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The long-time behavior of the n-particle probability densities for a large, dilute system of point particles
interacting with short-range repulsive forces is studied. The main result is an exact series for the n-particle
density which consists of two parts. The first part is a time-independent functional of the singlet density
which is expressed as a functional power series and which is a direct analog of the equilibrium density series.
The second part is also a functional power series in the singlet density but the coefficients depend on time
and on the initial correlations. The coefficients of both series are given explicitly in terms of operators which
are determined by the dynamics of isolated groups of particles. It is demonstrated that these operators
vanish for phase points corresponding to motions during which there are two or more groups of particles
which either are statistically and dynamically independent or are such that each of them is dynamically con-
nected to the rest by no more than one particle. It is argued that all the terms of the exact series are finite
and that the terms of second part (the error) decrease with increasing time so that the first part is the
asymptotic form proposed by Bogoliubov. The relevance of the results for the Boltzmann equation is indi-
cated. A form of the Boltzmann collision integral which is valid in the steady state and to all orders of the
density is described.

evolve toward the functional form are especially
valuable.

In addition to these questions of principle are some
more practical questions; namely, what is the explicit
form of the functionals and how are they related to the
known equilibrium expansions of the e-particle densi-
ties? What is the form of the Boltzmann equation to
all orders in the number density?

In a previous publication, one of us, (MSG), ha, s

given a partial answer to some of these questions. ' The
first two terms of a series expansion of the functional
representing the pair density were derived under the
following assumptions: (a) The interparticle forces are
purely repulsive and short ranged, and (b) the proba-
bility densities satisfy the product condition at the
initial instant with a correlation length of the order of
the range of forces. The time for approach to the func-
tional form was estimated to be of the order of the ratio
of the correlation length to a representative particle
velocity. In addition, it was shown that, if the equi-
librium singlet density is substituted in the functional
expression, the result coincides up to third order in
density with the known density expansion of the equi-
librium pair density.

The present work generalizes and completes paper II
by addressing itself to the proof of a general theorem;
namely, supposing certain restrictions on the nature of
the system and on the initial values, if the time is large
enough, the time dependent n pa-rticle probability -densities
are certain tinie independen-t functiorials of the one
particle probability density More symb.olically, let any
integer, say, n, denote the position and momentum (the
"phase") of the rrth particle and let f„(l, ,n; t) de-
note the m-particle probability density considered as a
function of these one-particle phase points. The theorem

I. INTRODUCTION

~ NE of the most important contributions to the
understanding of the statistical mechanical basis

of the Boltzmann equation has been the conjecture or
assumption, made by Bogoliubov, that, in a dilute gas,
the e-particle probability densities are functionals of
the singlet probability density. ' The application of this
idea to the derivation of the higher density corrections
to the Boltzmann equation has been investigated by a
number of authors. ' '

It is obvious, however, that the functional assump-
tion cannot be valid under all circumstances since,
subject to rather weak conditions, the probability
densities are quite arbitrary and one can conceive of
possible rt-particle probability densities which are not
compatible with any particular functional relationship
to the singlet probability density. Thus, it is of some
importance, for the foundations of the 8oltzmann
equation and even for the general statistical mechanical
theory of nonequilibrium phenomena, to establish from
fundamentals whether the m-particle probability densi-
ties in an imperfect gas become, in some sense, func-
tionals of the one-particle probability density. The
features of the system and the initial conditions which
allow such a result are of some interest in themselves.
Furthermore, in view of the general import of this result
for the foundations of statistical mechanics, insights
into the muenster in which the probability densities

'N. N. Bogoliubov, J. Phys. (U.S.S.R.) 10, 265 (1946). See
also, "Problems of a Dynamical Theory of Statistical Physics, "
translated by E. Gora, Providence College, 1959 (unpublished).

' S. T. Choh and G. E. Uhlenbeck, "The Kinetic Theory of
Phenomena in Dense Gases, " University of Michigan, 1958
(unpublished).

'E. G. D. Cohen, lectures in Pundamenta/ Problems in Sta-
tistical JIechanics, edited by E. G. D. Cohen (North-Ho)land
Publishing Company, Amsterdam, 1962).

4M. S. Green, J. Chem. Phys. 25, 836 (1956), hereafter r
ferred to as Paper I,

e- ' M. S. Green, physics 24, 393 (1958l, hereafter referrecl to as
Paper II
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says that there is a certain functional, f„(1, ,n I fi(t)),
which depends on the time only through ft(t), and
which difI'ers negligibly from the e-particle probability
density if the time is large enough; that is, the error
defined by

b.(1, ,n; f)
=f.(1, ,n; t) —f„(1, ,tiI fi(t)) (1.1)

vanishes asymptotically in the time, t. '
This work also makes contact with paper I particu-

larly by discussing some of the consequences of the
theorem for the existence of a "generalized" Boltzmann
equation.

We propose to establish this asymptotic theorem
under the following restrictions on the system and on
the initial state: The probability densities describe a very

large, dilute, system corssistirig of Particles interacting with
short range, rep-ulsive forces Thus, .the probability densi-
ties satisfy the imfimite Bogoliubov, Born, Green, Kirk-
wood, and Yvon hierarchy and, moreover, their ex-
pansions in powers of the density are meaningful. The
iriitial values of the probabiHty derisities satisfy the product
coedhtioe which was proposed and discussed in paper I.
Essentially, f„+ ([u]+[m]; 0) satisfies this condition
if it becomes the product f ([u];0)f ([m];0) when the
phase points, [e$ and [mj, are sufficiently separated. '

An exact series expression for the n-particle proba-
bility density will be established. It will be shown that,
under the restrictions just stated, this result lends itself
rather naturally to a demonstration of the theorem
and an understanding of the questions posed above.
The expression is composed of two parts each given as
a functional Taylor series in the one-particle density,
ft(t); one part is just the asymptotic functional which
has been denoted by f„([ejI ft(t)) and the other is the
error b„comprising the system s memory of its initial
condition.

The asymptotic functional has a special form which
is a generalization of the result for fs(12I fi) given in
paper II. It is a functional power series in fi(f) with
time-independent coefficients; that is, it may be ex-
pressed as'

f([uj Ifi)

d([i1)«'"'([uj; [il) II fi(a; &), (12)
&)0 )1 cr g t.~l+ f. &1

where the "coeKcient-operator" v~&"' is a sum of prod-
ucts of time-independent substitution operators each of
which uniquely maps any given phase point into an-

' Note that the theorem is easily restated for the time-dependent
analogs of the Ursell-Mayer functions of equilibrium theory by
using the relation (algebraic) between these and the n-particle
densities.

r Here and in the following, the symbol [nj denotes a set of a
integers, say, (ai, ,n }.

The product symbol is the usual one while the symbol
"J'di[l]l" has the same meaning as "j'dp&dp2. dpt,

" where
p'E[i].

other one. ' The error 8„is similarly expressed" but the
coeS.cients, which are generalizations of the
depend explicitly on time and on the initial correla-
tions. The coe%cients of both the asymptotic functional
and the error are analogous to the irreducible clusters
of equilibrium theory in that they are sums of not-
more-than-singly-connected products of operators char-
acteristic of the dynamics of isolated groups of particles.
Roughly speaking, the terms of the asymptotic func-
tional correspond to motions for which, at the initial
time, the particles are moving freely and are uncorre-
lated while the error term corresponds to motions of
initially correlated or interacting particles.

An important feature of the exact series expression is
that both kinds of coefficients vanish for phase points
such that one or more subgroups of particles are "singly
connected. " Singly connected groups are so called be-
cause of their analogy to singly connected clusters in
the equilibrium theory of dense gases; essentially, they
are groups whose motion is statistically and dynami-
cally independent of the motion of all other particles
except (possibly) for one "connecting particle. " This
property of the coefficients has several consequences for
the exact series expansion: It implies that the only
contributions to the error arise from points for which
there are interactions and correlations present at the
initial instant and for which there are no singly con-
nected groups. In addition, this property guarantees
that all the integrals have finite values at any finite
time and that the terms in the error decrease with in-
creasing time. The leading term in the two-particle
probability density, for example, is proportional to t

The procedure to be used in establishing the exact
series expression and its consequences can be outlined
in the following way. Rather than assuming the detailed
form of the coefficients and then proving its validity, we
will give arguments which lead to their structure in a
natural way. Thus, while we assume that the asymp-
totic functional has the structure indicated by Eq.
(1.2), the coefficient operators ri'"' are specified only as
being time-independent substitutuion operators (i.e.,
we assume only that we are dealing with a time-inde-
pendent functional). To develop an expression for the
error, we use the formal series solution of the infinite
hierarchy for the f„which expresses them in terms of the
solutions of isolated m-particle problems. This result,
which is derived in paper I," is brieRy recapitulated in
Sec. II. Then, by assuming the general structure of the
asymptotic functional, this exact solution is used to
develop a form for the error which involves only the
7-~'") and the solutions of rs-particle I-iouville equations.
Thus, to discuss the long-time behavior of the error,

'This expression for the asymptotic functional (see Sec. lV
for definition) of ~&(") has also been derived for m=2 by E. G. D.
Cohen, J. Math. Phys. 4, 183 (1963).

"See Eq. (5.1).
"Actually what is given there is the analogous series for Ursell

functions. Our result is simply obtained from this by using the
v ell-known relation between Ursell functions and densities.
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the asymptotic behavior of the solution of Liouville's
equation for, say, m particles is needed and this is dis-
cussed in Sec. III.

In Sec. IV, we show that this asymptotic behavior
together with the supposition that f([n]~ fi) is the

asymptotic form leads to a full determination of the
7~("'. A similar argument, given in Sec. V, leads to a
useful and more transparent expression for the error
in terms of f, and coeKcient operators which are
natural generalizations of the 7-~('"' and which include
all the effects of initial conditions. In this manner, we
arrive at the exact series representation of the e-
particle probability density in a form which can be used
to analyze long-time behavior. Sections IV and V also
contain statements of the properties of the coeS-
cient operators along with some discussion of their
implications.

Finally, in the last section, various properties and
consequences of this exact functional series for f„are
given. In particular, we argue that the error terms de-
crease in time and also discuss the consequences of the
theorem for the generalized Boltzmann equation.

II. THE ERROR IN TERMS OF LIOUVILLE FUNCTIONS

In order to determine the form of the coefficient
operators 7-~&"' and to analyze the error B„a suitable
exact expression for the e-particle densities is needed.
We choose for this a formally exact series solution of
the infinite hierarchy which is given in terms of a se-

quence of functions $„, each of which is a solution of
Liouville's equation for some number m of isolated
particles. For convenience, we will refer to such func-
tions as "Liouville functions" in the sequel. " In this
section, we will review this result and some of its
properties and then use it to derive an expression for
the error in terms of Liouville functions.

A. A Series Solution of the Hierarchy

A series solution of the initial value problem for the
infinite hierarchy obeyed by the f„has been given in
Paper I."The result is that for densities which satisfy
the product condition initially, one has that

1
f(["] t) = 2 — d([G)4''"'([") D]; t) (2 1)

i&0 )!

The functions l'i'"i are defined in terms of Liouville
functions $ in the same manner as the "modified
Ursell functions" of equilibrium theory are de6ned jri
terms of the Boltzmann factors; that is, for example, by

'' The ( have a physical meaning in themselves. They are the
probability densities at [m] under the condition that a large
enough region surrounding [mg is empty of particles. For further
discussion refer to the lectures by M. S, Green, in Lectures in
Theoretica/ Physics, edited by W. E. Britten, B. 'IA'. Downs, and
Joanne Downs (Intersrience Publishers, Inc. , New York, 1961).

the recursion relation:

E([~]+[6)= 2 4'"'([~];P])E(N), (2 2)
[&]+I:&1=f~]

where the summation is over all partitions of [l] into
two disjoint parts, [h] and [k], either of which may be
empty. "The explicit solution of Eq. (2.2) for ft&"' is
given in Appendix A, Eq. (A3). The functions l'i&"
defined by Eq. (2.2) are the same as the Pi+t of Paper I
(except for factors of the number density).

Since the Liouville function $ is by definition the
solution of Liouville's equation for m isolated particles,
the formal solution of the initial value problem may be
wrltteil as

$([m]; t)=$([m] t, 0)=—S t([m])$([m];0), (2.3)

where the phase point [nz], is the particular point
which evolves into [m] during an interval t under the
natural motion of the m particles. The operator
5-,([m]), defined by this equation, has been intro-
duced for notational convenience. It is the time-
dependent substitution operator which projects the
point [I]into its "image" t seconds earlier; that is, as
the time t increases, it generates the prior trajectory
of the point [m].i4

Using Eq. (2.1), P&&"' and hence f at time t are
determined by the initial values of the sequence of
Liouville functions. These initial values should be
thought of as determined for a given sequence, fi(t=0),
fs(t=0), , through Eqs. (2.1) and (2.2) evaluated
at the initial time. As has been shown elsewhere, since
the f„(t=0) satisfy the product condition, so do the
( (t=0) and, a,s a, consequence, the Pt&"' have a cluster
property.

