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In order to investigate the validity of the Brueckner and the simple sum of the ladder diagrams approxi-
mations to the energy of an inlnite system of fermions, we have calculated as a function of density all the
terms in the perturbation expansion through the fourth order in the strength of the potential. We have
done this for a repulsive, square-well, two-body potential spin-~ fermions. We are able to construct rigorous
upper and lower bounds from the coeKcients for the value of the ladder approximation and 6nd that the
standard solution procedures give reasonably accurate results (within a few percent). We Qnd that the
error in the solution as obtained in practice to the equations of the Brueckner approximation is large com-
pared to the size of its departure from the ladder approximation. We further Gnd for low-to-moderate
densities and for low-to-moderate potential strengths that the Brueckner approximation both as a sum of a
certain class of diagrams and as computed in practice lies above the ladder approximation while the com-
plete perturbation theory lies below it. This result arises from the neglect of the ring diagrams by the
Brueckner approximation.

I. INTRODUCTION

'HE Brueckner theory contains two classes of
approximations. The first class of approximations

are numerical in character, introduced to make calcula-
tions feasible. The Pauli exclusion principle is not
treated exactly; neither is the dependence of the E
matrices on the total momentum treated exactly;
approximations are introduced to make a partial-wave
expansion of the E-matrix equations possible. OR-

energy shell propagation is not treated exactly either;
an approximation is introduced to simplify this formid-
able aspect of the Brueckner theory. The other class of
approximations is the neglect of diagrams in every
order (beyond the second) of many-body perturbation
theory.

Actual calculations of Brueckner theory reveal
unexpected results: For example, Brueckner and
Gammel found that the self-consistency problem has no
solution for liquid He' for densities larger than a certain
critical density. ' Is this result a consequence of the
theory or the numerical approximations' Our results
suggest that it is a consequence of the treatment of
oR-energy shell propagation.

Our purpose is to investigate these approximations
for a simple, realistic problem, namely, a system of
identical spin--', particles (liquid He', for example)
interacting via a square-well potential, an extreme
limit of which is a repulsive hard core.

A method which has influenced our thinking is the
Fade approximant method. ' This method oRers a way
of summing perturbation series which is diRererit from
Brueck~er's E-matrix method. The Pade method does

*Work performed under the auspices of the U. S. Atomic
Energy Commission.' K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1040
(1958), Sec. D.' G. A. Baker, Jr. and J. L. Gammel, J. Math. Anal. Appl. 2,
21 (1961). G. A. Baker, Jr. , J. L. Gammel, and J. G. Wills, J.
Math. Anal. Appl. 2, 405 (1961).H. S. Wall, Continued FructiorIs
(D. Van Nostrand, Inc. , Princeton, New Jersey), Chap. XX.

not require a partial-wave expansion or approximate
treatment of the oR-energy shell eRects, and all dia-
grams in any given order can be included. Thus, we
hope to learn something about the eRects of approxima-
t.ions used in the Brueckner calculations, and to answer
questions such as that raised by the Brueckner-Gammel
calculations in liquid He'.

Deeper questions of the convergence of the perturba-
tion series have been dealt with in a paper by one of
the present authors' (G.B.). We show in this paper
that the sum of the ladder diagrams is bounded from
above by the (rt, rt+1j Pade approximants and from
below by the )m, n j Pade approximants.

An outline of our program is: First, a calculation of
all terms in perturbation theory through fourth order,
without approximation. These results are of interest
independently of the rest of our work; they show that
the most important diagrams, other than the ladder
diagrams, at low density are not the self-energy dia-
graIns but the ring diagrams, 4 the same diagrams which
are most important at high density. '

Second, a calculation of the sum of the ladder dia-
grams and the sum of the Brueckner diagrams for
various potential depths, using all the approximations
ordinarily used in calculating Brueckner theory. Since
we calculate the results for many potential depths, the
series expansions through any order may be found by
standard numerical techniques. By other techniques we
separate the contributions of various diagrams in each
order. Thus, we may compare the calculations of the
first part of our program and the calculations of the

' G. A. Baker, Jr. , Phys. Rev. 131, 1869 (1963).
4 It can be shown that this result is independent of the shape of

the potential. In private conversation, K. A. Brueckner has
suggested that this result may not hold near equilibrium densities
for realistic potentials with long-range attractions and short-range
repulsions. We do not, however, have any direct evidence on
this point although Bethe's estimate PH. A. Bethe, Phys. Rev.
103, 1353 (1956)j suggests it may be so for nuclear matter. See
also the discussion of N. M. Hugenholtz (Ref. 5, p. 542).' N. M. Hugenholtz, Physica 23, 533 (1952), Table on p. 542.
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second part of our program to find how the approxima-
tions ordinarily used in calculating Brueckner theory
affect the contribution of any particular diagram.

Thirdly, using the rigorous bounds established for the
sum of the ladder diagrams, and the exact calculations
done in the first part of our program, we are able to
assess the numerical consequences of the approximations
ordinarily used in calculating Brueckner theory in so
far as they affect the sum of the ladder diagrams. We
also attempt to assess these numerical consequences iri

so far as they afI'ect the sum of the Brueckner diagrams,
although our results are not completely rigorous because
the Pade method does not give bounds in this case.
Finally, we assess the numerical importance of diagrams
omitted by Brueckner by including contributions of
all diagrams in forming the Pade approxirnants but our
results are subject to the criticism just mentioned;
namely, that the Pade approximants do not give bounds
for the complete series, although it likely gives a very
good estimate of the value.

Our conclusions are as follows. The numerical
approximations made in evaluating the Brueckner
theory are of no particular consequence, except for the
treatment of oB-energy shell propagation. The eBects of
this approximation are such that the opposite sign is
obtained for the correction to the fourth order (the
first order in which this approxima, tion appears) ladder
diagram for low (kpc(1) density. This error severely
aGects the numerical content of the Brueckner theory.
As mentioned before, we believe this error to be the
origin of the difficulty encountered by Brueckner and
Gammel.

We find that the sum of the complete series lies on
the opposite side of the sum of the ladder diagrams from
the Brueckner theory for low-to-moderate densities
and low-to-moderate potential strengths.

II. THE LOW ORDER TERMS IN THE MANY-
FERMION PERTURBATION SERIES

We shall now describe the calculation of all the terms
through fourth order in the interaction potential in the
Goldstone expansion of the ground-state energy per
particle of a system of many spin--', fermions. We first
write out the integral for each Hugenholtzv diagram and
then perform these integrals by a Monte Carlo proce-
dure on the IBM 7030. The potential taken is that
for a square well of width c and depth V. The momen-

3/(2'm4)
m)(i, )n)(i

dmdn[v(0) —-', ~i(~ m —n
~ )], (2.3)

where m and n are the momenta scaled by kp, the
momentum at the top of the Fermi sea. This integral

may be done analytically in terms of the sine integral
Si(x): The result is

(kFc)' 72
2——[x' Si(x)—4—3x'+ (4+x') cosx

+4x sinx], (2.4)

where x is 24~A

The contribution A; comes solely from Fig. 1(b).
(We denote holes by lines running left to right and
filled-state lines vice versa. ) It is

—3/[2'n-' (kpc)']

v(q) [v(q) —
2 v(i n —m —il i)]

dmdndq
q'+q (m —n)

(2.3)

where the integration is carried over all values allowed

by the Pauli exclusion principle; that is, all hole-line
rnomenta are in the Fermi sea and all filled state-line
momenta are outside the Fermi sea. We select the
independent momenta in the Fermi sea according to
the prescription that, say, ns'=r&, where r& is a random
number which is distributed uniformly on the interval

turn transform is proportional to

m(q) = (4m./q') (sinqki c—qkFc cosqkFc), (2.1)

where q, measured in units of the Fermi momentum, is
the momentum transfer in the interaction. We will

obtain terms in the expansion

DE7lf' c'/(N'A')=A (VMc'/k')+A (VMc'/Ii')'

+A 3 (VM c'/5')'+ . (2.2)

The contribution Ai comes solely from Fig. 1(a).
It is

(o)

FIG. 1. First, and
second-order pertur-
bation theory dia-
grams,

(b)

' J. Goldstone, Proc. Roy. Soc. (I.ondon) A239, 267 (1957).' N. M. Hugenholtz, Physica 23, 481 (1957). Fia. 2. Third-order perturbation theory diagrams.
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I A. I IA. 2

n-q,

I.5 I.6
FIG. 3. Class I, Fourth-order perturbation theory diagrams.

