-
tional motions of the molecules via the magnetic dipolar
interaction of the nuclear moments. Recently, cold-
neutron spectroscopy has given detailed information
about the atomic motions in liquids, ' ' and has led
many workers to propose quasicrystalline models' ' for
them. The present work is concerned with the in-
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terpretation of T1 measurement for water on the basis
of these models, on the lines of approach of Bloem-
bergen, Purcell, and Pound. Sections II and III are
devoted to the discussion of the spin-lattice relaxation
in liquids on the basis of the jump-diGusion model and
the stochastic model, respectively. In Sec. IV, the
theory is applied to the case of water and the results
are compared with the experiment.

Jon)(~) e'"'k (t)dt; m=1, 2. (2)

The correlation function k (t) is related to the random
functions F (t) by the relation

~-(t) =&(~-(t')~-'(t'+t))-& ), (3)

where X is the number of molecules per cm'. For
dipole-dipole interactions

&m)"'&s'(~, y) (32- 't'Fs'(8, y)
~(t)= —

I
~(t)=I ', (4)

15/ r' ~ 15 r'

where Ys (0,&) is a spherical harmonic and (r, g,&) de-
note the spherical polar coordinates of a spin relative

Io R.. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954).

II. JUMP-DIFFUSION MODEL

We shall start with the general expression ' '0 for T1

Ti—' ——-sy4A'I(I+1)[J&'l(cop)+I&@(2cop)J. (1)

Here, p is the nuclear gyromagnetic ratio, coo the Larmor
frequency of nuclei, I the nuclear-spin number and
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solution of the di6usion equation given by" the correlation function can be written from Eqs.

P (r, rp, t) = (8orDt) ot' exp( —(!r—rp! )'/8Dt} . (14)
(5) and (16)
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In the second case of rt«rp neglecting r&/rp as com-

pared to unity, Eq. (12) gives
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The Fourier transform of (18) is
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III. STOCHASTIC MODEL

Recently, Rahman ef a/. ' have developed a stochastic
model of liquid which is based on the concept that the
heat motions in a liquid are very similar to that in a
solid. They regard the frequency spectrum to be of the
Debye type with upper limit ~D. Assuming the modes
from zero to +' to be diffusive and the rest vibratory,
the solution of the stochastic equation for atomic
motions in liquids gives

P(r, rp, t) = L4sp(2t)g '" exp[ —(!r—rp!'/4p(2t))], (16)

where

&&! e'""exp( —p(2t)k )dt !dk. (19)
r l
l )

IV. DISCUSSION

r 1 3 y4A' r.
+

intra 10 ft —1+tdo ra 1+4top r~
~ (2o)

Here, v.. is the correlation time for the reorientation
process and b the interproton distance within the mole-
cule. 7., is related to the diGusion coeKcient D through
the relation'

The theory developed in previous sections will now
be applied to water in the calculation of proton-
relaxation time. As mentioned earlier, the inter-
molecular and intramolecular interactions responsible
for spin-lattice relaxation in a liquid are, respectively,
the coupling of the nuclear spins to the translational
motion and to the rotational motion of the molecules.
Equations (12) and (19) yield only the intermolecular
contribution to T~. For the intramolecular contribution
we take the expression"

tet

!&( (1—I') sin!
k (1+1')'t')

r, =ao/18D.

T& is given in terms of these two contributions by

(21)

and

tot—21' cos! (16b)
((I+I s) its
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1/Tr (1/T,);„„,+ (1——/T);„„.. (22)

It is convenient to discuss the evaluation of T~ sepa-
rately for the jump-diffusion and the stochastic models.

Here p and n are the damping parameters of the dif-

fusive modes and the vibratory modes, respectively, and
are introduced to account for the damped motions in a
liquid.

If we made use of the Fourier expansion

exp( —
!r—rp! /4p(2t))

= (2~) '"L2p(»)7" exp( —p(2t)k')

Xe'".'-'o~dk (17)
'e S. Chandrasekhar, Rev. Mod. Phys. 1S, 1 (1943).

A. Jump-Diffusion Model

Expression (12) in all its generality is somewhat in-
volved for being used in our calculation. We have here
investigated some special cases. When rr«rp we can
evaluate T& from Eqs. (15), (20), and (22). From the
experimental measurements on the broadening of the
quasielastic peak of the scattered, the value of 7-0 is
found to be' 4&&10 " sec. The values of the other
molecular parameters for water used by us throughout

"A.Abragam, The Pre'met'ples of ft'tttelear 311agnett'srrt (Clarendon
Press, Oxford, 1961), p. 298,
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this calculation are

and

3E= 18 atomic units,
IV=6.75X 10"em—'
u=3.48X10 s cm
b= 1.58X10—' crn,
a=1.8SX10 ' cm2 sec ',
0= 135'K.

Making use of these data and the fact that at all prac-
tical radio frequencies, the Larmor frequencies of the
nuclei are much smaller than the characteristic fre-
quencies of molecular motions, we 6nd T&——3.69 sec.
In the second case of simple diffusion, i.e., r~&)ro, using

Eq. (13) we get Tt ——3.64 sec. For an intermediate case,
taking rt=rs=3. 6X10 "sec, we obtain from Eq. (12)
and (20), Tt=3.73 sec. Integrations involved in Eqs.
(12) and (15) were performed numerically.

B. Stochastic Model

The best values of the parameters occurring in this
model to fit the neutron scattering data are' O'D

=135'K, Q~'=15'K, and 1'=2.0. Here, red ands&' have
been changed into temperatures through the relation
A~= ksO. The fourth parameter P is obtained from the
relation p= (a&'/reD)sk&T/MD. The use of Eqs. (20),
(21), (22), and the numerical integration of (19) gives

Tt ——3.67 sec.

The experimental value" of T~ is 3.6 sec at 20'C for
water completely free from dissolved oxygen. A com-
parison of this value with the calculated ones shows
that the use of both the models yields results in good
agreement with the experiment. Due to some uncer-
tainty in the estimation of the molecular diameter u,
the calculated values of T& may not be very reliable.

From the above study, we conclude that T& is not
very sensitive to the details of molecular motions in a
liquid. The present treatment, however, has some spe-
cial features. Our treatment of nuclear spin relaxation
in liquids is based on more realistic and quantitative
models for atomic motions in liquids. These theoretical
models had fair amount of success in explaining cold-
neutron scattering data where simple diffusion theory
proved to be a failure. The theory of Bloembergen,
Purcell, and Pound provides no basis for a closer study
of diffusion mechanism and describes the complicated
behavior of liquids in terms of a single macroscopic
parameter D.
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