It is significant that the 3th term in the series for f„
involves the initial data and the dynamics of not more
than (e+l) isolated particles. However, probably the
most important feature of this formal solution has
already been discussed in papers I and II; namely,
that each term in the series is asymptotic to a power
of the time so that the later terms in the series grow
faster with time than the earlier terms. "Hence, any
number of terms of the series is a useful approximation
to f„only for short enough times (essentially for times
small compared to the mean time be/ween collisions).
With this fact in mind, it will be helpful to consider as
our goal the discovery of a transformation of Eq. (2.1)
to a form which is valid for /urge times; i.e., we want,

"Thus, in this summation [hj runs over every distinct (per
mutations of a given set are not distinct) subset, proper or not,
of [tj; in particular, if [hg=[P) and [kj=[t"j is one term, fh)=[i ) and [kg=[i )is another. Also note that here and elsewhere
time dependence is suppressed unless needed for emphasis or
clarity. Similarly, variables (sets) of summation are suppressed
whenever there is no ambiguity.

'4Thus, S-,([mg) is equivalent to exp( —itL ) where L is the
m-particle I,iouville operator,

''To see this requires knowledge of the behavior of I.iouville
functions for long times and we will return to this point briefly
in Sec. IV.
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somehow, to use short-time information to deduce long-
time information.

B. An Expression for the Error

The solution given by Eq. (2.1) can be used to ex-
press the error 8„ in terms of the &Pi&"& and eventually
in terms of the Liouville functions.

This is simply achieved by noticing that, according
to Eq. (1.1), if we assume the general form for the
asymptotic functional given by Eq. (1.2), the error
h„ is thereby expressed in terms of f„and fi Then. , if
we evaluate this result by substituting for f„and fi
their expressions in terms of the &Pi'"& and &P&, "&, re-
spectively, and collecting terms involving the same
numbers of integration variables, we obtain (see Ap-
pendix A) an expression for 8„in terms of the &Pi&"& and
&P&,

&'&. Since, however, it is the time dependence of the
Liouville functions rather than that of the Il it"& which
is most easily understood, it is useful to go one step
further and make the dependence of the error on the
Liouville functions fully explicit. To accomplish this
we have only to express &P&&"& and &P&&i& (in the result to
which we have just referred) in terms of the $ using
the definition, Eq. (2.2).

The full transformation of Eq. (1.1) to the form
explicit in the Liouville functions is carried out in
Appendix A we 6nd that

1
h([n] t)=E —, d([i])

E&o It!

[&]+[Ic]=[E)

where the summation has the same meaning as in Eq.
(2.2). The factor S&„'"& is defined by

r'"'([n]; [v])O([n]+[V]' Lr]), (2 ~)
[el+[~]=[&]

where the object S([u]; [v]) is a sum of products of
the $ . It is defined by

II 5(a, [v-])~.-~([io]), (2 6)
[vp]+X~ [v] = [v] n g [u]

where the sum is over all partitions of [v] into (I+1)
parts, [vp] and the [v ], some of which may be empty.

For convenience, we have introduced in Eq. (2.6)
the sum d, ([v]) (for the case o = it —2). This is defined
to be unity for v=0 and for v~&1 it is defined by

where the summation is over all distinct partitions of

[v] into P, nonemPty disjoint parts, [ve]. Thus,
8([it]; [v]) is a sum of products of f whose arguments
are disjoint subsets of [I]+[v]with it of them con-
taining a single member of [I] (i.e., these are "hooked
on" to [e]). Finally, the factor 80 appearing in Eq.
(2.4) is determined by Eq. (2.7) for the case o=p.-

Equation (2.4) together with the Eqs. (2.5), (2.6),
and (2.7) which define X)i' ' and 8, in terms of the &

is the desired expression for 8„ in terms of Liouville
functions.

III. PROPERTIES OF LIOUVILLE FUNCTIONS

Having achieved an expression for the error in terms
of Liouville functions, the significance of their asymp-
totic behavior for the properties of the error is manifest.
It is already clear from the examples in Papers I and II
that if an m-particle Liouville function satisfies the
product condition initially, it eventually becomes de-
termined by Liouville functions of lower order; that is,
$([ni]; t), say, asymptotically approaches a particular
product of Liouville functions of lower order evaluated
at time t and at points which are definite functions of
[ni].

Our purpose here is to state and discuss these asymp-
totic forms, reiterating and generalizing those already
given in Papers I and II and also quoting some addi-
tional ones which will be needed. A new notation is
used which sharpens the results and seems easier to
manipulate. Classical analogs of scattering operators
arise naturally in the discussion and some of their
properties, which are analogous to those of the $, will
also be given.

The detailed nature of the asymptotic form for a
given point depends on certain structural (or topo-
logical) characteristics of its prior trajectory. In order
to have a convenient visualization of such character-
istics we will use diagrams which represent for a given
point, say, [ni], the projection of the prior trajectory
[ni] i onto ordinary configuration space. Of course,
the diagrams do not represent every detail of the tra-
jectory of a point but only what will be called its
"collision history. " The collision history of a point
essentially" consists of the following information about
it: (a) on its entire prior trajectory, which collisions have
occurred and their order and, (b) on the portion of its
trajectory occurring at and before the initial instant,
which correlations have occurred (particles are under-
stood to be correlated if they are within some correla-
tion length of each other). Clearly, then, each diagram
represents many points all having the same collision
history.

As an example of such diagrams consider Fig.
The solid lines represent single-particle trajectories and
circles represent collisions between the particles whose
trajectories are enclosed. Circles at the initial instant

"The additional bit of information which is needed is described
in Sec. IIIB.
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0
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FIG. 1. Typical diagram of a collision history illustrating
correlations and a collision at the initial time.

group is separated from every particle of any other
group by a distance greater than the correlation length.
Thus, when we say that the point [m] is such that at
the initial time, the groups [mq], which partition [m],
are statistically independent, we mean that the phase
points [m&,] ~, which are the image points of the groups
[m&,], t seconds earlier, " are sufficiently separated so
that the product condition is satished; that is, we can
say for such points that

t([m] &., 0)=g P([mg] „0)
—=5,([m]) II $([m„];0) . (3.2)

represent either collisions or correlations between the
enclosed particles and it will not be necessary to ex-
plicitly indicate correlations prior to the initial instant.
The order of collisions is obvious, while the double line
at the bottom represents an in6nite earlier time; i.e.,
the diagram says that no other collisions than the one
between particles 1 and 2 occur for times more than t

seconds earlier. It will be important to realize that, if
one considers the history of the same point, say, ht
seconds later, the only eGect on the diagram is to
change the indicated position of the origin of time to a
position At seconds earlier. "

In addition to diagrams representing collision his-
tories we will also use diagrams which we will call
"schematics" of collision histories. These simply repre-
sent whole classes of collision histories all having the
same general character. For example, Fig. 6 is schema-
tized by Fig. 2 (see also Fig. 5).

A. Statistical and Dynamical Independence

Because of the assumed 6niteness of the correlation
length and the range of force, one is rather naturally
led to introduce concepts of statistical and dynamical
independence. Since these concepts will be used ex-
tensively in the sequel, a brief elaboration will be given.

Several (disjoint) groups of particles are dynamically
independent during an interval of time if there are no
collisions between any particles belonging to different
groups during the interval. Therefore, when we say
that, for the point [m] the groups [mz] are dynamically
independent during some time interval, the immediate
consequence (or even the meaning) is that, for times
within the interval,

Furthermore, saying that statistical independence holds
anywhere in the time interval [0, —oo] for a given
point [m] means that once Eq. (3.2) holds for some
given time it holds for all longer times.

It seems evident that for an arbitrary point and at
any time there is, in general, some partition of the par-
ticles into disjoint groups which is such that these
groups are statistically and dynamically independent
for all of the prior trajectory occurring at and before
the initial instant (that is, for what might be called
the "early" history of the point). Thus, for example,
those points [m], for which, say, the groups [mz] are
statistically and dynamically independent in the time
interval [0, —oo] have histories in this interval which
can be schematized as indicated (for this interval) in
Fig. 2. In this diagram the heavy lines in the early
history denote the groups [mq], and within these
groups the history may have any degree of complexity.
Clearly, the only points whose early history cannot be
so schematized for some choice of sets [mq] are those
for which all m particles are "linked up" prior to the
initial instant.

It will become apparent that the statistical and dy-
namical independence of early histories guarantees the
asymptotic nature of the functionals to be derived.
Also, it determines how the particles are assigned to

5,([m])=g 5,([mg]), (3.1)

where the phase points [mq], appearing as arguments,
are just the projections of [m] onto the respective
m) -particle phase spaces.

Similarly, several groups of particles are statistically
independent at a given time if each particle of any one

'7 This is why one must know correlations during the entire
interval prior to the initial instant.

FIG. 2. Schematic of the history of not-more-than-singly-con-
nected points illustrating disconnected sets fdp7 and singly con-
nected sets fs 7. Supposing other particles to be absent, the
group Lcj has a history which is comp1ete.

' The phase fm), 7 & is the projection of Lnz7 t onto the m), -
particle phase space.
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the argument sets of the LiouviHe functions which occur
as factors in the asymptotic form.

B. Complete Points

It seems appropriate to investigate first the behavior
of Liouville functions for points which have the simplest
of early histories; namely, all points [c)which are such
that, for time t, every particle is statistically and dynami-
cally independent before (and at) the initial instant.
Furthermore, we shall not make any further qualifica-
tions about the point [c), so that the particles may
have any sort of collision structure after the initial in-
stant. Thus, the points [c) we have in mind have
histories which can be schematized for time t by the
case of Fig. 2, which occurs when there are no other
particles present except those in the set [c) (i.e., by the
projection of the history of all the particles onto the
space of the particles, [c]) so that the early history of
the particles [c) is as indicated by the dashed lines.

Such points will be called "complete" for time t.
We hasten to add that this notion does ~ot mean that
no collisions are in progress at time t, but only refers
to the fact that for such points collision events occur
only within the interval and not at or prior to the initial
instant. "It is clear (from the meaning of statistical and
dynamical independence) that if a point is complete for
a time t it remains so for all larger times. Moreover,
because we are assuming finite range, repulsive forces,
it seems evident that (except possibly for a set of zero
measure) all points eventually become complete so that
the vollme of points which are complete increases in;
definitely with the time

If [c) is a point which is complete for time t,
(([c);t) reduces to a product of one-particle Liouville
functions evaluated at certain one-particle phase points
and at time t. In fact, one can establish by a simple
argument that, if [c) is complete for t, then

$([c);t)=S(Lc]) II &i(~ t)
uP [c]

(3 3)

S([c))=limS, ([c)) II S,(n).
a6jcj

(3 4)

To determine the effect of the operator S([c)) on the
phase of some member, say p, of the set [c), consider
the operator the limiting value of which is S([c]).The
instruction for this operator is: For the given point [c),
compute according to the natural motion of all c par-
ticles, the image p ~ of particle p at a time t seconds
earlier, and the compute the phase that P would have
had at time t if it had moved freely from the point P i.
Now, although neither S i([c)) nor II g~.~S~(a) oper-

"To emphasize the uncorrelated character of the early history
of such points, one can think of them as being "chaotic" in an
appropriate special sense.

where S([c)) is a time-independent substitution opera-
tor defined by the statement:

ating separately yields a limiting value for large times
(because the positions which result keep changing),
their product does have a limit because eventually any
point [c) is complete. For, once we have gotten the
image point of some particle at a time earlier than the
time at which it begins its erst collision, for all larger
times the projection forward according to free particle
motion always gives the same point. '

This understanding of the operator S([c)) not only
makes Eq. (3.3) a definite algorithm (considering the
c-body scattering problem as solved), but it also pro-
vides the basis for a simple proof of this equation which
is sketched in Appendix B.

Some features of this first property of the Liouville
functions are noteworthy. Because of the remark made
above that almost all points eventually become com-
plete, one can say that the result Eq. (3.3) holds for
almost all phases [c], if the time is long enough; that
is, if it is greater than some time, say, the time T([c])
indicated in Fig. 2." In this sense, the result holds
asymptotically in time. However, since no time is
larger than T([c)) for all possible phases [c), the
approach of $([c);t) to the form given by Eq. (3.3)
is nonuniform; for any time t there are always points
which are not complete for which this form is not a
good approximation. Still, it is true that Eq. (3.3)
becomes valid in a region which grows with time and
one can say that, because the Liouville functions obey
the product condition initially, they have a "molecular
chaos" property asymptotically in time.

C. Not-More-Than-Singly-Connected Points

Included in all the points which are not complete
for time t, there are some for which the asymptotic
form is still simple in the sense that, like that in Kq.
(3.3), it is still a time-independent functional of Liou-
ville functions of lower order evaluated at time t. These
points will be called "not-more-than-singly-connected"
and can be schematized as in Fig. 2, where the groups
[dp) will be referred to as "disconnected, " while the
groups [s ] will be described as "singly connected. "
The meaning of these concepts, which is suggested by
the "connectivity" of the trajectories as indicated in
Fig. 2, is already essentially correct but a brief elabora-
tion will be given. Then the asymptotic form of a Liou-
ville function evaluated at such a point and some
related results will be presented.