I A. 5
1'xG. 4. Class IA, Fourth-order perturbation theory diagrams.

(0,1). For momenta which can be infinite, we select a
filled-state momentum, say ~m+q~=r2 ', where r2
is again a random number which is uniformly distrib-
uted on the interval (0,1). The parameter 8 is selected
so that the integrand goes to a constant as r2 goes to
zero. For the second-order calculation, for example,
E= 3. In other diagrams we will get terms like v(q —qi),

where both q and q~ go to inanity. The proper power
counting procedure here, as we have previously pointed
out, is to treat this term at infinity like 1/(qq, ).

The contribution to A3 comes from the four separate
diagrams shown in Fig. 2. For a further explanation for
the "Gag" notation [Fig. 2(d)], see Ref. 3. The various
contributions are:

Fig. 2(a):

Fig. 2(b):

Fig. 2(c):

83=3/[2"~io(k pc)4]

H3= 3/[2"bio(k~c)']

dmdndqdq»(V) v(l q —qil)Lv(qi) —2v(lm —n+qiI)]

[q'+q (m —n)][q'+q (m —n)]

dmdndqdq, v(q) v(q, )[v(~ q —q, ~) —-', v(~ q+q, +m —n~)]

[q'+q (m —n)][q' —qi'+(q —qi) ~ (m —n)]

(2.6)

(2.7)

dmdndqdqil v(V) —2v(lm+q —qil))
R3=3/[2'vr'0(k'c)4]

[q'+q (m —n)]

[v(~) —lv(In —qil)][v(V) —lv(ln —m —ql)) —8v(ln —m —ql) v(Im+q —q I)v(ln —q I)
X (2.8)

[q'+q (m —qi)]
Fig. 2(d):

dmdndqdq»(q) [v(q) ——,'v(~ n —m —q~))F3= —3/[(2~)" (k pc)'] [v(l q+m+qiI) —v(Im+q I)]
[q'+q (m —n)]'

There are 46 diagrams which contribute to fourth order. Of these 46 there are only 28 distinct, nonzero ones. To
facilitate the cataloging of them, we will break them down into classes. Those diagrams of class I are shown in
Fig. 3. The contributions are all of the form

—3/[2i4m-i3(kpc)']
dmdndqdq, dq2v(q) v(x2)v(x, ) [v(x4) g'v(x,)]-

[q'+q (m —n)]D,D,
(2.10)

The values of x, and D; are listed in Table I. It is to be noted that I.5 is identical to I.2. For simplicity we may
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TABLE I. Arguments of the potentials and denominators.

DiagraDI

I.1
I.2
I.3+4
I.6
IA.1

IA.2
IA.3

vV 2

Iq
I
ql- «l I

I »—ql I

[n —m —q[
In —m —q[
[n —m —q I

g3

I ql

I
ql- ql I

I ql —ql I

I q, —m
f

[nl —m, —q f

n —m1

gg

g2

g1

g1

[n-ml-q
I

n2 —m

[n —m —q, f

In —m —ql I

fn —m —q, f

Ill m ql[

In —q —ql I

In, -m-q[
[n, —m, yqf

«P+ q, ~ (m —n)
qP+q (m —n)

ql +ql' (ill —ll)
q' —qP+ (q —ql) ~ (m —n)

q'+q (ql —n)
2q'+q (m+m1 —n —n1)
~'+-q (m —m, )

D3

qll+qz (m —n)
ql' —ql'+(ql —ql) (m —n)
q' —ql'+(q —ql) (m —n)
q' —q2+ (q—ql) ~ (m —n)

g'+q (ql —n)
q'+q (m —n)
v'+q (n2 —mI)

combine I.3 and I.4 The diagrams in class IA are illustrated in Fig 4 and all have contributions of the form

d [ (q) —l (*)]I (q) ——: (')][ (q) ——; (.)][ (q) —-'..(,)]+—;,.(*,).(.,).(.,).(.-)
3/[2»»(k„, c)&] (2.11)

[q'+q (m —n)]D,D,

where d~ is the volume elelnent and the x, and D; are given in Table I. The diagrams in class II are illustrated io
Fig. 5 and all have contributions of the form

( )L ( ) —l (.. )][ (* ) —-.'- ( ")][(*)- l (*)]—l (* ) (* ) (* ) (* )—3/[2 "lr"(kpc) ']
[q-'+ q (m —n)]DlDl

(2.12)

except, where indicated in the figure by a minus sign, there is the opposite sign. The x,. and D; are given in Table II.
The contribution of II.2 is identical with that of II.1, II.3 with II.4, II.7 with II.12, and II.S with II.11. The
diagrams in class II A are illustrated in Fig. 6 and all have contributions of the form

dgT—3/[2 "lr"(kpc) "']
[q'+q (m —n)]D&D&

(2 13)

where

T= (*)'[ (*)'+ (*) ( )]+ (") ('.) (.) -l{ (")I (")'+ (*.) (")]l ( )+ (")]
+v (x )[v (x ) + v (x )v (x )][8(xl) +v (xl)]j+4 {v (xl) v (xl) [v (x2)+v (xl) ][V(x4)+v (x4)]+T$) ) (2.14)

except for the noted sign changes. The x; and D, are given in Table II. The contribution of IIA.2 is identical with
that of IIA.4. F. or T~ we have

Tl v(xz)v(x4)v(x——l)v(x4) for IIA. 1—4

T,= v(x, )v (x4)v (xl)' for IIA.5—6. (2.15)

m+q,

II.2
—II.7

II. IO

Q

II.6 -3X. I I

Fro. 5. Class II, Fourth-order perturbation theory diagrams.
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TmLE II. Arguments of the potentials and denominators.
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Diagram

II.1
II.4
II.5
II.6
II.7
II.9
II.].0
II.11

IIA. 1

IIA.2
IIA.3
IIA.5
IIA.6

Diagram

q

q

qI

q

q

q1

q

q

q

I e—ql

I «i —«I

vY 2

lq —el
qx

q1

I e—«I
I«+el
lq —el
Iq —«I
I e—«I

In —m —ql
In —m —ql
In —m —ql
Im, —m —ql
ln —»—«+e I

g3

n —m —q —q, l

n —m —
q&l

n —m —q, l

Ing —m —«z I

In-m- e-ql
In —m+q, —ql
lng-m-ql
In —m —q —q~ I

qI

q1

qI

In —m —ql
ln —m —ql

X4

q1

lq —el
Iq —« I

q

q1

q]