A suitable characterization of the kind of point to be
discussed is as follows: Consider, for a point [m] and
at time t, the partitions of the set [m) into groups [mi),
which are statistically and dynamically independent
before the initial instant. The point [m) will be not-
more-than-singly-connected if there is so+re such parti-

~0 This is illustrated in Fig. 9 where the double-primed points
are time-dependent while the single-primed ones are not.» Because of the way increasing time is indicated by the dia-
grams, this time corresponds to g,n interval as is indicated.
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a a

FiG. 3. Subdiagram illustrating relation of a singly
connected group to the other particles.

tion for which the history following the initial instant
satisfies certain conditions.

The first such condition. is anticipated by the ter-
minology; namely, at most ore p'article from each group
Lmx] collides with members of other groups in the
interval $0,f]. This condition implies that, in general,
some of the Pmx] may be statistically and dynamicaHy
independent subsets of $m] (under the natural motion
of all m particles) during the entire infinite interval

D, —~]. Each such set will be referred to as being
"disconnected. " Each of the remaining subsets will

contain a single "connecting" particle, all of these
taken together composing a set, say, Lc]=—(nt, .

,cr,).
For convenience, these remaining subsets of t m] will

be denoted by {a,Ls ]) where a&Le] and the set Ls ]
is the rest of the group which contains the particle n.

With the imposition of this erst condition the sets
Ls„] are not yet "singly connected. "One can only say
that the first collision of any particular connecting
particle n must occur at some finite time after the initial
instant" particle a moves along a straight-line path
(its "leg") from its last collision with members of the

group (s ] to its first collision with other members of
the group Lc]. There is still the possibility, however,
that, after colliding with other members of Lc], particle
a may become reinvolved with the group Ls ].

The elimination of this possibility is the role of the
second condition which is that once the connecting
particle (if any) of one of the groups Lmx] has begun a
collision with a particle of some other group, this con-

necting particle is dynamically independent of the re-
maining members of its group. Thus, in a group
(n, Ls ]}the particle cr is dynamically independent of

Ls ] after it begins its involvement with other members
of the group Lc]. When this condition is satisfied, the
set Lc] of all connecting particles has a phase point
(projection of Les] onto the space of the set fc]) which

is complete. Furthermore, each of the sets Ls ] are
dynamically independent subsets of Lm] during some
portion of the time following the initial instant; in
fact, the group Ls ] say, becomes dynamically inde-

's Otherwise, (mxj and, say, (mq g would not be dynamicaliy
independent at the initial instant.

pendent of all other particles after its involvement with
particle o. is finished.

When these two conditions are satisfied by a point,
it can certainly be schematized as in Fig. 2. There is a
]bird condition, however, which must be fulfilled if the
property of "being singly connected" is to be useful.
One must also have that the point Lm] be such that.
for the prior trajectory of each (1+s )-particle point
S(Lc])(n,fs ]), the particle u is dynamically inde-
pendent of Ls 7 under (1+s )-particle dynamics in an
interval Lr,f], where the time r is between the initial
instant and the time f T([—c]), when the particle n
begins its first collision with other members of Lc]. The
character of these times is indicated in Fig. 3 which
gives the graphical Ineaning of this condition; namely,
that each subgroup (n, Ls ]) must have such a diagram
where the kinked trajectory of the particle n represents
its actual track under the natural motion of all m par-
ticles. The possibility being ruled out is a case where
there is an "aiming to collide" between some members
of t s ] and the dashed track of particle n."

When all three of these conditions are met, the
groups Ls ]will be called singly connected. One can say
that a group is singly connected if it collides only with
the leg of a single particle and if it does so while the
leg is sfill "free."

If a point {nz] is not-more-than-singly-connected,
one has for $([m]); f) the following form:

&(L~])=~(Lc]) II 8(~,P-]) II 8(Ldp]), (3.5)

where the sets are chosen in accordance with the above
discussion; namely, Lc] is the set of connecting par-
ticles for the singly connected sets Ls ], while the Ld~]
are the disconnected sets. A heuristic proof of the
validity of Eq. (3.5) is presented in Appendix B. It
should be understood that Eq. (3.5) like Eq. (3.3) is an
asymptotic expression in the sense that, if it is valid
for a particular point [nt] at time f, it is valid for Lm]
for all longer times. This, as has been mentioned, is a
consequence of the assumed statistical and dynamical
independence of the groups (ct,Ps 7) before the initial
instant. '4

As might be expected, the scattering operators S„,
have a reduction which is analogous to the asymptotic
form for I-iouville functions, For not-more-than-singly-
connected points and, in fact, for the slightly wider
class of points for which no qualifications are made
about correlations, one has that

S(Lm]) = S(Lc]) II S(~,Ls-]) II S(Lds]), (3.6)
~E[a]

"In the sequel, consider the notion of collision history as
amended to include this kind of information, about the prior
trajectory of Lmg.

"Since the features of Pm), as exhibited in Figs. 2 and 3, which
allow the steps in the derivation of the result, are still present if
the )=0 line is shifted to earlier times.
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where the sets have the same meaning as in Eq. (3.5)."
The generality and flexibility of these two results

should be noted. For example, one may choose to lump

any or all of the [ds] with one or several of the [s ],
and/or to make explicit use of the fact that any of the

[ds] may have a structure like that of the point
([c)+P [s ]), and/or to make explicit some discon-
nected subgroups of [c], and so forth. In any of these
cases, obvious formulas specializing Eqs. (3.5) and
(3.6) may be written at will. In particular, notice that
by recognizing, for a given point, those groups of
particles which are disconnected (e.g. , in Fig. 2 the

group ([c]+P [s )} is itself disconnected), one de-

rives for the Liouville function an analog of the product
condition which is valid for an interval of time rather
than for an instant.

D. General Asymptotic Form
For the points discussed so far, the correlation car-

ried from the initial time is, in fact, just such as to
make no contribution to the error. Furthermore, the
asymptotic forms for them are essentially contained in

papers I and II. %e turn now to the most general kind
of point some of which do indeed contribute to the error.

It is clear that, although we can always find a parti-
tion of [m] into groups [mx), which are statistically
and dynamically independent before the initial instant,
one cannot generally expect that the point is not-more-
than-singly-connected. For an arbitrary point one must
expect to find that every such partition has at least one
subgroup containing at least two members which interact
with some other group during the interval [O,t], and
such points will be called "more-than-singly-con-
nected. " Of course, we can still expect that some of
the groups [mx] will consist of single particles, while

others will have a connecting particle n and its com-

plement [s ], such that [s ] is singly connected, and
still others will be totally disconnected. Thus, an arbi-
trary point [m] for time t has a history which can be
schematized as in Fig. 4, where the sets, [i], [c], and
the [s ] partition [m] into (c+2) disjoint parts and

any or all of the [s ] may be empty. Completely dis-

connected sets are not indicated but are to be considered
as subsumed in the groups [s ]in any convenient way. "
The set [i] is the part of [m] which conta, ins no singly
connected parts like the [s ]; it may, in fact, split
into statistically and dynamically independent sets
before the initi'al instant, but this need not be indicated.
We will refer to [i]as the "incompletemore-than-singly-
connected group" of the point or more briefly, as the
"incomplete group. '" A simple example of a point

» To see this apply the argument of Appendix B to S &(Lm]l
&& O~g[~]S&(n) and then take the limit.

"The extension of the result to be give~ to the case where some
of the (ra1j are entirely disconnected will be obvious.

"Notice that if, for a given point at time t the group Lt] is
empty, the point is not-more-than-singly-connected. Alternatively,
for a given point, when the time becomes so large that the par-
ticles in Pij become statistically and dynamically independent, the
point becomes not-more-than-singly-connected.

FIG. 4. Schematic of the history of more-than-singly-connected
~ ~ ~

~
oints. The projection of such points onto the space of the group
ij+Pc] illustrates a tightly connected point.

which is more-than-singly-connected is diagrammed in
Fig. 9, where the set [i]consists of particles 1 and 2 and
the set [c] consists of particle 3.

By arguments similar to those used to establish the
previous asymptotic forms, it can be shown that, if

[m] is any more-than-singly-connected point (as
schematized in Fig. 4), then one has for $([m]; t) that

&([m); t) =$([i)ILc]) II g(n, [s ); t), (3.7)
ag[c]

where [i] is the incomplete group of the point, [c] is
the complete group, the [s ] are the singly connected
groups, and all these sets form a partition of [m] into
disjoint parts. The operator $([i]

I [c]) is defined by

$', .([]lL ))=&([)- 0)$([')+[)); (3$)
that is, it is the operator in c-particle space which sub-
stitutes $([i]+[c))[c]for the phase point [c], and
multiplies the result by the number $([i] &, 0), which

depends on both the time and the initial correlations
of the set [i].In particular, we will adopt the conven-
tions Ss„——S, and S, , s——&,.

A heuristic proof of the result given by Eq. (3.7) is
indicated in Appendix B; the argument parallels that
used to establish Eq. (3.5) and begins by proving the
result for the case when there are no sets which are
not-more-than-singly-connected. It should be empha-
sized that this expression for $([m); t) is valid for any
point [m], because the sets [i], [c), and the [s ] can
always be chosen as described.

One perhaps anticipates that the generalized scatter-
ing operator $([mi]I[ms]) has properties consistent
with its "mixed" nature (i.e., a function of time as
well as an operator). With respect to the set [m2], its
behavior is similar to that of $([mi]+[m.s]), while,
with respect to the set [mt], it has properties like those
of $([mi]+[ms]; t). In fact, if [m] is a more-than. -

singly-connected point and if [mi] and [m2] partition
[m] into two disjoint groups, then one has that

$([m,] I
[m,))

=$([ir)
I
[i2)+rcr)+[c2)) II $(~,[»-)IL»-])

A E[CI]

x II s([sl ]I
rr [s2.)) II $([dip] I [dsp)), (3.9)

cr Q [c2]
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2lP [s] asymptotic form for points the schematic of which is
as in Fig. 5(b) is

g(123Ls]) = S(12)$(23Ls]) . (3.10a)

According to Fig. 5(a), the same form applies to,
(2rs3Ls]) where 2~s ——S(12)2; that is,

t(2r23Ls]) = S(2~s3)((3Ls]) . (3.11)

Hence, for points having a history as in Fig. 5(a),

t(123] s])= S(12)S(23)t(3Ls]) . (3.10b)

I 2lg

(b)

FIG. 5. Diagram (a} illustrates a history which is a case of
those schematized in (b) and for which a further reduction in
the asymptotic form is possible.

where the subscripts 1 and 2 on the various sets indi-
cate whether the set is contained in Lmr] or Lms] while
the "name" of the set has its previous meaning; for
example, Lir] is the part of the incomplete group of the
point which is contained in Lmr] while ] ig] is the part
in Lms]. Although a proof of this general result will not
be given, a result which is essentially a special case of
Eq. (3.9) is established in Appendix B and the argu-
ment used for this purpose is easily generalized.

E. Additional Reductions

In the preceding discussion various aspects of the
histories of phase points have been characterized by
introducing concepts of completeness and connectivity.
The results which have been established in terms of
these concepts are the asymptotic forms for Liouville
functions embodied in Eqs. (3.3), (3.5), and (3.7) and
the corresponding equations for the scattering operators,
S„, and S, , Indeed, the form given by Eq. (3.7) in-

cludes all the others as special cases. These asymptotic
forms corresponding to schematics of histories are,
however, only the general oases, which apply to a whole
class of histories. For any particular member of such a
class, further reductions, the form of which depends on
the point, are usually possible. Since character of such
reductions should be understood in analyzing the error,
some elaboration will be given.

For example, consider a history which can be dia-
grammed as in Fig. 5(a). This is one of those having a
schematic as in Fig. 5(b). According to Eq. (3.5), the

Clearly, the point, S(12)S(23)(3,] s]) may also have
singly connected parts and then further reductions of
the same kind could be made by repeated application of
Eq. (3.5). It should be noted that the product of the
S which has appeared in Eq. (3.10b) is ordered ac-
cording to the order of the collision events for the point.

The general result suggested by these remarks is
indeed correct. It is that, for a point with a particular
not-more-than-singly-connected history, the asymptotic
form can be written as a "corresponding" rot-more-thae-
singty connec-ted, ordered Product of the operators S,
operating on the appropriate product of $ 's, where
some of the $„are "hooked on" to the operators and
some are entirely disjoint. Here, a not-more-than-
singly-connected product of the S is one in which any
factor has an argument containing no more than
one member in common with the argument of any
predecessor.

Similarly, consideration of examples of particular
histories of more-than-singly-connected points shows
that Eq. (3.7) can also be successively applied to "sub-
diagrams" of a schematic such as the one in Fig. 4;
i.e., each of the sets t s ]may have a schematic of this
kind, and so on. The result suggested is again the cor-
rect one; namely, that any more-than-singly-connected
point with a particular history has an asymptotic form
which is a corresponding not-more-tham-singly-connected,
ordered Product of the S, , operating on an appropriate
product of the ],where again some of them are hooked
on and some are not. A not-more-than-singly-connected
product of the S(gi]]Lc]) is one in which any factor
has an argument, say, fi,]+tc,], containing no more
than one member in common with the complete part,
say, Lc. ], of the argument of any predecessor; that is,
if the arguments of two factors do have a common
member it is contained in the complete part of the
factor which occurs first. '

To summarize this entire discussion of the properties
of the Liouville functions and the scattering operators
naturally associated with them, one can say that, for
initial values which satisfy the product condition, a
Liouville function can be expressed by a product of
Liouville functions of lower order for those groups of
particles which are not more than singly connected,

ss For example, one has $(12 ~3)$(45
~
3) and S(12

~
3)$(34~ 5) but

not, say, $(12)3)$(14~5).
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wherein each factor of the product the single particle
through which the others are connected is taken at a
point determined by the solution of the scattering
problem for all those particles which are more-than-
singly-connected, and where the whole product is
multiplied by a factor determined by the full dynamics
of these particles and the initial correlations among
those which are incomplete. This is the result expressed
by Eq. (3.7). In addition, the generalized scattering
operators S([mi)

~
[m ~]) have a similar reduction deter-

mined by the history of the point ([mi]+[m&]).
Several other results which were given can be con-
sidered as special cases of these two."We terminate our
discussion by remarking that the same expressions which
are valid asymptotically can also be valid for a giver
time t under weaker conditions than those stated;
namely, when only those parts of the given conditions
which are relevant to the structure dlrieg the interval,
[O,t], are satisfied. 'o Then, however, the forms do not
necessarily apply for longer times.

IV. THE TERMS IN THE ASYMPTOTIC FUNCTIONAL

The asymptotic functional f([n]~ fi) has already
been assumed to have the structure of a "power series"
in f&(I). To determine the coefficient operator Tii of
this series a principle suggested by the long-time be-
havior of Liouville functions will be used. The principle
states that there should be no contribution to the error
from certain points. Imposing such a requirement yields
a recursion relation for the v-~'"' which defines them to
be a sum of not-more-than-singly-connected products
of the scattering operators S . With the 7.~'"' so de6ned,
f([e]

~ fi) is completely determined and the question of
the finiteness of the integrals arises. It is shown that the
v&'"' vanish identically for certain points whose con-
tributions could lead to divergence of the integral.

A. Determination of the ~&("&

It was shown in Sec. IB that the error made by sup-
posing f„ to be a time-independent functional of fi can
be expressed [see Eq. (2.4)] as a series of integrals
whose integrands are sums of products of Liouville
functions, some of which are oper'ated upon by, say,
~,&"'. The integrand of the tth term in b„ is parameter-
ized by the phase [n] and is a function of the one-
particle phases of the set [I],which are the variables of
integration. Referring to Eqs. (2.4) and (2.5), we see
that the Liouville functions which appear depend on
these variables in two ways: either directly as argu-
ments or indirectly in that, because of the operation of
one of the substitution operators in, say, ~, '"', for some
of the $ one of the arguments is itself a function of the

"It is noteworthy that the P&(") and the corresponding "Ursell"
operator (see Sec. IVB) have analogous properties which are
implied by these properties of the ( .

For example, for the point diagrammed in Fig. 6 particle 4
may be disconnected during the interval t and one can write the
appropriate case of Eq. (3.6) z~ntzl the time t+ht.

phase of some of the particles in the set, [ii]+[t].
Therefore, any $ which appears has an argument
which is a definite point in m-space and this point is
completely determined as soon as the point ([n]+[I])
is fixed.

We have said in Sec. IIIB that almost every point
becomes complete so that for, fixed [m], &([m); t)
eventually attains the form given by Eq. (3.3). There-
fore, we can say that, for any fixed point in (a+I)-
particle space (since then the arguments of all the $„
are fixed), there is always a time long enough so that
every $ in the integrand of the lth term of the error
can be replaced by the form given in Eq. (3.3). The re-
sulting expression for the integrand for such points,
which will be called "complete in the wider sense, "
is that

[It,]+[k]=[l]

[I~]+[A:]=[t]

D&"& ([e];[k])IO([k])

rx P [n.]+[l]

l vq+[mj =[m]+[lb
[n]( [v]

3'For brevity, the phrase "in the wider sense" will often be
denoted by "(w.s.)."

where D&"'([ii]);[k]) and Io([k]) are defined by the
expressions which result when, in the defining equa-
tions for S&"'([ii);[k]) and 80([k]) [i.e., Eqs. (2.5)
and (2.7)], one simply replaces each factor ( ([m)) by a
factor S([m]) so that, for example, Io is defined in
terms of S in the same way as 80 is defined in terms of
$ . Because of the nature of points which are complete
(w.s.) if Eq. (4.1) is valid for a given (e+I)-particle
point at time t, it remains valid for all longer times. "
More importantly, this form is valid in a region of
(e+I)-particle space which grows with time and eventu-
ally becomes essentially the whole space.

Now, if the asymptotic functional f([m]~ f&) is to
become a better approximation as the time increases,
the error must decrease in time and we may suppose
that it does so term by term. But, because the region
where Eq. (4.1) applies grows in time, unless the inte-
grand of the /th term vanishes for this region, we would
expect a contribution to this term which would either
approach a constant value or diverge with time. We
will therefore choose the 7, '"' so that the integrand of
the /th term vanishes for all points which are complete
in the wider sense. Since for this it is necessary and
sufficient that the difference D&'), which appears as a
factor in each term of Eq. (4.1), vanishes for such
points, this means that we require the ~~'") to be de-
fined by the equation:

~([ )+[I])
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I 2)p 2 3 The points in question are those containing groups
which are essentially of the kind we have called singly

I

divergence of the kind of cluster integral we encounter
is suggested by the following analysis for the modified

rse l functions Pi&"' and the analogous operator Ui&"',

) ~& which is defined in terms of the g
'

the in t e same way as
the Pi'"& are defined in terms of th

Considering first the functions Pi'"i, which are the
integrands of the terms in the series for i

FIG. 6. An example of a not-more-than-sin l -conn-sing y-connected point. y Po o P Pe s I and II th t h
iming o co i e etween particles 2 and 3 were present re iong .". y o vanishing have

' 'fi

which is sim 1 a tr

eatures which were called "growing legs, ' so named

p y a ranscription of the statement that because their length increas d
'

h h

D("' vanishes. "The u

ease wit t e time. In fact, ,

of roducts of the S
s. e quantity P ([u]; $v]) is the sum each growing leg corresPonds to bs o a su group of particles

for in
e S w ic results when one substitutes which is singly connected ine in a certain sense. The rowth

Eq. (2.6).
in the expression for g, (pu] Li]) given b in time of the inte ral h~

n y
' ' '

egra over suc a region is a conse-
quence of fact that the integrand is independent of the

quation v 2iiis a recursion relation for the v&
~ length of these growing legs.

y yields the result that The existence of growing legs and the lack of de-
(") is equal to the sum over all distinct, not-more- pendence on their length is illustrated ty the followin

f „example. Suppose that th

2, with the following conditions: (a) The Pl
P

' (12; 3,t) over those phases of particle 3, such that

includes the set ii and is included in the set Ln]+.B) ' the 3-particle phase point (1 2 3) h h
)

as t e in6nite histor

least all of Le]."
g opera, tor in any product contains at rePresented in Fig. 6 (i.e. ro'i.e., project out particle, 4, from

y

~ ~

this diagram). For the history of the point 1 2 3

ince t e exp icit expressions for r~(") are not n d d y is iagram, it is intended that the

in e seque, a proof of this statement will not be given. (2i~—3) colhsion occurs an wh b

For corn leteness h
~ ~

rs anyw ere efore the 1—2

p ess, however, we include in Appendix C collision and that there are n dd' '

a stateInent of thof the deta»ed form of the coefficient of collide" between particle 3 and
el'e al'e Ilo a ltloilal alilllll s to

each term of the sumesumwhich

defines

~i"' andalso the ex- times of any particle (e.g. , the indicated aimin.

~
' " ar ic e an any extension to earlier

plicit expressions for the first few sums ~~(» up to ~=4 collide between particle 3 and ther ic e an t e extension of particle

exp ici y given m terms of the scatter- 2 does Not occur). In the sense of includin

ing operators S, uO the terms inms in the functional series qualification, particle 3 is singly connected to the others.

for e i are completely determined for any value
~ ue, en umo particle3andfixedim act

us, the question of the detailed form of the Parameter of the (2i2—3 collision

functional series is ani answered. Since the argument just over the location of this coll
i2—,co ision, the integration is

~ is co ision an corresponds to
g' s only heuristic, it remains to be shown that "sliding" particle 3 alon the le .

f„does indeed a ropp oach this particular functional. Now, for fixed time 3 p" '12 3e
' ';,t' vanishes if this

B. Convergence of the Integrals
collision occurs be~ore the ini

'
itial time and does not

vanish if it occurs after."Hence in th f

Before anal zin hy
'

g the error which is now determined variable (r~„—r3), this function is nonvani h'~ ~ ~

by this definition of the ylinder whose length is proportional to th
c ion is nonvanishing in a

certain oints thep ', contributions from which cong cause this cylinder is the "growing le ."F h
a o e time, and

the terms in ~~&I ez~
~ ~

g eg. urt ermore, for the

lil j(LBJ ~
fig~ to diverge, in fact mage no Points being considered, the value of h' f

contribution to the
'

e integrals because the rl(") vanish independent of the location of th ll
vaue o t is unction is

for such oints.

~

' e o e co ision i.e., the

p s. length of the collision cylinder). "Thus thus, e integration

32 Fo o th otat o of Eq (2 5) has been simplified
over t' e slidin var'

by suppressing the distinction between the two sets in ~&(").
y- c ed products of scattering opera-

imi'ar circumstances cause sa th lth t"Not-more-than-sin l -connecte

p»fied contnb a o e time.

ors ave een efined in Sec. IIIE.
S ~, , e erm to ave

"It b kd th t 8 oli bo ' t ti
sions for the probability densities while als

)

serie
y o g rd e s of when it occurs, for the

t d o t th t t l t fo th fi t f t of f th

those given here and which are identical with them for m=2 u ex
to four particles.

m or m = up expression vanish. This means that re
'

f h' ha regions or which article 3
is far from the others contribute sign'fi tl t hi can y o t e integral ~
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one can verify that for any point of the kind schema-
tized by Fig. 2, where the groups Ls ] are singly con-
nected in an appropriate sense, Pii"i has a value which
is independent of the locations of the connecting colli-
sions and which vanishes if any of them occur prior to
the initial instant. Since the integration over such points
can be arranged to involve sliding the location of the
connecting collisions, one has that, in general, groups
which are singly connected in an appropriate sense lead
to growth of the integrals of Pi'"&."

Whereas groups which are singly connected in a cer-
ta, in sense lead to growth of integrals of Pii"&, they lead
to divergence of integrals whose integrands involve
time-independent operators of the cluster type. Such
integrals arise, for example, if one notices that there is
a time so large that one can use Eq. (3.3) to express
every f occurring in, say, the integrand P&&"'. Also, for
very large times, the volume in phase space where this
happens becomes very large. Hence, one might try to
approximate the integral over P&'"i by the integral
over the asymptotic value of the integrand; that is, by

~ g[nj+[i]

where U&("' are the modified Ursell operators already
defined. But, by reasoning parallel to that, used for the
original integrals of Pi&"' one can see that there are
imfiniteIy Iorrg regions in configuration space where the

2(p 2

(a)

i 2(2 2

(b)

Fzc. 7. An example of a more-than-singly-connected point;
particle 4 is singly connected (w.s.) in (b) or if only one of the
aimings in (a) occurs.

36 In particular, the l'th term has a contribution proportional to
t' arising from the case when eaclz of the l particles is singly
connected.

X

(&„lr ]

FiG. 8. An illustration of point which is arbitrary except that
the group rs) is not-more-than-singly-connected (w.s.) to the
others through some leg of the connecting particle X.

integrands U~&"' are nonvanishing and have a value
independent of the variable locating position along the
cylinder. Ke call these regions infinite legs"; they
again correspond to groups which are singly connected
(in the same sense as is relevant to the discussion of
P&'"') and, clearly, they cause divergence of the inte-
grals (so that the attempted approximation fails).

Now, the terms in the functional series given by Eq.
(1.2) with the r&i

"i defined by the Eq. (4.2) are similar
to the above integrals involving the U~&"~. Again, in-
finite legs corresponding to groups which are singly
connect. ed in some wider sense would provide an obvious
source of divergence. Thus, to see that the functional
series has more than purely formal character, we want
to show that this source of divergence is ineffective.

The reason for again qualifying the meaning of singly
connected particles is this: To discuss the behavior of
the Pi'"' or Ui'"', one has to know whether a supposed
singly connected set has aimings to collide with "free-
particle extensions" of the final phases of any particles
other than some one connecting particle. In fact, such
aimings alone (without any actual collisions) can serve
to singly connect one or several particles. "In consider-
ing the integrals in f(fe]~ fi) one must expect that
aimings to collide with free-particle extensions of
"derived points, "which are produced by the operation
of scattering operators, become relevant (simply be-
cause to evaluate v~&"' one must evaluate scattering
operators at such points). For example, for the integra-
tion of the 4-particle term in the asymptotic functional
f(12

~
fi) over the position of particle 4 (with all other

variables fixed), the point with a history as in Fig. 7 (a)
where one or the other (not both) aimings occurs
corresponds to an infinite leg just as does the point
diagrammed in Fig. 7(b). Indeed, for the terms in
f(Lrs]

~ fi), infinite legs correspond to points for which
there are groups which are not-more-than-singly-con-
nected in the wider sense.