q

qI

ln —my —«—«y I

In —mg —q —
qy I

n —ml

q

q

D3

II.1
II.4
II.5
II.6
II.7
II.9
II.10
II.11

IIA. 1

IIA.2

IIA.3
IIA.5
IIA.6

n —m2

In —m2 —
q& I

In& —m —
q& I

In —m —ql
lmg —m —ql
In —m2I

In —m —ql
n —m1

In —m —q —el
In —m —q q~ I

In —m —q+q, I

n —m2

ln2 —m —«y I

Im, -m —el
Im, —m —ql
In-n, —ql
In, —n+ql

Im2 —m+q, I

In, —n+qgl
lm —m, +«, I

In —m& —«~ I

In —m, —ql

ql

qI

qp+qg (m —n)
q' —qp+ (q —qa) ' (m —n)
qp+q, (m —n)
q'+g (n1 —n)
q'+q (m —n+q, )+qp+q, (m, —n)
q'+q (m —n)+q& (mm —n)
q'+q (m —n) —ql (m —n&)

qp+«(m —m&)

qp+ «y' (my —n)
q'+q (m —n+q, )
q'+q (m —n)+q, (mg —n)
q'+q (m —n —q,)+q, (n —m)
q'+q (m —n —q~)+q~ (n —m)

qp+«&' (m —m2)

q'+q (m —m~ —q,)yq~ (m2 —m)

qP+q, (m —n, —q)+q&+q (n, —n)
qp+«i' (m —ni —q)+q'+ q' (ni —n)
«y' (my —m —q)
q' —qp+ (q+ q, ) ~ (m —n)

q (qy —n+n, )
q'+q (m —n) —

q& (mg —n)

q2+«' («g+m —n)+ql +«1' (ml n)
q'+q (q~+m —n}+qp+q~ (m~ —n)
QI' (m1 —n+ Q)

q'+q (m —m& —q1)+gI (m2 —m}

(q —q1)'+(g —qI) (ng n)

The diagrams of class III are illustrated in Fig. 7. Diagrams 3, 4, 5, 6, 11, and 12 vanish because they have (by
momentum conservation) a hole and a filled state line with the same momentum. We have combined 7 and 8,
and 9 and 10 for convenience. All the contributions have the form

—3/L2 "n.i3 (0pc) ']
«~(v)Li(v) —-'-~(ln —m —ql) j~(»)I:~(»)—2~(»)j

Lq'+ q. (m —n)]'Dg
(2.16)

where the x, and D, are given in Table III. The opposite sign is used where noted in Fig. 7. The contributions from
diagrams of class IV, the bubble diagrams, are listed below. The diagrams are shown in Fig. 8. The contribution o
IV.2 i~ identical to IV.3, that of IV.4 to IV.5 and that of IV.6 to IV.7.

IV.1=—3/[2'4 i3(&pc)') d v(q)l &(q) ——,'&(ln —m —ql) jC~(lm+q+miI)+&(In —q+mil) —&(Im+mil)

I:n(lm+q+m2I?+~(ln —q+m2l —n(lm+m2l) —~(ln+m2I) 3—e(l n+m, l)] (2.17)
Lg'+q (m —n) J'

TABLE III. Arguments of the potentials and denominators.

Diagram

III.1
III.2
III.7+8
III.9+10

qI

In —n~ I

ql

lm+q —m, l

In( —m —q —qi I

In —m,
l

I
m —mi —qx I

I» —m —«I

q'+q (m —n)+qp+q, (q+m —n, )
q'+q (m —n)+I' —n (ms+nz)+ns m&

qP+qI (m1 —m)
(m+q)'+m& n& —(m+q}. (m&+n&)
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[v(l m+q+mrl) —v(l m+mrl)]
IV.2=+3/[(2s)" (kpc)'] d~v(q)v(l q —q, l)[v(q, )——,'v(l qr+m —nl)] (2.18)

[q'+q (m —n)]'[qP+q, (m —n) I

IV.4=+3/[2"s-"(4c)'] c7v{[v(q)——,'v(l n —m —
q I)][v(g)—-', v( n —q,

I )]

&&[v(v) —lt (lm+q —q I)]—lv(ln —m —«l)v(ln —q l)v(lm+q —q I))

[v(lm+q+m I)+v(ln —q+m I)—v(1m+m I)—v(ln+m I)]
X- (2.19)

[q'+q (m —n)]'-[q'-+q. (m —qr)]

IV.6=+3/[(2v)" (krc)'] d~v(q)v(l q —q&l)[v(q&) ——,'v(lm —n+q&l)]

[v(lm+ q+mr I )—v(lm+mt
I )]

X (2.20)
[V'+q (m —n)]'[V' —qt'+(q —qt) (m —n)]

I&+q n-q-q,

II A. I

We have now written out all the integrals which
contribute to the many-body perturbation theory for a
square-well force through fourth order. We shall now
tabulate (Table IV) our best values for each of them,
along with their standard deviation, for a selection of
densities. As the number of Monte Carlo repetitions
used varied from 2X10' to 2.8X10', we have used the
central limit theorem to (i) show that the result
obtained is normally distributed about the true answer
and (ii) to estimate its standard deviation from the true
result.

The diagrams which are included in the 8rueckner

approximations through fourth order, are 81, 82, 83,
F3, I.1, III.1, III.7+8, IV.1, IV.2, and IV.3.

III. THE NATURE OF THE LADDER
APPROXIMATION SERIES

One of the authors, (G.B.) has previously' shown
that the ladder approximation, i.e., the sum of the
ladder diagrams, 81, 82, 83, I.1, -, is an asymptotic
series whose terms increase asymptotically like m~ We
shall show, however, that there is a unique function
which is analytic in the cut plane (—co,0) and asymp-
totically equal to the perturbation expansion about the
origin. (This function is, of course, the one obtained
from the solution of the Bethe-Goldstone equation. ')
We will show that the Pade approximant method' which
has been successfully applied to other physical prob-
lems" must converge here. In fact it can be used to
obtain rigorous upper and lower bounds to the correct
answer. I et v be the two-body potential operator and
1/b, =P/(Hs —E,), where Hs is the two-body kinetic
energy operator, E,. the unperturbed energy of the
relevant two-body state and I' a projection operator
which is zero for states in the Fermi. sea and one other-
wise. The energy shift is then in ladder approximation

—IIA.4

1 1
DE=+ (P;I Xv v vt '+—v —v 9, ——

b,;

1 1 1——u——A'+ ) ~
P;), (3.1)

b, b, b;

where the sum on i is over the Fermi sea and ) is
regarded as an expansion parameter. Equation (3.1)

-QA, 5
FIG. 6. Class IIA, Fourth-order perturbation theory diagrams.

SK. A. Brueckner, The 3IIarIy-Body Problem, edited by C.
deWitt (John Wiley 8r Sons, Inc. , New York, 1959),pp. 65 ei st.

'H. A. Bethe and J. Goldstone, Proc. Roy. Soc. (London)
A238, 551 (1957).

'0 G. A. Baker, Jr. , Phys. Rev. 124, 768 (1961),129, 99 (1963);
J.L. Gammel and W. Marshall, Harwell Report, TPA-5 (1963).C.
Bomb and C. Isenberg, Proc. Phys. Soc. (London) 79, 659 (1962);
J. S. R. Chisholm, J. Math. Phys. (to be published). J. W. Essam
and M. E. Fisher, J. Chem. Phys. 38, 802 (1963).



GROUND —STATE ENF RGY OF MANY —FERM ION SYSTEM 1379

m~q where p, =gvP;. Now the operator V; is Hermitian as

1/b, is Hermitian, and in coordinate representation m is
greater than or equal to zero so that Qv is real and
non-negative. If we now expand q; in a complete
orthonormal set of wave functions ~,I, which are eigen-
functions of V; with real eigenvalues V;~, Eq. (3.2)
becomes

AF.=Q LQ {X—V;.gX'+ V,p9, '—V,k9.4+ )

x
I
~;~I'] (3.3)

Since
I
u;I,

I

'&0 and by the normalization of the original

fll ) fl lp
n&,

UL. 2

VZ'. 4

-ID.7

LK, 5 1%.6

n~
—I3Z. 9

TV'. 7
FIG. 8. Class IV, Fourth-order perturbation theory diagrams.

wave function, the expected value of v is 6nite

(3.4)

IIl. l l III. I P.