A sufficient characterization of such groups is the

37 For example, a discussion similar to that just given applies
for points indicated by the case of Fig. 6 for which the (2—3)
aiming does occur while the (212—3) collision does not. Thus, in
discussing integrals of P~("& or U~("&, particle 3 should be considered
as singly connected.
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following: A group of particles will be said to be not-
more-than-singly-connected in the wider sense if (a) it,

interacts with all other particles being considered at
most through a single leg, zirtlal or real, of a single con-
necting particle, and (b) if this interaction occurs (if
at all) while the leg of the connecting particle is still
"free."This means that the relation of a group which
is singly connected (w.s.) to others can be schematized
as in Fig. 8 where the group [s] has mo other aimings to
collide except the one indicated by the wavy line.

Consider the integration of the lth term in f([m] ~ fr)
over points for which the set [t] contains a group [s]
which (as in Fig. 8) is not-more-than-singly connected
(w.s.). The integration can be arranged to involve
"sliding" the location of the collision of the set [s]with
particle P to arbitrary early times. Thus, the integral
will diverge because of an infinite leg Nnless the coefFi-

cient operator, 7-~ " vanishes for such regions. But, in
fact, we have proved that: If a poimt ([m]+[l])is such
that [l] comtaims a group [s] which is mot more ttta-m-
singly connected -(w.s.) them r'"1 ([m]; [l])vanishesidemti

cally. This result is a special case of a more general one
discussed in the next section and a description of the
proof of it is given in Appendix E. There is nothing in
this statement to preclude that the set [l] constituting
the integration variables, in fact, contains many groups
which are not-more-than-singly-connected (w.s.) (i.e. ,

the region of integration may be the wider sense analog
of Fig. 2), so that we have proved that none of the many
possible in6nite legs cause divergence of the terms in the
asymptotic functional.

%ith this result which is, of course, not sufFicient to
prove convergence of the terms in the asymptotic func-
tional, "we leave the discussion of the character of the
asymptotic form and begin a discussion of the error.

V. ANALYSIS OF THE ERROR

Recalling the discussion leading to the definition of
the coefficient operators ~~(", one can also take the
converse position and say that if the rg&"' are defined

by Eq. (4.2), then the factors X)&'"1 in the error inte-
grand and hence the error integrands themselves vanish
at least for points which are complete in the wider sense.
In fact, it can be shown that this conclusion is also true
for any point which is not-more-than-singly connected
in the wider sense (i.e., which can be diagrammed by
the wider sense analog of Fig. 2). Nevertheless, the
error does not, of course, vanish for all points and, in
particular, it does not vanish for any point for which
there is an incomplete group [i] (as illustrated in Fig.
4). To establish the asymptotic theorem one must
understand the contributions such points make to the
error after very long times.

For the expression of the error derived in Sec. II,
however, the contributions from points having groups
of particles which are singly connected in the wider

'g See Sec. VIB for further remarks.

sense cause the terms to grow with time. The reasoii
for this is that the integrands of the terms are analogous
to the P&&"'; the regions where they are nonvanishing
possess growing legs, each corresponding to a group of
particles which is singly connected in the wider sense.
Moreover, the value of the error integrand is inde-
pendent of the location of the connecting collisions (i.e. ,
of the length of the legs) so that the integration over
sliding variables can be performed yielding a result
which grows with increasing time. These remarks are
illustrated, for example, by the contribution to the
4-particle term of the error 8(12; t), from the point
diagrammed in Fig. 7(b); one finds that the integration
over particle 4 yields a result which is proportional to
the time. "

This growth with time of the terms of the expression
for the error given by Eq. (2.4) does mat mean that the
proposed asymptotic form is incorrect. Rather, it only
implies that, like the original series for f„,this particular
expression for the error is suitable for short times but
not for long times. Or, one can say loosely that in this
form one has expanded too far, representing decreasing
functions of the time by power series in the time, so
that one must somehow partially sum up again.

Formal analogy with the structure and properties of
the asymptotic functional suggests an expression for the
error as a functional series in powers of ft(t); it is the
products of fr(f) in this series which were previously
"expanded. " The coefficient operators which appear
will be determined so that this series is indeed formally
identical to the original one. Moreover, it will be shown
the terms in the new series do not grow in time because
of growing legs of the integrands. Finally, a partial
evaluation of the error which is valid for large times
will be derived.

A. The Error as a Functional of ftf)
The form of the terms in the error expressed as a

power series in ft(t) is suggested by the terms in the
asymptotic functional. There is an obvious corre-
spondence between any of these terms and the sche-
matic of a complete point (none of which has any singly
connected sets hooked on to its legs); namely, for each
such point [c], where, say, [m]C;[c], there is a term
with the integrand r'"'([c])g gi.l fr(n; t). As we have
already remarked, the difference between f and this
series of terms (i.e., the error, 8„) has no contributions

"The integrand to which we refer involves the four cases of
0&"(12; [l]) which occur for the four subsets of {3,4). Because
the (1—2) collision is complete, X)(')(12;0) vanishes. The fact
that particle 4 is singly connected (w.s.) via the leg 3»3 implies,
for example, that $ (12)){14) is equal to $ (12)&(1)& {4) and
$(12)$(23)g(14) is equal to $(12)$(23)P(1)P(4); in fact, it implies
[by using the appropriate case of Eqs. (3.5) or (3.6)) that
S&')(12; 4) vanishes. In corqunction with the appropriate form
of Eq. {3.7) for ({1234)and $(123), it also implies that the inte-
grand has the value [S(12

~
3)—S(123)t(1)g(2)g(e(34)—$(3)f(4))

)the operator multiplying &(3) is S('&(12; 3) and the other term
is S(')(12; 34)j. Clearly, this expression vanishes if the (3»&—4)
collision occurs before the initial time and this yields the growing
leg.



FUNCTIONAL ASSUMPTION IN BOLTZ MANN EQUATION

from points which are complete (w.s.), and in addition,
none from any point which is not-more-than-singly-
connected (w.s.).

Now, let a more-than-singly-connected point which
has no singly connected groups hooked on be called a
"tightly connected point. '" Noticing the similarity of
these points to complete points, consider a representa-
tion of f by a generalized series of terms each of which
corresponds to the schematic of a tightly connected
point; namely, for each such point, ([i]+[c]),where,
say, [n]& [i]+[c],there is a term with the integrand
T&"~([i] [c])II,g&,if&(n; t). It is natural to expect by
formal analogy that the difference between f„and such
a series has no contributions either from points which
are tightly connected (w.s.) or from any general more-
than-singly-connected point (w.s.), which does have
singly connected groups hooked on as in Fig. 4."Since
any point is some more-than-singly-connected point, the
suggestion is, therefore, that the coe%cient operators
r & "&([i] I [c])can be determined so that this generalized
series is a formal identity. Moreover, because the terms
in this generalized series for f„which correspond to
points having no incomplete part [i]should be just the
terms of the asymptotic functional, the suggested
identity for the error can be formalized as

&([n]; t) = 2 — d([t])
l)0 $

'f
C S+C j =C j+Ctj

&& II f (;t), ('1)
cr[gc3

where the terms for i = 1, which are included here for
simplicity, are, in fact, found to be necessary.

Thus far, the analogy with the asymptotic functional
suggests only a form of the terms in the error, but by
pursuing it further, one can also understand the nature
of the generalized coefFicient operators r&"&([i]l[c]).
Notice that if one expresses the factors fi(t) in terms of
I.iouville functions by using the series for fi in terms
of them [Eq. (2.1)], the asymptotic functional is

thereby expressed as a sum over all terms of the form

eel c3

where [c], the [&I ], and the [re] form a partition of,
say, [n]+[I] into disjoint parts such that [n]& [c]
and one or more of the sets [q ]may be empty. 4' Since,
according to Sec. IVA, r&"'([c]) is a sum of all not-
more-than-singly-connected products of the S, this
means that a typical term of the asymptotic functional
is a not-more-than-singly-connected product of
operating on a product of the $, some of which are

' Such points are more-than-singly-connected in the proper
sense of being only more-than-singly-connected.

4' At this point the quali6cation "in the wider sense" is used by
analogy; the precise sense of it is given in Sec, VB.

4' This remark is validated in Appendix A.

hooked on and some of which are not and, moreover,
that it is the sum of all such terms. According to the
discussion in Sec. IIIE, such terms are the possible
asymptotic forms for not-more-than-singly-connected
points. Therefore, we can describe the asymptotic
functional as the sum of alt the possible asymptotic forms
for not mor-e than-sing-ly conn-ected points To. pursue our
analogy further, it seems natural to insist that the co-
efficient operators r& &([i]l [c]) be some linear com-
bination of all not-more-than-singly-connected products
of the generalized scattering operators S([mi]l [mi])
where [mi]& [i]. For, then the proposed generalized
series for f„, consisting of the sum of the asymptotic
functional and the expression for the error given by
Eq. (5.1), can be described as the sum of all possible
asymptotic forms.

8([n]+[t])= &"'([~]
I [~])

Ct43+9 J+C~l = C~j+C&j
C&3C C&3+Cf 1

&«([~];[~]), (5.2).

where for convenience we have put

""'([~])=—r&"'(OI [~]). (5.3)

Thus, expressing. the error as a functional of fi is
equivalent to expressing a Liouville function by a de-
composition into the sum of all its possible asymptotic
forms; namely, by Eq. (5.2).

In order to derive the recursion relation which will
determine the 7.("' such that the decomposition, Eq.
(5.2), is an identity, notice that since Eq. (5.2) is to
hold for any (n+t)-particle point, it must certainly
hold for any particular point we choose. Thus, just as
we determined the ~&(") by requiring that the factors
X)&&"' vanish for points which are complete (w.s.), we

B. Determination of ~&"i ([mi] I [m,])
- To determine @hick linear combination of not-more-

than-singly-connected products of the S, , defines
r&"'([i]I[c]),we will use a method analogous to the
one used to determine the operator coe%cients of the
asymptotic functional.

Since the expression for S„given by Eq. (5.1) is sup-
posed to be an identity, the difference between f„and
the sum of this expression and the asymptotic func-
tional should vanish identically. An expression for this
difference in terms of Liouville functions can be derived
in parallel with the derivation of Eq. (2.4) for the error;
this argument is also indicated in Appendix A. The
result has the structure of Eq. (2.4) and differs only in
that the sum in the factor $~&"& which appears in the
terms of the integrands is replaced by a sum over the
terms r&"&([i&]l[v])8([«];[io]). In order that the
terms of the difference between f„and its representation
as a functional series vanish identically, it is necessary
and sufhcient that these analogs of the factors X)~("'

vanish. Moreover, the vanishing of these factors is
transcribed by the equation
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wiH require that Eq. (5.2) be an identity for points
which are tightly connected (w.s.).

A point which is tightly connected (w.s.) has the
history indicated by the wider sense analog of the case
of Fig. 4 for which there are no particles [s ], so that
the early history of the particles [c] is given by the
dashed lines. The qualification "in the wider sense"
means essentially that the particles [c]have no aimings
to collide. In other words, a group, say, [i]+[c],has
a phase point which is tightly connected irI, the voider
sense if the implied phase and the "derived" phases4'
of every subgroup, say, [m], are themselves tightly
connected in such a way that the complete group for
any one of these points consists of those of its particles
which are in the complete group [c] of all of the par-
ticles. Thus, for such a point, if [m] is any projected
point or one of its associated derived points, one has
according to Eq. (3.7) that

P([m]; t)=S([m,]I[m,]) g g, (n; t), (5.4)

where [mi] is the part of [m] in the incomplete group
[i] of the point while [ms] is the part in the complete
group [c7.

Using the reduction given by Eq. (5.4), it is clear
that for points which are tightly connected (w.s.), the
terms of the decomposition, Eq. (5.2) can be evaluated
and that the result is a relation between 7.&"~ and the
S, , This result, however, does not determine the ~&"&.

To find a recursion relation which does determine them,
it will be sufficient to demand that the v. &"' have the
following property: Supposing that [mi] and [ms]
partition the set [m]+[l], if arty particles of the set [mi]
have free legs (w.s.), then r'"i([mi]I[ms]) vanishes. 44

The notion of "having a free leg (w.s.)" is to be under-
stood in the following sense: A particle of a complete
group which has no singly connected group hooked on
will be said to "have a free leg. "4' Moreover, if a par-
ticle remains a member of the complete group for any
projected point and its associated derived points, then
it has essentially all its legs free and it will be referred
to as "having free legs in the wider sense. '"'

To arrive at the desired recursion relation using this
property notice that for points which are tightly con-
nected (w.s.) every particle of the complete group has
a free leg (w.s.) so that, say, r'"'([mi]

I [ms]) vanishes

4' A "derived" phase of, say, Lmg is one for which one of the
particles is displaced to a point produced by operating with a
not-more-than-singly-connected product of S operators.

44 This property may be considered as being a particular may of
securing that, in evaluating Eq. (5.2) for some more-than-singly-
connected point, terms which are not the appropriate asymptotic
form for the point do not contribute. The appearance of objects
like r&"&(3,

I fv]) in Eq. (5.2) is related to the possibility oi deter-
mining ~&")'s with this property."In Sec. IV, the leg of a particle which belonged to a complete
group was "free" prior to its involvement with other particles;
"having a free leg" means the trajectory is free during the entire
prior time.' For example, in Fig. 9 particle 3 has a free leg (w.s.), while
in Fig. 10 it does not.