FIG. 7. Class III, Fourth-order perturbation theory diagrams.

may be rewritten as

and if we denote by (—1)"c~ the term from the coeffi-
cient of the (&+1)st power of X, then there exists a
bounded, nondecreasing function &p(u), such that

u&dp(u) . (3.5)

The function y will take on infinitely many values if
and only if there are infinitely many eigenvalues
involved. According to Theorem 86.1 of Wall" Eq. (3.5)

"H. S. Wall, Analytic Theory of Continued Fractions (D. Van
Nostrand Company, New York, 1948), Chap. XVII.
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TABLE IV. Monte Carlo calculations.

Diagram

B1b

ac =0.25
Value Deviation

5.567499X10 '

kyc =0.50
Value Deviation

4.551588X10 '

kpc =0.75
Value Deviation

1.589397X10 '
B2b

B3b
H3
R3
F3b
Z3
ZB3

I 1b

I.2
I.3+4
I.5.
I.6
I-A.1
I-A.2
I-A.3
II.1
II.2
II.3
II.4~
II.5
II.6
II.7
II.S
II.9
II.10
II.11
II.12'
II-A.1
II-A.2
II-A.3
II-A.4'
II-A.5
II-A.6
III.ib
III.2
III.7+8b
III.9+10
IV.1b

IV.2b

IV.3b
IV.4
IV.S
IV.6
IV.7
Z4
ZB4

Diagram

—1.960X10 '

7.003X10 '
1.75 X10 '

6.939X10 5

7.007X 10-5

—2.506—6.30
Xio '
X10 s

X10 '
Xio '
Xfo "
X10 s

X10 '
Xfo '
X10 '
Xfo '
X10 '
X 10-9
X10 '
X10 '
Xfo '
X10 '
X 10 '
X10 "
Xfo '
Xfo '
Xfo '
X 10 '
Xfo '0

X10 '
Xfo '
Xfo '
xio-
Xfp '
X10 z

X10 '
X fo—12

X10 s

X10 '
Xfp '0

X f0 '0

X 10—11

X10 "
X10 '
X10 '

—6.22—6.30—9.93—1.01—4.65
9 39
3.07
3.07
2.45
2.45
9.00
2.28—2.77—4.66
1.45
5.04—4.66—2.77—9.12

+4.94—6.88
4.94
4.74
4.41—3.01—4.59
3.66
6.86—6.2—1.35—1.35
1.83
1.83
3.90
3.90—2.438—2.509

—8.60 X10 '
3.95 X10 s

Value

1.2xfo '

5.7xfo '
1.6X fo '
6.8X10 '
2 3X fp-io
5.7X10 '
5.7Xf0-z

1.9X10 '
6.1X10 "
6.0X10 "
6 1X10 '0

1.8X10 "
2.9X10 "
1.8X10 "
1.5X10 "
3.1X10 '
3-1X10 '
4.3X10 "
4.3X10 "
4.5X10 '0

1.5X10 '
2.3Xip-»
1./X10 "
3.3X10 "

X1P
1.7xfo '0

2.3X10 "
4.6X10 "
1.2Xio "

PX
1.2X fp-io
4.7X10 "
6.3X10-"
2.fxfo '
5.9X10 "
1.6X10 '
2.OX10 "
1.0X10 "
4.9X10 '"
4.9X10 "
9.8X 10-»
9.8X 10-»
32X10»
3.2Xip-»
1.9X fo z

1.9X10 '

kpc = 1.0

—1.346xf0 '

4.146X10 4

4.45 X10 '
—2.14 X10 '

2.10 Xfp '
4.00 X10-'
4.167X10 4

—1.288X10 4

—1.36 X10 '
—1.41 X10 '
—1.36 X10 '
—5.58 X10 '
—5.36 X10 '
—2.40 X10 '
—4.94 X10 '

6.71 X f0-s
6.71 Xio '
1.38 X10 '
1.38 X10 '
2.72 X10 '
4.22 X10 '

—1.46 X10 '
—1.96 Xfo '

8.06 Xfo s

2.92 X10 s

—1.96 Xfp '
-1.46 X10-z
—2.80 Xfo '

2.84 Xip '
—4.26 Xip s

2.84 Xip '
2.22 X fo '
2.11 Xfo '

—6.13 Xfo '
—2.54 X10 '

8.28 X10 '
3.67 X10 '

—3.46 X10 '
—6.79 X10 '
—6.79 Xip-z

3.60 Xfo '
3.60 Xfo s

7.70 X10 '
7.70 X fo '

—1.149X10 4

—1.280X10 4

Deviation

2.4X10 '

1.7X10 '
4.3X10 s

1.6X10 '
5.0X10-
1.7X 10-6
1.7X1o-'

4.4X 10-z
5.0X 10-s
4.5X 10-s
5.0X10 '
9.5Xfo 'o

1.6Xfo '
8.4X 10-9
7.2X10-9
1.OX1O-z
1.0X10 '
2.1X10 '
2.1X10 '
f.oxfp '
9.5X10 '
1.2X10 '
3./Xfo '
1.5X10 '
7.2Xfo '0

3.7X10 '
1.2X10 '
3.7X10 '
6.6X10 '
6.2X10 '
6.6X 10-9
2.1X10 9

2.9X10 '
9.7xfp '
3.0X1P '
1.2X10 '
9.3X10 '
3.3X10 '0

4.5X10-
4.5X10 '
1.2X10 '
1.2X10 '
3.6Xfp "
3.6X 1P—&0

5.5X1O-z
4.8X10 '

Value

—3.827X10 '

9.742X10 4

2.57 X10 '
—1.175xfo '

1.89 X10 '
9.013X10 '
9.931xip 4

—2.571X10 4

—6.82 Xio '
—7.10 X10-6
—6.82 X10 '
—5.16 X10 '
—4.68 Xio '
—2.00 X10 '
—4.24 X10 '

3.15 X10-5
3.15 X10 '
1.26 Xfo '
1.26 X10 '
1.39 Xfo '
1.86 X10 '

—1.20 Xfo '
—1.34 X1.0 '

7.34 X10 z

2.80 Xfo '
—1.34 X10 '
—1,20 X10 '
—1.68 X10 '

2,73 X10 '
—4.57 Xip-z

2.73 X10 '
164 Xfo '
1.65 Xfo '

—3.01 X10-
—2.31 X10 '

4.21 X10 '
3.15 Xio '

—9.75 Xio '
—4.62 Xfo '
—4.62 X10 '

6.15 X10 '
6.15 X10 '
1.40 Xfo '
1.40 Xfo '-1.989X10-4

—2.544X10 4

kpc = 1.5

4.6X10 '

3.1xiO-6
2.0X10 '
6.4X10 '
2.5X10 '
3.2X10 6

3.1X10 '

1.1X10 6

1.5X1O-z
9.4X10 s

1.5X10 '
8.6X fo
1.4X10 '
6.ox 10-s
5.8X10 s

2.2X10 '
2.2Xfo '
1.7X10 s

1.7xfo '
1.9X10 z

2.9X10—z

1.0X 10-s
X fo s

1.3X10 s

7.0X10-9
1.8Xfo s

1.0X10 s

1.7X10 '
6.3X10-s
6.7X10 '
6 3X10—s

1.9Xfo s

2.5X10 '
2.8X1O-z
2.7Xip '
3.0X 10-z
6.5X10 '
3.8X10 '
14X10 z

1.4X10-z
f.oX10 s

1.0X10 '
3.9X10 '
3.9X10 '
1.4X10 6

1,2X10 6

Deviation

B1b

2b

B3b
H3
R3
F3b
Z3
ZB3

I.1b

I.2
I.3+4
I.5"
I.6
I-A.i
I-A.2
I-A.3
II.1
II.2"
II.3
II.4R

II,5
II.6
II.7

3.936174X10 '
—7.495X10 '

1,538X10 '
7.87 xfo-~

—3.30 X10 4

8.08 X10 '"

1.368X10 '
1,619X10 '

—3.347X10 4

—1.75 X10 "
—1.85 X10 '
—1.75 X10 '
—2.19 X10 '
—1.89 X10 '
—7,82 Xio '
—1.67 X10 '

7.40 X10 '
7.40 X10 '
5.23 Xfo '
5.23 Xfo '
3.42 X10 5

4.18 X10 5

—4.23 X10 '

1.9X10 "'

5.0X10 '
5.6X10 '
1.7Xfo s

8.3X10 '
5.3X10 '
5.1X10 '
2.1X f0 6

3.4X10 '
3.4X10 '
3.4X10 z

3.7X1O-s
5.4X10 '
2.2X10 z

2.4X10 '
4.8X10 '
4.8X10 '
7.0X10 '
7.0Xio-s
3.9X10 '
5.4X10 z

2.9X10 s

—3.01—3.93—4.51—3.93—1.16—1.01—4.56—8.50
1.20
1.20
2.39
2.39
4.76
5.85—1.06

Xip-'
X10 '"

Xip-
Xio '
X10-5
Xio 4

Xip-'
Xip '
Xio-'
Xio-4
Xio-5
Xip-~
X10 '
Xio '
X10-'

1.475170x 10 '

—1.715X10 '
2 190X10 '
2.81 X10 4

—7.98 X10 4

5.05 Xip-
2.178X10 '
2.695X 10-&

4.8X10 '
1.1X10 '
2.2X10 '
7.7X10-6
4.6X10 '
1.4X10 ~

1.2X10 '
4.7X fp-s
6.6Xfo z

6.8X10 z

6.6Xfo '
2.3X1P—z

1.0X10-6
S.SX10 '
8.4Xip-z
1.2X10 6

1.2X10 '
3.3X10 '
3.3X10 '
9.5Xip-z
1.4X10 '
2.1X10 '



GROUN D —STATE ENERGY OF MAN Y —FERM ION SYSTEM 138i

Diagram

II.8
II,9
II.10
II.11
II.12
II-A. i
II-A.2
II-A.3
II-A.4
II-A.5
II-A.6
III.ib
III.2
III.7+8b
III.9+10
IV. ib
IV.2b

IV.3 b

IV.4
IV.S~
IV.6
IV.78
z4
ZB4

Diagram

Value

—4.oo xio-6
3.02 X10 '
1.22 X10 6

—4.00 X10 s

—4.23 X10 '
—5.21 X10 '

1.24 X10 '
—2.35 X1O-6

1.24 Xio '
5.62 X10 '
6,31 X10 '

—8.32 X10 '
—9.81 X10 '

1.155X10 4

1.24 X10 5

—9.08 X10 '
—1.65 X10 '
—1.65 X10 '

3.74 xio '
3,74 X10 '
9.42 X10 '
9.42 Xio '

—2.19 X10 4

—3.368X10 4

Value

TABLE IV (continled)

kpc = 1.0
Deviation

6.6X10 '
5.5X1O-
3.2X10 '
6.6X10 s

2.9X10 s

5.4X10 '
2.9X10 '
3.6X10 '
2.9X10 z

9.1X10 s

1.2X10 '
5.3X10 '
1.3X10 z

6.'?xio '
1.6X10 '
2.2X10 s

3.7X10 '
3.7X10 '
4. 7X10—s

4.7X10 '
2.4X10 "
2.4X10 '
2.9X10 '
2,4X10 '

kpc =2.0
Deviation

Value

—6.23 X10—e

1.33 X10 '
6.38 X10 '

—6.32 X10 '
—1.06 X10 '
—2.17X10 4

8.41X10 '"

—2.03X10 '
8.41X10 '
3.12X10 5

4.01X10 '
—2.78xio 4

—5.69X10 '
3.68X10 '
6.53X10-&

—1.55X10 '
—6.42X10 "'

—6.42X10 '
2.47X10 '
2.4?X10 '
9.36X10 '
9,36xio '

—2.64xio 4

—3,55X10 4

Value

kj-c=1.5

kl c=3.0

Deviation

3.9X10 z

2.7X10 '
1.7x10 '
3.9X10 '
2.1X10 '
9.8X10 '
1.7X10 '
2.8X10 '
1.7X10 6

5.7X10 '
'7.8X10 '
1.8X10 '
8.0X10 z

2.9X10 6

6.4X10 z

1.7X10 '
8.9X10 '
8.9X10 '
3-4X10 '
3.4X10-z
1.9X10 z

1.9X10 '
S.2Xio-s
6.1X10 '

Deviation

81

83b
H3
R3
F3b
Z3
z83
I.ib
I.2
I.3+4
I.5.
I.6
I-A. i
I-A.2
I-A.3
II.1
II.2~

II.3
II.4.
II.5
II.6
II.7
II.8
II.9
II.10
II.11~
II.12
II-A. 1
II-A.2
II-A.3
II-A.4$
II-A.5
II-A.6
III.ib
III.2
III.7+8b
III.9+10
IV.1b

IV.2b

IV 3ab

IV.4
IV.5
IV.6
IV.7
z4
Z84

3,901006X10 '
—2.868X10 '

2.44 X10 '
4.99 X10 4

—2.61 X10 4

1.51 X10-s
4.19 X10 s

3.95 X10 '
—2.25 X10 4

—4.13 X10 '
—4.69 X10 5

—4.13 X10 '
—2.39 X10 5

—2.80 X10 4

—1.77 X10 4

—2.32 X10 4

1.9S X1O-5
1.98 X10 '
2.86 Xio 5

2.86 X10 '
—3.51 X10-s
—1.67 X10 '
+i.o5 xio-5
+1.92 X10 '

1.29 X10 '
8.46 Xio '

+1.92 X10 '
+1.05 X10 '
—5.28 X10 4

2.86 X10 '
—787 X10'

2,S6 X1O-4
1.39 X10 4

1.54 X10 4

—5.75 X10 4

—1.71 x10 4

7.36 X10 '
1.S0 X1O-'

—8.43 X10 '
—1.32 X10 4

—1.32 X10 4

1.21 X10 '
1.21 X10 '
3 ~ 12 X10 '
3.12 X10 '

—7.75 X10 4

—4.12 X10 4

5.9X10-

2.0X10 '"

5 ~ 7X10 '
1.3X10 '
1.5X10-s
2.9X10 '
2.5X io '
9.4X10 '
1.4X10 '
1.3X10-&
1.4X10-6
'7.0X10 '
5,2X10 '
2.6X10 '
3.2X10 '
3.9X10 '
3.9X10 '
1.4X10 '
1.4X10 '
2.7X10 6

4.0xio-6
1.1X10 '
1.8X10-6
1.1X10 '
7.4X10 '
1.8 X io-'
1.1X10 '
3.6X10 '
8.8X10 '
1.5X10 '
8,8X10 '
2.1X10 '
2.0X10 '
5.7x10 '
3.7X10 '
1.0X10 '
2.4X10 '
8.8X10 '
2.6X10 6

2.6X10 '
1.8X 10-'
1.8X10 '
8.4X1.0 '
S.4XiO-z
2.8X10 "'

1.6X10 '