2 2ip l
~// 3/ ~ i// 3 I

FIG. 9. A tightly connected point for which the incom-
plete group is {1,2); points generated by various operators are
illustrated.

unless its incomplete part [mi] is entirely contained in
the incomplete group of the point. Thus, in the relation
between 7'"& and 5, , resulting from the application
of Eq. (5.4) many terms simply vanish and one arrives
at the following conclusion: Assuming that ~'"' van-
ishes when any particles of its incomplete part have any
free legs (w.s.), then for points which are tightly con-
nected (w.s.) the validity of the decomposition, Eq.
(5.2), implies the recursion relation

S(Li] I [c7)=& r'"'([~]
I [» I+[vs])

x~([.,7; l,]l[.,7;[,7), (5.5)

where the summation is such that: [u]+[vi]+[wi]
=L'], L"]+I 7=[7, [7(:I ]+L 7+["7 ~ d
where [i] and [c7 partition, say, [n]+[/]. The "gen-
eralized A sum, " /f ([»];[wi]

I
[vs]; [ws]), is the mixed

quantity analogous to the 2 sum appearing in the
defining equation, Eq. (4.2), for the r&&"i; indeed, it is
obtained from /f ([vi]+[vs]; [wr]+[we]) by replacing
each factor S([m]) by S([m,] I

[ms]) where [mi] is the
part of [m] contained in [vi]+[wi]. An explicit ex-
pression for the generalized A sum is given in Appendix
D along with a slightly more explicit statement of the
derivation of Eq. (5.5).

As might be expected by their similarity to Eqs.
(4.2), Eqs. (5.5) have a solution of the desired form;
the generalized v-'"& is a sum of all not-more-than-
singly-connected products of the S, , Notice that for
the case when the incomplete part [i] is empty, Eqs.
(5.5) reduce to Eqs. (4.2).

It might seem that we have only achieved a definition
of the r'"& which makes the decomposition Eq. (5.2)
an identity only for a particular kind of point. In fact,
however, the recursion relations define v ("& which yield
the desired identity for any point ([ii]+[3]).This is a
trivial consequence of the fact that the "last" recursion
relations, namely, Eq. (5.5) for the case when [c] is
empty, define the quantities r&"'([ri]+[l]IO) in just
such a way as to yield the identity regardless of how the
others are defined.

Before continuing it should be verified that the v &"'

defined by Eq. (5.5) have the property assumed in their
derivation; namely, that any of them vanishes if its
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incomplete part contains particles having free legs
(w.s.). A proof of this property can be given which
parallels that of a related property to be discussed
presently. Instead of displaying the formal proof, how-
ever, we will limit ourselves to an illustration of the
property in a particular case."

For this purpose, we consider the point which has a
history given by Fig. 9 and show that r"'(13

I 2)
vanishes because particle 3 has a free leg. The solution
of the recursion relation Eq. (5.5) for ri'&(13I2) in
terms of the S, , is given by

r"'(13
I
2) = S(13

I
2)—S(1

I
23)$(3)

—S(3
I
») ((1)+S(»3)&(1)&(3)

—S(12)[((13)—S(1
I
3)P(3)

—S(3I1)5(1)+S(13)5(1)k(3)], (5 6)

where we have replaced S(0I [m]) and S([nt]IO) by
their equivalents; that is, by S([nt]) and $([nt]), re-
spectively. Now, according to Fig. 9, the points 1 and
3 are uncorrelated at the initial time as are i~~ and 3.
Hence, we have that

S(13
I 2) =5 i(123)5g(1)5&(3)$(1)$(3)

= ((1")((3"), (5 7a)
and that

S(12)((13)=5-i(1+3)5i(1i2)5i(3)k(1i2) k(3)
= &(1 )&(3), (5 7b)

where the various points are indicated in Fig. 9. The
remaining terms can be evaluated by inspection to
yield, term by term, that

r"'(13
I 2) = ((1")&(3")—5(1")k(3') —&(1')((3")

+j(1')$(3')—$(1i2)$(3)+$(1i2)$(3)
+5(1i2)((3) 5( 1&i)5( 3) 0~ (5 g)

since 3' and 3" are the same point.

C. Behavior of Terms in the Error

Having determined the 7 &"' so that the decomposition
Eq. (5.2) is an identity, we have ensured that the ex-
pression for the error in terms of fi, given by Eq. (5.1),
is also at least a formal identity and a definite algorithm.
Whether this expression is useful for understanding the
error for large times depends on the character of its
terms. It will be shown that there are no contributions
to these terms from either growing or infinite legs so
that the only contributions are from points which are
tightly connected (w.s.). An expression for the error
which embodies this result and is valid for large times
is derived.

Since the coeflicient operators r'"& in Eq. (5.1) are
mixed quantities, being pa, rtly functions and partly
operators, there is the possibility that the regions where
they are nonvanishing exhibit both the growing and
infinite legs discussed in Sec. IVB. For any term, the

4' A general proof is described in Appendix E.

growing legs might occur in the [i] subspace and the
infinite legs in the [c]subspace.

For example, suppose that the 2-particle phase
point (1.2) is complete for t and consider the integral
of r &'& (14

I
23)f, (2)fi (3) over those phases of particles 3

and 4 such that (1,2,3,4) has a history which can be
diagrammed by the case of Fig. 6 for which the (2—3)
aiming does not occur. In parallel to the argument in
Sec.IVB concerning integrals over the/i& "&, if r&'& (14

I
23)

vanishes when the (1i2—4) collision occurs before the
initial time, it will have a growing leg unless it also
vanishes when this collision occurs after the initial time.
The (2i2—3) collision leads to an infinite leg (in the
same way as these arose for the U&&"&), unless the inte-
grand vanishes for all locations of this collision. Note
that showing that the integrand vanishes for all loca-
tions of both collisions would establish that these par-
ticular possible growing and infinite legs do not occur.

This example suggests that not-more-than-singly-
connected groups could lead to both growing and in-
finite legs for the integrands of the error. Furthermore,
the discussion of the integrals involving the r~'"' sug-
gests that it is points having groups which are singly
connected ie the wider sense which lead to this behavior.
Since the presence of growing legs wouM cause the error
to increase in time while the presence of infinite legs
would cause the terms to diverge, Eq. (5.1) would be
useless if this actually occurred.

Therefore, one wants to prove a generalization of the
previous result for the ~~&"'; namely, that supposing
that [h] and [h] partition [n]+[l] if the point
([n]+[l])is such that [l] contains a group [s] iohich
i snot more than si-ngly c-onne-cted (w-.s.), then 7 &"&([h][h])
~cfishes. The type of point contemplated here is again
as in Fig. 8 where the point P, ,[r]) is unspecified; for
example, it may be complete in whole or part and there
may be subsets of [r] which are themselves not-more-
than-singly-connected (w.s.). We have found an in-
ductive proof of this property which is described in
Appendix E.

According to this property, v-&"& certainly vanishes if
there is more than one set which is not-more-than-
singly-connected (w.s.); that is, it vanishes for all
points which can be diagrammed by the wider sense
analog of Fig. 4 for which [n]C[i]+[c] Sinc. e such
points are all the points which lead to either growing
legs or infinite legs or both, we have proved that the
terms in the expression for the error given by Eq. (5.1)
neither increase with time nor diverge because of such

togs.
4'

This property of the coefficient operators of the error
together with the one previously given leads to an ex-
pression for the error for long times which makes the
nature of the contributions explicit.

In considering, say, the e-particle error at a point
[n], a time is "long" if it is larger than the time T([n])

The possibility of secular behavior or divergence for other
reasons still remains.
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for which [e] becomes complete. Such a crit.erion is
suggested by the fact that the first term of the asymp-
totic functional is approximated by S([ts]iI gi„l jt(n; f).
Since, in turn, this expression approximates („only for
times larger than the time for the point [n] to become
complete, one can expect the first term of the asymp-
totic functional to approximate f„ in the same way.
This criterion is also suggested by the behavior of the
unintegrated terms (the l=0 case) in the error. "These
terms contribute an essentially fixed error until the
time the point [ti] becomes complete and then they
vanish for this and all longer times. The fact that
v'"'([mt]

I [tis]), where [tit] and [es] partition the set
[n] (i.e. , those in the unintegrated terms), vanishes if

[e] is complete can be established by an inductive
proof "

Consider, then, the e-particle error at a point [n]
which is complete for the time t. In addition to the
vanishing of the unintegrated terms, one also has that
the oddly nonvanishing contributions to the remaining
terms are from points which are tightly connected (w.s.).
This is a direct consequence of the second property of
the 7 " since points which are tightly connected (w.s.)
are just all those which have no groups which are not-
more-than-singly connected (w.s.). This result can be
formalized by the statement that if the point [e] is
complete for time t,

l&a; i)2
C j+L j =L j+L~j

P&j+P3 =L&J+L~j1(Lhj(

r'"'([h]l[&]) II ft(~ t), (59)
n Q[k]

"This remark is equivalent to the one just made.
"In fact, r&"& ([ti&g l Ln&g) vanishes because it is equal to a sum

of differences each of which vanishes,

where the symbol V([i]I[c]) denotes the volume in
l-particle phase space corresponding to all (e+l)-
particle points which are tightly connected (w. s.) and
have the group [i] a,s their incomplete group. The re-
striction of the terms of the integrand to those for
which the incomplete part of the integrand [h] is con-
tained in [i], the incomplete group of the point, is
justified by the first property of the r &"'; if [k] is larger
than [i] it must contain members of [c] all of which
have free legs (w.s.) for points which are tightly con-
nected (w.s.).

Like Eq. (5.1) the expression for the error given by
Eq. (5.9) is formally exact but only under the condition
that, for given [ti], the time is so large that [e] is
complete, or alternatively that, for given t, one only
considers points which are complete. It should be noted
that the validity of this expression depends on the
asymptotic forms of Liouville functions since these are
assumed in deriving the properties of the 7-'"'.

VI. CONCLUDING REMARKS

It has been established that for e&~2, f„can be
exactly expressed as a functional power series in the
one-particle probability density; indeed, according to
Eqs. (1.1), (1.2), and (5.1) one has that

where the coefficient operators v-&"' are defined by the
recursion relation, Eq. (5.5), as a sum of not-more-
than-singly-connected products of the generalized scat-
tering operators S, , The group of terms for which
[h], the incomplete part of the integrands, is empty
constitutes the asymptotic functional f([e]I fi), while
the remaining terms express the error B([ri];f). The
terms of J ([n] I fi) are analogs of the irreducible cluster
integrals of equilibrium theory and their coeKcient
operators are sums of time-independent substitution
operators. The coefficient opery, tors in the error terms
depend explicitly on the time and on the initial correla-
tions [i.e. , on $ ((=0)].

This series is a formal identity since it follows with
no approximation by using the decomposition of a
I.iouville function given by Eq. (5.2) to reexpress the
original series for f given by Eq. (2.1)."Since, as has
been pointed out elsewhere, the Liouville functions $
are analogous to the activity while fi plays the role of
the number density, this transformation may be con-
sidered to be the nonequilibrium analog of the trans-
formation from activity to density. It should be men-
tioned one of us (R.P.) has shown that when fi is
Maxwellian, f([ti]l fi) is, exactly to all orders, the
usual density series for the equilibrium f,„.

It has been established that points having groups
which are not-more-than-singly-connected (w.s.) (i.e. ,
as indicated by Fig. 8) make no contribution to either
the terms of the asymptotic functional or the terms of
the error. This means that the terms of the asymptotic
functional contain no divergence due to infinite legs
awhile the terms of the error neither increase with time
because of growing legs nor diverge because of infinite
legs. Because all more-than-singly-connected points ex-
cept those which are tightly connected (w.s.) have
groups which are not-more-than-singly-connected (w.s.),
this result also implies that the oddly contributions to
the error come from points which are not only incom-
plete but, in particular, are tightly connected (w.s.). This
feature of the error is embodied in Eq. (5.9) which
expresses 8([e];f) for long times; that is, for times
longer than the time for the point [m] to become com-
plete. We remark that the validity of these results
which depend on various properties of the ~&"~ presup-
poses the validity of the reductions of I.iouville func-

"This remark is validated in Appendix A,



I" UNCTIONAL ASSUMPTION IN BOLTZMANN EQUATION 1405

tions and scattering operators and therefore they pre-
suppose the assumptions stated in the Introduction.

It is significant that the only nonvanishing contribu-
tions to the error come from points which are incom-
plete and tightly connected (w.s.). We interpret this
to mean that the asymptotic functional correctly ac-
counts for alt other dynamical events; that is, it not only
accounts for all events which are uncorrelated initially
(i.e., complete points) which are an obvious analog of
Boltzmann's "chaotic" events but it also accounts for
all events where the initial correlations only cause
particles to divide into singly connected groups [i.e. ,
points having groups which are not-more-than-singly-
connected (w.s.)$. Thus, some types of initial correla-
tion are taken into account by the time-dependent
functional.