1.574696X 100

—5.367x io-'
2.73 X10 '
8.21 X10 4

+4.'75 X10 '
4.45 X10 '
1.275X10 '
7.1S X10-s

—1.09 X10 4

—3.54 X10 '
—2.71 X10 '
—3.54 X10 6

—2.82 X10 '
—1.35 X10 '
—1.06 X10 '
—1.30 Xio '
—2.46 X10 4

—2.46 X10 '
—1.00 X10 4

—1.00 X10 4

—2.39 X10 4

—2.36 X10 4

1.36 Xio '
1.38 X10 4

—9.71 X10 '
—3,51 Xio '

1.3S X1O-4
1.36 X10 4

—1.228X10 s

1.258X10 '
—3.76 X10 4

1.25SX 1O-
6.85 X10-'
6.92 X10 4

—1.248X10 '
—5.92 Xio 4

1.568X10 '
6.71 Xio 4

—3.90 X10 4

—2.67 X10 4

—2.6'? X10 4

—4,86 Xio-
—4.86 X10 '

895 X10 '
8.95 Xi.o '

—3.'?3 X10 '
—7.13 Xio '

3.3X10 4

1.2xio 4

2 ~ 1X10 5

2.0X10 4

6.6X10 '
2.4X10 4

1,4X10-4

2.8X10 '
4.6X10 '
4.0X10 6

4.6X10 '
2.0X10 '
8.4X10 '
5.6X10 '
1.2X10 4

3.2X 10-5
3.2X10 '
1.3X10 5

1.3X10 '
3.3X10 '
4.2X10 '
1.1X10 5

1.2X10 '
9.7X10 '
6.7X10 '
1.2X10 '
1.1X10 5

5.3X10 '
6.6X10 5

1.5X10 '
6.6X10 5

2.3X10 '
3.3X10 5

6.5X10 '
3.1Xio '
6.5X10 '
3.3X10-5
7.7X10 '
4.6X10 '
4.6X10 '
3.3xio '
3.3X10 '
5.5X10 '
5.5X10 '
-2.6X10 4

1.3X10 4

' Identical with a previous diagram (but must be added to find the total fourth-order coeKcient)." Included in the Brueckner approximation.
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is necessary and sufficient that

Cp

C1))

C 1)

C2)

) cu

"+' )0 p=0, 1, 2, , (3.6)

Cp) Cg)+ ') C2u

except if only a finite number of eigenvalues occur all
0,„=0 for p) P. If we now define the Hermitian
operator to, = (1/gb;) s(1/gb, ) and define q, = (I/Qb;)
&(qf, , then a similar argument implies that

C1

C20„=
C2)

C3)

Cy+1

) 8+2 )0
Cg)+1) Cy+2) ) C22)+1

p= 0, 1, 2, , (3.7)

except again where there are only a finite number of
eigenvalues. According to Wall's theorem 87.1, Eqs.
(3.6) and (3.7) are necessary and sufficient that the c~
form a series of Stieljes, and hence that

0

u"dq (u). (3.8)

(3.9)

I.030—
BRUECKNER

I,020

I,0 I 0

TE

l.000

LADDER

.990
0 0.5

I

I.O
I

1.5
I

2.0

FIG. 9. Comparison of the ladder approximation, the Brueckner
approximation, and the complete perturbation theory for U= 2.5
as represented by the [1,2] and [2,2) Pade approximants. For
convenient presentation the results have been normalized by
dividing by the [1,1] Pade approximant.

As the coefficients only diverge' like et we are dealing
(Theorem 88.1)" with the case of a unique &p. Hence,
the diagonal Pade approximants converge to the unique
function

defined by the perturbation series. The Pade approx-
imants [cV,M] are the ratio of two polynomials Psr(X)/
Qiv(X) determined so as to match the first M+X+1
coefficients of X in the [Qiv(0)=1.0] power-series
expansion. Furthermore, according to Wall's problem
17.3," the sequence of [iV, lV] Pade approximants are
less than (3.9) for all real positive X and the [X,X+1]
are all greater for real positive X. We will use this
result in a subsequent section to bound the true result
and to compare with results of the solution of the
ladder approximation integral equation obtained with
the usual approximations.

It should be noted that these bounds are the best
obtainable when only the information concerning the
specific potential contained in the coefficients used to
form the approximants is considered. This result is so
because there exist (velocity-dependent) potentials for
which the relevant Pade approximant is an exact
answer; namely, they belong to the class of potentials
which are diagonal in the momentum repre:-entation
and couple only E-momentum states. Even so, the
covergence at the hard-core limit (X=+ eo) may be
relatively slow' for asymptotic series.

IV. COMPARISON OF THE RESULTS OF THE
LADDER AND BRUECKNER APPROXIMA-

TIONS FOR SOFT REPULSIVE
SQUARE-WELL POTENTIALS

On the basis of the perturbation theory coefficients
obtained in Sec. II, we may, as shown in Sec. III, for
various values of the strength V, give upper and lower
bounds for the ladder approximation. That is, it must
lie between the [2,2] and the [1,2] Pade approximants.
We shall assume that for the complete theory and the
Brueckner approximation that, while the approximants
may not bound the function values, the difference
between the [2,2] and the [1,2] gives a mes, sure of
accuracy of the [2,2] and that where the difference
between the theories as indicated by the [2,2] is large
compared to the apparent error in the [2,2], the
ordering of the theories is correctly given. For sample
potential values we have chosen (VMc'/As)=2. 5 and
5.0. These correspond to slightly less and slightly more
than a half-hard core (in terms of the scattering length).

In Figs. 9 and 10, we have, for convenience, plotted
the ratio of the [1,2] and [2,2] to the [1,1] (the [1,1]
approximant is the same for the ladder approximation,
the Brueckner approximation, and the complete
perturbation series).

The points represent the values of the approximants.
The [2,2] are joined by lines and the different theories
are slightly oGset for clarity. The flags represent
statistical uncertainty in the values of the approximants
due to inaccuracies in the calculation of the coefficients.

We see that at low densities the complete theory
lies below the ladder approximation while the Brueckner
approximation lies above it. The reason that the
Brueckner approximation is less accurate than the
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I,l2—

I.08—

1,04

I.OO

,96
0

I

0.5
I

I.O

kFC

I

2.0

Fn. 10. Comparison of the ladder approximation, the Brueckner
approximation, and the complete perturbation theory for V=5.0
as represented by the $1,2] and [2,2] Pade approximants. For
convenient presentation the results have been normalized by
dividing by the

I 1,1]Pade approximant.

ladder can easily be seen by looking at the third order
terms. The first low-density corrections to the ladder
diagram B3, is the ring diagram R3 and the hole-hole
interaction diagram H3. These terms are proportional
to (kFc)s. Brueckner includes diagram F3 which is
proportional to (kpc)s and has the opposite sign from
R3. The same trouble also occurs in fourth order
where the leading order corrections are given by II.1,
II.2, II.6, and I.3+4 which are proportional to (kFc)s
(III.1, 111.7+8, II.5 and IIA.1 cancel in pairs).
Brueckner again includes only corrections proportional
to (kpc)s. We estimate that for a hard core, the differ-
ence between the theories must be at least 10—20%.
It is hard to assess the differences between the theories
when both attraction and repulsion are present, but we
know of no reasons not to suppose that they are
substantial.

The rigorous upper and lower bounds which we
obtained for the ladder approximation allow us to assess
the accuracy of the standard solution procedures which
we describe in detail in the next section. Comparison
reveals that the accuracy of the standard solution is
reasonably uniform in density (0.25&ki;c&3.0). The
solution obtained is about 0.5% high for small V(U((1).
As V increases to around 5 the solution rises to become
about 1 to 2-', % high as kpc varies from 0.25 to 3.0. At
larger potentials the standard solution lies between the
upper and lower bounds so no firm conclusion can be
drawn about the accuracy. For infinite U(V= 10') the
lower bound drops (ksc)0.75) to about two-thirds of
the standard solution. At &pc=0 the lower bound is

24/15 of the exact answer. From a consideration of the
way in which errors occur in the standard solution, we
feel that even at infinite potential it is probably not
worse than about 10%high and that it has a reasonably
consistent bias.

That the Pade approximants to the ladder approxima-
tion should be so relatively low for the hard-core limit
is somewhat disappointing; however, the reasons are
fairly clear. As pointed out above, the Pade approxi-
mants converge more slowly for asymptotic series than
they do for convergent ones. Furthermore, the point
V= ~ is a singularity of the function, and the con-
vergence of the sequence of Pade approximants is
frequently much slower at singular points than at
regular points. For instance, a somewhat analogous
case, L1—x 'ln(1+x)$, is of the form of Eq. (3.9).
Luke" has shown that for 0&x( ~ the convergence of
the $1V,1V] Pade approximants is exponential. Yet at
x=+~ the error in the LcV,1V] is (%+1) '.

As we will explain in the next section, the numerical
solution for the Brueckner approximation is not strictly
comparable with the results obtained from the inferred
power series expansion. The additional computational
approximation introduced, in contrast to those also
used in the solution of the ladder approximation integral
equation, is rather poor. Consequently, while the
expected departures from the ladder theory as shown
in Figs. 9 and 10 occur for weak potentials, at large
potentials the "as practiced" Brueckner approximation
lies only slightly above that of the ladder approximation
and actually crosses below it near kpc=1.5. By the
time the Brueckner approximation ceases to exist near
ksc=2.0, it is (for U=10') only about two-thirds as
large as the ladder approximation.

V. THE BRUECKNER THEORY AS ORDINARILY
CALCULATED

A rigorous formulation of the E-matrix equation,
including oR-energy shell effects correctly, is set forth in
Appendix A of Brueckner and Gammel. " In order to
carry out calculations, it is usual to eliminate the
dependence of the E matrices on the total momentum

by making the following approximations. An energy
denominator D

D =E(-,' p+ k')+E (-,'p —k')
—E(-', p+1)—E(-', p —k), (5.1)

where y is the total momentum, k is the relative momen-
tum in the initial state, and k' the relative momentum
in the intermediate state (an integration variable in
the E-matrix equations), is set equal to

D=2I E(k') —E(k)]. (5.2)

This is correct if the E's are approximately quadratic

"Y.L. Luke, J. Math. and Phys. 3?, 110 (1958)."K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
(1958).
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f their argument. The Pauli principle
requires that the integration over k' be restricte o a
region R such that

mlI-'p+k'l»r»d I2p —k'l»»n & (~ 3)gP

Oo

Ki(k) =— ji(kr) V (r)equi(r)r'dr, (5.10)

where V is the potential. The E Inatrices are given y

This is approximated by replacing

dk' ~ dk'F (p, k', k),

where

F(p, k', k) =0, (k"+,'p')"'(—kp.

(5.4)

and the single-particle energies by
(kg—m) /a

E(ns) =—+4 2k'dkI
2 -v P

'"'+"&" m'+4ks —kp'-'

k'dkI
kg&"—m) /2

m(kp
=1, k' ——,'p )kg&'

k"+-'p' —k p'
other wise.

k'p
(5.5)

where

+4
2

'""+""" ns'+4k' kr'—
1— - k'dkI

m—I'F') /2 4k'
ns& kp, (5.11)

To elimina e y corn~t completely an average value p is used
in pl ace of p.

1kk 1k'
1+ +

k 2 kl: 6kp'-
—,
'- '-'=-'-k ' 1————— —k(kJ,4P —5 ~

kF 1
1+——

2 kp

(5.6)

k)k&, .

The oR-energy shell eRects have to be approximated
also l the K matrices and single-particle energies
depend on a varia e

'
bl H according to Brueckner an

su ressed thisGammel, Appendix A; we have already suppresse is
fact in writing q.E (5.1)] eventually the following set.

of equations, w ic areh' h the same as the equations use
work'4by Bruec ner ank d Masterson in their recent wor

d after transforming the equations o
d 14 Thcoordinate space, as donene in Refs. 13 an . e

Green's function is

ji(k"r) ji(k"r')
r r' = k'"dk" F(p, k",k), (5.7)

2LE(k ) .(k))

where j is a ra ia essd' l 8 sel function / is the angular)

momentum, and

A(k) =E(k)
=E(kp) —fLE(kr) —E(0)] k) kF, (5.8)

1 l even
I=Q (21+1) K i(k) .

l 31 odd
(5.12)

Finally, the average binding energy per particle is

3 '~' ( nssq
E (nz) ——

l ns'dms .
2) (5.13)

2k''.

Perha s the only point worth commenting on is the
origin

' E . ,5.11 the expectedorigin of complicated factors in q.
equation is

m'-' 2
1Em=--'( )=—+ dnL(m nlKlm n) —sKexchange] ~

2 (2m)'
(5.14)

)
~ ~

angles of k, results in the factors.
W t interested in the details of these equations,

or t e eche techniques used in solving t em, w ic
b discussed at length in Refs. an

ure follow: Indetails of our computational proce ure
E . 57 we usedcalculating the Green's function q.

an interva sizel
' Ak"=0 1k and did a Simpson's rule

integration to k"= 10k . For the contribution AG from
10k' to ~, we used an asymptotic expression

h f is chosen arbitrarily. It is in thehe definition of
A(k) that approximations to oR-energy
manifest themselves. Continuing with q

'
h the e uations,

the wave function I satisfies the integral equation

F(y) = cosy

3'
s111V

uii r = ji(kr) —— Gii(r, r') V(r')esi(r')r"dr', (5.9) 6+y
[F(10kr (r' r)) (—1)'F—(10kp—(r'+r))]

20k err'

cosx s dS.
d K. S. M sterson, Jr. , Phys. Rev.

2267' (1962).
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TABLE V. Values of I', & obtained by solving the E-matrix equations using the usual techniques.

V
0

0.0625
0.125
0.1875
0.25
0.3125
0.375
0.4375
0.5
0.5625
0.625
0.6875
0,75
0.8125
0.875
0.9375
1.00

2.4415
4.8278
7.1607
9.4422

11.6742
13.8584
15.9965
18.0901
20.1406
22.1495

T~
&~lad d er

0

73584 483
02569 904
22258 662
65658 171
69970 11
82583 59
66616 60
06045 51
10458 47
19464 82

2.4415
4.8279
7, 1611
9.4432

11.6761
13,8615
16.0011
18.0966
20.1495
22.1611
24.1330
26.0663
27.9624
29.8225
31.6476
33.4389

91911 4267
41356 8167
66200 7132
64179 6068
22607 583
27000 580
68776 249
52158 572
00394 278
61370 376
12707 885
66395 184
73014 938
25610 709
63232 903
74198 271

&Brueckner (f=0 1)
0

I& bJ-.first order

2.4415
4.8279
7.1612
9.4433

11.6764
13.8620
16.0021
18.0982
20.1519
22.1646
24.1379
26.0730
27.9712
29,8337

92505 7001
50061 0416
07461 6933
87098 0365
06409 188
84742 460
49673 596
42837 263
25312 047
82599 677
29234 137
13052 758
19158 194
73597 385

'" All entries are multiplied by 103.' Means only first-order terms retained in the single-particle energies,

In solving Eq. (9) we used an 11)&11 mesh (10
intervals) and a trapezoidal rule. The same mesh was
used in Eq. (10) and the same trapezoidal rule. Equa-
tion (11) was integrated with LB= 1/20k p and a
Simpson's rule. Equation (13) was integrated with
Am= ~~kg and Simpson's rule.