A. Properties of the Integrals

Having achieved these results it must still be estab-
lished that the integrals in Eq. (6.1) converge at arbi-
trary times and that the error decreases with increasing
time. Clearly, unless both of these features are present
either the series is purely formal or f([e$

~
fi) is not the

asymptotic form or both. Ke intend to discuss these
points in detail in another place where we will give
explicit estimates of the error terms. For the moment,
we confine ourselves to a few remarks.

Preliminary estimates support the view that all the
integrals do converge and that the contributions to
the individual error integrals are proportional to in-
verse powers of the time for large times. It appears that
both kinds of integrals have the same possible source
of divergence and furthermore that the error integrals
decrease with increasing time for the same reason that
they converge. Thus, essentially the same investigation
will establish both features of our results.

For example, we have considered the contribution
to the terms, j'd(3) r"'(0~123)fi(1)fi(2) fi(3)
J'd(3) r "&(13~2)fi(2), due to all points which can be
diagrammed as in Fig. 10 where it is understood that
the (1i2—3) aiming-to-collide occurs at the same time
as or earlier than the (2i~—3) collision. For all the
points for which the (1i2—3) aiming-to-collide occurs
after the initial instant the first of these two integrals
is certainly finite while the second one, a term in the
two-particle error, simply vanishes. Thus, the conver-
gence of both integrals (and, indeed, the whole value
of the second one) is decided by the contributions from
all points for which the (1i2—3) aiming-to-collide
occurs at or earlier than the initial instant. Included
in these are those points for which the (2ig —3) collision
occurs arbitrarily early in time (compared to the initial
instant) and such points might cause divergence of the
integrals. Since the integrands of both integrals have
similar behavior for such points, in this case convergence
is indeed decided by essentially the same investigation
for integrals of both kinds. We have verified that no
divergence occurs for any reasonable behavior of fi in

FiG. 10. A simple example of a tightly connected point; the
incomplete group is (1,3}.Because of the (112—3) aiming to
collide, particle 3 is not singly connected in the wider sense.

momentum space. In addition, we find that for large
times the above error integral is proportional to (t) ';
that is, (t) ' is a factor of the result which remains a
functional of fi(t). The decrease with time of the error
integral and the convergence of both of them are direct
consequences of the manner in which the volume of the
contributing points depends on the time of the (2i~—3)
collision. Qualitatively, for a fixed ratio of the time or'

the (2~~—3) collision to the time of the (1i2—3) aiming-
to-collide, the volume decreases as the (2i2—3) colli-
sion is shifted to earlier times because then more re-
strictive requirements are imposed on the momentum
of particle 3 in order that the (liu —3) aiming-to-collide
continues to occur.

There is no apparent reason to doubt that the fea-
tures of this example are general. In particular, it is
natural to expect that the additional restrictions (e.g. ,

for aimings-to-collide and/or recollisions) on the phase
of a particle (or group of them) which are required to
make a point tightly connected (w.s.) will result in a
decrease with time of the volume corresponding to
such a point.

B. Consequences for the Boltzmann Equation

The expressions for f„wichhhave been derived are
relevant to the question of the existence and form of a
"generalized Boltzmann equation": that is, an equation
for fi in which the time rate of change of fi due to
collisions is approximated to higher orders in the density
by time-independent functionals of fi only. A possible
basis for such a study is provided by using the identity
for fg obtained from Eq. (6.1) to express the integral
term in the exact equation for fi (see Paper I). The re-
sulting identity states that the total time derivative of

fi is expressed as a series of "collision integrals" which
are time-independent functionals of fi plus a sum of
error integrals which depend on initial conditions. The
binary collision integral is (except for gradient terms)
the same as Boltzmann's while the ternary collision
integral is simply

d(2)d(3) Fig. V„,[S(123)—S(12)S(13)

—S(12)S(23)+S(12)Jf (1)f(2)f(3) .
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Presuming the validity of the remarks in Sec. VIA
concerning the decrease with time of the error, it is
reasonable to conjecture that the equation which re-
sults from this identity for fi by dropping all the error
terms is the desired generalized Boltzmann equation
and furthermore that the exact fi(t) approaches some
solution of this approximate equation after long enough
times. In view of the slow decrease with time of the
error terms, however, the exact nature of this approach
and, more generally, the whole relationship of the solu-
tions of the approximate equation to the exact fi(t)
for arbitrary initial conditions may be quite complex.
It is perhaps useful to emphasize that the fi appearing
in Eqs. (6.1) is the exact solution of the infinite hierarchy
and rot the solution of this proposed generalized Boltz-
mann equation.

A second conjecture is on firmer ground; namely,
that the solutions of this generalized Boltzmann would
provide an exact description of a stationary state simply
because for such states all memory of the initial condi-
tions (i.e., the error terms) must have vanished. Fur-
thermore, this should also be true of the error terms in
the expressions for the e-particle probability densities
for zz~& 2. Thus, for a stationary state, f„will be exactly
equal to f ([zz])

I fi) where fi denotes the stationary
solution of the generalized Boltzmann equation. Thus,
the generalized Boltzmann equation is completely ade-
quate for the computation of transport coefficients. "

where the summation is over all partitions of [k] into
(n+l) disjoint parts [k ], some of which may be empty.
Equation (A1) is derived from the direct product ex-
pression by first grouping terms with the same number
of variables of integration and then making use of the
dummy character of these variables.

If one uses this result to express the product of fi's
in the asymptotic functional, again collecting terms
with the same number of integration variables and
using the dummy character of these variables, one
derives that

f([ ]If )= Z — d([G) 2 "-'(L ];[k])
~)p ~1 [~]+&a[kal=[&]

&& II 4 "'(,[k-]), (A2)
~g [n]+[a]

where the summation is over all partitions of [l] into
(zz+k+1) disjoint parts [k] and the [k ], some of
which may be empty.

Using Eq. (A2) for f([zz]I fi) and Eq. (2.1) for f
one has an expression for the error (referred to in the
text) in terms of it i'"i and Pi, "'.

To derive Eq. (2.4) we need to express P&'"' and P&'"&

in terms of Liouville functions, The solution of the de-
fining recursion, Eq. (2.2) is, in fact, given by

0'"'([0];[~])= 2 E([~]+[q])gs([~]), (A3)
[&j+[r]=[L]

APPENDIX A: EXPRESSION FOR E„AND
RELATED RESULTS

1
II fi(~) = 2 — d([k])

ng[nj+[l] k&p $1

x II 4 "'(~,[k-]), (A1)
~a[ha]=[k] uE[n]+[i]

"The procedure would be a suitable generalization of the
Chapman-Enskog one (see, for example, Refs. 1 and 2). A parallel
approach to the transport coeKcients proceeds to their expressions
in terms of autocorrelation functions via master equations. In-
vestigations in this line are exemplified in the work of L. Van Hove
[Physica 23, 441 (1957)], I. Prigogine [Physics 27, 629 (1961)7,
R. Zwanzig [Phys. Rev. 124, 983 (1961)j, and J. Weinstoctc
/Phys. Rev. 132, 454 (1963)j. The detailed relationship between
the two methods has not been given. It has been shown, how-
ever, that they yield the same results to lowest order in the
density [see M. S. Green, J. Chem. Phys. 22, 398 (1954)j.

"These are equations in the text; equations in these Appendices
are numbered separately.

The purpose here is to derive the expression for the
error given by Eq. (2.4) and indicate the parallel argu-
ment for the difference between f„and its functional
series as given by Eq. (6.1)."It is shown that the de-
composition of Liouville functions given by Eq. (5.2)
implies Eq. (6.1). The expression for Pi&"& in terms of
Liouville functions is also given.

To derive Eq. (2.4), first form the product of fi(cr),
for crQ[zz]+[l], by using the formal series, Eq. (2.1),
for the case e= 1. The result is that

where 6p([z]) is defined by Eq. (2.7). This expression
is the obvious analog of the equilibrium statement;
that is, one sums all distinct products of the $, the
arguments of which partition [zz]+[l] into disjoint
parts, one of which contains all of [zz].

Using the result, Eq. (A3), for the case zz= 1 to ex-
press the factors appearing in Eq. (A2), one has after
some rearrangement of summations that

1
f([~]l5)= 2 — d(D])

»pl~ Lf j+I:~j=L7 3+I ~3

LjC I ~j

&& 2 II &(,I q.])
Za [qa]+ [r]= [t'ai] n &[v]

[~1]+[7 2]=[~]

where d, ([r]) is defined by Eq. (2.7). Before proving
these equalities let us derive their implications. Clearly,
if we use the first equality in Eq. (A4) we verify that

where we have dropped the distinction between [zz]
and the rest of the particles in writing v &"'.

Now, it can be shown that

II &s([r.])=g. i(I r])
&a[7'a]=[&] ~&[~1
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the description of the terms in f([e]Ifi) given in Sec. V.A is accurate. Then, using the second equality to
evaluate Eq. (A4) for f([e]

~
fi), one finds after some further rearranging of the order of summations that

f([~]I fi) =2 — d([I)) 2 ~o([k))
L&0 fI [&1+[&1=[&1

[~]+[~]=[~]+[I]
[~]C[~1

II E(,[ -])~ - (L ))) (A6)
[qo]+Z~[q~] =[~] ~g[~1

The expression for f„ in terms of Liouville functions is
trivially obtained by substituting the expression for
tp&'"i givenby Eq. (A3) into Eq. (2.1); the result is that

XII p, !.Therefore, c,„is given by

(A9)

X 2 (([ri]+[A])go([k]) (A7)
[~1+[I1=t~l

It follows immediately from Eqs. (A6) and (A7) that
the error can be expressed as in Eq. (2.4).

As a third result, notice that the steps leading from
the original form of the asymptotic functional to Eq.
(A6) can be repeated without any modification for the
series of terms for f„given by Eq. (6.1); the result,
which corresponds to Eq. (A6), is that this series is
equal to

1
d([l])

l&0 $~ [I ]+IA] =U]

I ~]+[~]+[~]= [~]+[&]
[~]C[~]+[~)

X 0,([v]; [w]), (A8)

where we have used the definition of 0, ([v]; [w]) given
by Eq. (2.6). This result justifies our remarks in the
text about the analogs of the factors $~&"'.

Finally, since substituting the decompositions of
$([e]+[8])given by Eq. (5.2) into Eq. (A7) yields
that f is equal to the expression (A8) and since this
latter expression was just shown to be equal to the
functional series for f„,we have proved the equivalence
of the decomposition of Liouville functions and the
iunctional series.

Returning to the proof of the equalities (A5) consider
the terms of the left-hand side of the first equality. By
definition of 80, these terms arise by partitioning each
set [r ] into, say, p nonempty parts [r,) Thus, th. e
arguments of the $ in each term form a partition of [r]
into, say, p eoriempty parts [~,), so that this first sum
may be re-expressed as the sum over all such partitions
with a coefficient, say, c,„.To compute the coefficient,
note that for a fixed set of p 's, there are p!/II p !
terms in the original sum which are identical to a term
with a given partition of [r] into p parts [co;].Further-
more, each of these terms has a coefficient (—I)v "

and this sum is easily evaluated by using a generating
function. In fact, we find that c„„is indeed equal to the
coefficient appearing in the definition of 8„ i([r]).

That the second equality also holds follows if 6,
obeys the recursion relation:

~.—([r])= 2 ~.—([k])5([k]) (A1o)
[&1+[&1=[&1

For, using Eq. (A10) to eliminate 8„2([ri]),one finds,
after some rearrangement of summation, that the
right-hand side of the second equality of Eqs. (AS) can
be expressed by

&.-i([k]) E 5([»])~o([k~])
[&1+[Icl= [&1 [A:Il+ [&21=[Icl

This expression is, however, equal to d„ i([r]) because
the sum which appears as a factor vanishes unless [k~]
is empty. To see this, note that the arguments of the

of each term in the sum form a partition of [k) into,
say, p nonempty parts. But, a given such term arises
in exactly one way with coefficient (—1)"p!from the
terms where [ki] is empty and in p ways with coeffi-
cient (—1)" '(p —1)!from terms where [ki] is one of
the given sets. Hence, the coe%cient of any such term
is (—1)"p!+p(—1)v (p —1)!, which vanishes identi-
cally. '4 Hence, the second equality is established if
Eq. (A10) is valid.

To establish this recursion relation note that again
each term of the right-hand side is a product of the $,
the arguments of which partition [r] into, say, p non-

empty sets, and that these are the terms in 8„2([r]).
Furthermore, a given such term arises in exactly one
way with coefficient (—1)"(v —1+p)!/(v —1)!and in p
ways with the coefficient (—1)v '(v —1+p —1)!/(v—1) !.
The total coefficient is, therefore, (—1)v(v —1+p)!/
(v —1)!+p(—1)v—'(v —2+p)!/(v —1)!which is just the
coefficient appearing in g„~([r]).

APPENDIX 8:PROPERTIES OF LIOUVILLE FUNCTIONS
AND SCATTERING OPERATORS

Because of the assumed finiteness of the range of
force and the correlation length, strong heuristic proofs

"This result also established Eq. (A3).



1408 M. S. GREEN AND R. A. P I CCI RELL I

of the reductions of Liouville functions and scattering
operators can be given.

To understand the asymptotic form of, say, $([m]; t),
for a complete point [m], notice that when one ex-
presses this function in terms of its initial value ac-
cording to Eq. (2.3), the product condition allows the
factorization of the initial value into one-particle func-
tions. These can then be transformed to time t by using
the inverse of Eq. (2.3) with the result that

k([m];t)=5-([m]) II 5(n) II $i(n;t) (B1)
O'6[mJ cx g[m, ]

Since the point [m7 is assumed to be complete so that
the particles are dynamically independent prior to the
initial instant, this expression is equivalent to that
given in Eq. (3.3) where the operator has been replaced
by its limiting value.

An argument for the validity of Eq. (3.5) for not-
more-than-singly-connected points proceeds in similar
fashion. By assumption the groups {n,[s ]) and [de]
are statistically and dynamically independent at the
initial instant so that one can again express the func-
tion in terms of its initial value and apply the product
condition in the obvious way. When each of the factors
(([mi); 0) which appears is transformed back to time
t by use of 5,([mi,]), one sees that to establish Eq.
(3.5) one must show that the operator

5 i([c]+P [s ]++ [de]) II Si(n, [s ])II 5, ([de])
a P nQ[cj P

is equivalent to 5([c]).Since the groups [de] are sta-
tistically and dynamically independent for the entire
interval, application of Eq. (3.1) yields that the opera, tor
is equivalent to

5,([c]+2[s-]) II 5, (n, [s.]).

The final step follows by observing that, because of the
third condition which is necessary in order that a point
be not-more-than-singly-connected (see text), the image
point of the particles, n and [s ], t, seconds earlier is
the same whether it is computed according to the
(1+s )-particle history of the point (n, [s ]), or as the
projection onto the space of {n,[s ]) of the (c+gs )-
particle history of the point ([c]+P[s,]); that is, in
operating on members of the group {n,[s ]), S([c])
X5,(n, [s ]) is equivalent to 5 &([c]+P[s ]).

The derivation of the reduction for a tightly con-
nected point leads in a natural way to the definition of
the generalized scattering operator; having accom-
plished this, the argument just given for including the
hooked on sets [s ] can be used to derive the general
result Eq. (3.7). For a tightly connected point, say,
[i]+[c],the complete group of which is [c7, one can
again apply the product condition in the obvious way

with the result that

P([i)+[c];t) =P([i] „0)5 i([i]+[c])
x II 5,( ) II ~ (;t), (B2)

where the point [i], is defined to be equivalent to
5 &([i]+[c))[i].But, since for a tightly connected
point every member of [c]has a free leg, when operat-
ing on members of [c], the time-dependent operator
for the second factor in Eq. (82) is equivalent to
S([i]+[c])as deflned by Eq. (3.4). Thus, for tightly
connected points one arrives at the case of Eq. (3.7)
for which the sets [s ] are empty.

Because it is needed to prove the properties of the
and because it illustrates the argument which

proves the general result Eq. (3.9), we want to derive
the reduction of $([mi]1[ma] for the point the history
of which is diagrammed in Fig. 8. Since [mi] and [m~]
partition [r]+X+[s], [m,], say, contains [r,], the
part of it in [r], and [s,], the part of it in [s].Assuming
first that the particle X is a member of [mi], and
applying the product condition to f([ri+X+si), , 0),
one has that

5([mi]1[m2]) = [5 i ([r)+&+[s])& ([ri];o)]
X[5,([r]+)i+[s])$(X,[si];0)]

X5([)+~+[)) (B3)

The group [s7, however, plays no role in determining
[ri] i, so that this point can be computed using
5 &([r]+X). Furthermore, because [s] is singly con-
nected, when operating on the group, {li, [si]),5,([r]+l~+[s]) is equivalent to $([r]+l~)5,P, ,[s]),
and also $([r]+X+[s]) is equivalent to $([r]+l~)
XS(l~[s]). Using these three results to re-express Eq.
(B3), one finds directly that

S([mi]1[m2]) = $([ri)1[r~]+X)5(X,[si]1[s~]). (B4a)

In the other case when particle l~ is in the group [m~],
one finds in a similar way that

$(I:mi] I Lm2]) = $(Lri)
1
[r~)+~)$([si) I ~,[»)) (B4b)

APPENDIX C: COEFFICIENT OPERATORS OF f(!nj!foal

Here we give the coefficient of the terms in the solu-
tion of Eq (4.2) wh. ich deflnes r&t"i. Explicit expres-
sions for the first few of the v-~(2~ are also given.

In general, any term in 7-&") can be divided into a
number of disjoint parts which are singly connected
within themselves. Suppose a term has 0- such parts
and a total of, say, p, S operators. Also, let the total
number of particles which appear expire ci tly be (m+li')'
and, finally, let the total number of particles appearing
in that singly connected part which contains the first
S operator be (n+lo). The coeflicient of this term is
(rt+lo —1) (rt+l —2)!(—1)" /(rt+li —0)!.

Denoting the operator $([m]) simply by the symbol
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([m]), the first few of the 7~t'-' in terms of the g are
given by"

v ot2'(12) = (12), (C1)

The group [q, ] is the part of [q ] contained in Cw, ]
and similarly for Cr,s]. The product, of $i's runs over
the group [c]because

r it2& (12;3)= (123)—(12)(13)—(12)(23)+ (12), (C2) [vg]+
n g feI]+[~2]

[q~.]+P [r2p] = [v,]+[tv2] = [c].

rg"'(12; 34)
= (1234)—(12)(234)—(12)(134)+ (12) (13)(14)

+ (12) (13)(34)+ (12) (14)(13)+(12)(14) (34)
+ (12) (23) (14)+(12) (23) (24)+ (12) (23) (34)
+ (12) (24) (13)+(12) (24) (23)+ (12) (24) (34)
—2 (12){13)—2 (12) (14)—2 (12) (23)—2 (12) (24)
—(12) (34)—(123)(14)—(123) (24) —(123)(34)
—(124) (13)—(124) (23)—(124) (34)+2 (123)

+2 (124)+2(12) . (C3)

v'"'(Cu)
I Cvi)+Cv2)) II

ct' P [&1]+[&21

6(,[q-]) II 5(C~ ]),

where the [q ] and [rtt] together form a partition of
[wi]+[w2]. For a point which is tightly connected
(w.s.), however, the argument points of every Liou-
ville function of such a term reduces according to Eq.
(5.4) so that it is equivalent to

~'"'(Cu)
I [»1+[»]) II g(~, [qi-) I [q~-))

Q[&1]

II 3([qi-)1~,[q2.)) II ~([~is)/C~2tt)) II b(~ l).

"We note again that operators with indices in common do not
commute.

APPENDIX D' RECURSION RELATION FOR e{")

We will establish that for a tightly connected point.
([i)+Cc]), the decomposition, Eq. (5.2), reduces to
the recursion relation, Eq. (5.5), if one assumes that
v {"'vanishes when any particles in its incomplete part
have any free legs (w.s.). The result of assuming this
property of the ~t"& and using the reduction, Eq. (5.4),
for the point, (Ci]+Cc)), itself is expressed by stating
that

&(Ci)l C~)) II & ( ; l)
ng[c]

=2 ""'([u]
l
Cvi)+Cv~))

&&0([vi]+[v~]; [wi)+[up]), (D1)

where the summation is such that: [u]+[vi]+[Mi]
= [i], [v2]+ [w2] = [c], [u]C[u]+[vi]+ [v27, and
where in the nonvanishing terms of Eq. (5.2) we have
split [v] into disjoint parts, [v,], [vi] being the part in

[i] and similarly for Cw]. Note that since Cu]t Cu]
+[vi]+[v2], the groups [~v;] partition some subset.
of [l]. Recalling the definition of 8([v]; [iv]), the
general term in this sum has the form

Since this reduction is valid for every term of Eq.
(D1), Eq. (5.5) follows with the A sum defined by

A (Cv 1; C~ 1!C"1;Cu ])
(vi+ vg —2+p)!=2(—1)" II g(~, Lq -) I Cq2-))

(v,+v, —2)!

&& II g([qi-) I
~,[q2-)) II &([~is) I [~2s)) (D2)

The sum here is over all disjoint sets for which [w,] is
partitioned into (vi+v2) sets, Cq, ], some of which may
be empty, and p nonempty sets, [r,p]. In summing on
the Cr, s], permutations are not counted as distinct
terms so that the sum over sets with a given index

j is the same as in A ([vi]+[v~];[w,].
APPENDIX E: PROPERTIES OF THE e{")

%e have found inductive proofs of the properties of
the r ' stated in Secs. IV and V. Actually, we prove
equivalent statements; namely, that

(a) If the point (),[r]) is arbitrary except that
particle X has a free leg (w.s.), then vt"&(X[ri]l [r~])
vanishes for any sets [r,]which partition Cr];

(b) If the point (Ii,[r],[s]), where Cu)t {X,[r]), is
arbitrary except that the group [s] is not-more-than-
singly-connected (w.s.) to [r] through particle X, then
r"t'( Cr ]iyh i+Cs )il[rg)+h2+[S2]) vallishes for aliy

sets $r,]which partition [r], any sets Cs,]which parti-
tion Cs], and for either the case for which Xi——0 and
X2 ——X or the opposite one. {SeeFig. 8.) It is our inten-
tion to publish the details of the proofs of these state-
ments in another place" but the following description
may be helpful.

Consider proving the second property. It is easy to
verify that it holds for the case of 7 t"'(Ol [N)+l) for
which there is only one particle / in the group of addi-
tional particles [l]. Moreover, the recursion relat. ion,
Eq. (5.5), for S([ci] Cc2]) can be written as an ex-
pression for r'"'(Cc&]l [c&]) by using the fact that
A(0;Ol0; v2)—= 1. In this equation one notices that the
index pairs (u, v), which denote the "size" of the set
pairs ([u] l [v]), which appear as the arguments of the
7„,„'"',are all such that e&~u+v&ci+cu with u~& ci and
either uWc& or v/c2 (but not both); one can say that
the index pairs which appear are all "less than" the
pair (ci,c2). These remarks suggest that one can make
a proof by proving that: If the property holds for all
the r„,„t"' for which (u, v) is less than (ci,c2), then it

"That is, in the J. Res. Natl. Bur. Std.
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holds for r.„,("&. Recalling that the property is vacuous
if there are no additional particles El] (so that then one
can de6ne the property to hold), it is easy to verify
explicitly that this implication does yield an induction.

To prove this implication for the case where [c,]
= $r,]+X,+$s,], first evaluate the expression for
r&"i([r,]+}~,+[st]I[re]+As+[»7) [from Eq. (5.5)7
assuming the first property (to be proven independently)
and the hypothesis of the implication; the result is that

&'"' (C&i]+}i+E»] I [&s]+}is+[»])
= &(Eri]+}i+[~i] I [rs]+}s+L»7)

—2 r'"'([~']I [~ '7+L~ "7+Et 7)
x 4([e,'7+[»"7; E« '7+L«i"7

+[xi]IL»]; [«s I+L»7), (E&)

where the summation is such that: [e'7+[vi'7+E«i'7
=[~i], Eei"7+[«i"]=}i, [es]+[«s]=[r.]+}s, E~]
{ [n']+ [vi']+ [vi"7+[es]. The fact that no r'"i
x ([I]

I
[t]) appears such that xi{ [u] is a consequence

of the first property P.i should be treated as having a
free leg (w.s.)], while the nonoccurrence of cases where
members of [s] are in Eu] or Ee] is a consequence of
the second. "Further evaluation of the right-hand side
of this equation is made by using the fact that the
group Es] is not-more-than-singly-connected (w.s.) so
that the result. for S([net]

I [nzs]) given in Appendix 8
applies to the 6rst term and also to every factor of the
3 sum of every other term; we have -shown that this
implies (this is the nontrivial step) that, for every term
in Eq. (E1),

r'"'(CN']I [&i'7+[»"]+I»7)~([»'7+E»"7 [«i'7+E«i"]+[~i]IE»7 [«s]+[»7)
=""'(El']IE '7+[ "7+[~7)~([ '7;E ']l[ ]+E "7;L. 7+L "7)&(} L ]I} E 7) (E2)

If these results are used to evaluate the terms of Eq.
(E&) one finds that, indeed, rt~([r ]i+A +i[s ]il[r27
+As+ [s&]) vanishes. To prove Eq. (E2) one first
verifies that any term of the left-hand side does reduce
to one of those appearing on the right-hand side; then,
a combinatorial argument (similar to the ones in
Appendix A) establishes the coeKcient.

The erst property is proved by essentially the same
argument. By direct verification it holds for v'"& (X I Er])
where (X,[r]}=[is]and the same implication would
establish it for r&"&(}~+Err]l[r&]).Assuming the hy-

pothesis of the implication yields an expression for
7 &"' (X+[xi] I

(rs]) which is, in fact, the case of Eq. (E1)
for which Xt is particle X and the sets [s;7 are empty.
Furthermore, because particle X is a free leg (w.s.),
S(X[ri]l[rs]) and all the factors 8, , in this result
have reductions and this implies the validity of the
analog of Eq. (E2). The desired result then follows by
algebra.

"In Eq. (E1}we have assumed that particle ) is not a member
of LNj {then Lw~"] could not be equal to X&}. If PcLn], take
Pw~"] to be empty to obtain the correct expression.