The single-particle energy tables were interpolated
using three points in the Green's functions integration.
The energy tables were cut off at 4k&. Tests showed
this cutoff to be adequate. Contributions to the angular
momentum expansion were neglected for /) 2(kpc~ 1)l)3(kqc= 1.5), and l) 4(k pc) 2)

The energy tables were chosen initially to be F(m)
= no'/2 for all m; the equations were iterated until the
single-particle energy table was self-consistent to 4
decimal places.

For the square-well potential, we may calculate E&
for any number of potential depths, and from the data
we may find the series expansion of E& to any number
of terms. Some results are shown in Tables U and VI.

The ladder approximation is obtained by using

fourth-order diagram has not been adequately approx-
imated, we have calculated the Brueckner theory,
keeping only those terms in the single-particle energies
which are lirsear in the potential U, thus omitting from
the Brueckner theory the diagrams shown in Fig. 11.

In practice, Eq. (5.12) was replaced by

sin2kc cos2kcI=
3 Vc' —Vc'

(2kc)' (2kc)'
(5.16)

The results are shown in Table V. The series expansion
of the Brueckner theory, minus the diagrams of Fig. 11,
as obtained from Table V and the Monte Carlo calcula-
tion agree, as do the differences L(Brueckner theory
minus the diagrams of Fig. 11)—(ladder diagrams))
which establishes that one of the diagrams of Fig. 11 is
the diagram not adequately approximated in the or-
dinary calculations of the Brueckner theory.

I'(m) = nz'/2 (5.15)

instead of Eq. (5.11), and otherwise proceeding in the
same way as in the case of the Brueckner theory.

In comparing Table VI with the exact Monte Carlo
calculation of these expansions, the only glaring
discrepancy is in the value of the coefficient of V' for
the Brueckner theory. In third order, even the difference
between the Brueckner and ladder diagram results
obtained from Table VI and the Monte Carlo calcula-
tions agree. But this same difference in fourth order
obtained from Table II and the Monte Carlo calcula-
tions are very different.

This means that the ordinary calculations of the
Brueckner theory, as outlined in this section, approx-
imate each third-order diagram very well, but not each
fourth-order diagram. In order to investigate which

III. 7+8
FiG. 11. Diagrams not well approximated by the usual approx-

imate treatment of off-energy shell propagation used in the
8rueckner approximation.
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TABLE VI. Series expansion for kz @=1.0.

Eb (ladder) = 10 '(39.519220V—7.3573749U'+1.5026353V' —0.31908594U +0.06389859U' —0.015274886V')
Eq (Brueckner f=0.1) =10 (39.519220V—7.3573749U'+1.5820376V' —0.39131020V'+0.11601647V' —0.041403037V6)

Eb (Brueckner f= 1.0) = 10 3(39.519220V—7.3573749V'+1.5820376V' —0.36808576V4+0.09214862V~ —0.024992145V~)

Ef, {Brueckner f=3.0) = 10 '(39.519220V—7.3573749V'+1.5820376V' —0.35778685U'+0, 08440648 V' —0.021094986V')
Eg (erst order)*=10 '(39.519220V—7.3573749V +1..5820468V' —0,35285134V'+0.08047672V' —0.018638974V')

Eb (ladder from Monte Carlo
calculations) =10 '(39.36174U—7.495V'+1.538U' —0.3347V4)

Ef, (Brueckner from Monte Carlo
calculations) = 10 '(39.6174U —7.495 U'+ 1.619V' —0.3363V')

~ Means only first-order terms retained in the single-particle energies.

The last result could have been anticipated. The
introduction of the function F in Eq. (5.5) and the
average momentum p in Eq. (5.6) are adequate
approximations to the effects of the Pauli principle.
The coefficient of U is not affected by any of the approx-
imations mentioned at the beginning of this section, and
indeed the "Monte Carlo" (actually the coefficient of
V is known analytically in the "Monte Carlo" case)
result and the results in Table VI for the coeKcient U

are essentially identical. The coefficient of U' is affected

by the approximations to the Pauli exclusion effect, but
the Monte Carlo results and the results in Table VI are
closely the same, so that it has to be expected that the
approximations to the Pauli exclusion effects are
adequate. The off-energy shell approximations do not
enter into third order, or in the fourth-order diagrams
other than those shown in Fig. 11. This last statement
may be understood as follows. In third order, the only
Brueckner diagrams are B3 and F3 [Fig. 2(a), (d)].
The energies of the other particles are not involved in

the calculation of the correction to the single-particle
energies. In fourth order, the Brueckner diagrams are,
in addition to those shown in Fig. 11, I.1, IV.1, IV.2,
and IV.3 (Figs. 3 and 8). Again, the energies of the
other particles are not involved in the calculation of the
corrections to the single-particle energies. But for the
diagrams of Fig. 11, the energies of the other particles
are involved in calculating a correction to the single-
particle energy of one of the particles; that is, the first
of I'ig. 11 is shown in Fig. 12. In calculating the cor-
rection to the energy of Fig. 11, the energy denominator
is

E(1')+E(1")+E(2)—E(1"')—E(3)—E(4), (5.17)

instead of

where Eq. (5.8) specifies

A=E(kp) —f[E(kp) —E(0)]. (5.19)

f
0.1
1.0
3.0

III.i
—13.63X10 '
—11.31X10 '
—10.28X10 '
—9.79X10 '

III.7+8
9.79X10 '
9.79X10 '
9.79X10 '
9.79X10-5

These results were obtained as follows: III.1 was
obtained by dropping the inhomogeneous term in
Eq. (5.9) and replacing u by j in the right-hand side.
Also in Eq. (5.8) the single-particle energies E(m) were

Equations (5.18) and (5.19) express an approximation
to Eq. (5.17), but our results show that the approxima-
tion is inadequate.

It is not likely that the difhculty is in the second of
the diagrams of Fig. 11, because the actual denominator
is (see Fig. 13)

E(3')+ E (3")—E(3)—E(3"')

because of the two time orders, and, since 3~ &kF,
Eq. (5.8) is correct subject only to the approximation
that the E's are roughly quadratic: that is, there is no
off-energy shell effect to approximate.

There is also the point that the total momentum
does not disappear from the denominator Eq. (5.18)
whereas it does from Eq. (5.17).

We have tried to adjust the value of f in Eq. (5.19)
[or Eq. (5.8)] so that the results of the "as-practiced"
calculations and the Monte Carlo calculations agree.
We have found that no value of f[0&f& ~] suffices.
In the "as-practiced" calculations, the contribution
III.1 is negative and greater in magnitude than III.7+8
for example, for kpc=1.0.

E(1')+ E (1")—6, (5.18)

FIG. 12. Middle
time segment of dia-
gram III.1.

2

FIG. 13. Middle
time segment of dia-
gram III.S,
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set equal to m'/2. The modified equations were iterated
twice. The first iteration gives 82, and the second
B2+III.1+O(V').

As f increases without limit, the magnitude of the
contribution of III.1 approaches the magnitude of the
contribution of III.7+8. This fact ma, y be seen from
the table and can be proved analytically. From the
Monte Carlo calculations where &pc=1.0, we have

III.i
—8.32X10 '

III.7+8
11.55X10 '.

Therefore, although diagrams III.1 and III.7+8 are
nominally included in Brueckner theory (the magni-
tudes of III.1 and III.7+8 are roughly correct when

they are considered separately), their sum has the
wrong sign because of the treatment of off-energy
shell propagation.

Actually f= ~ gives the best possible estimate of
their sum (namely zero). We found by direct calculation
that the density at which the single-particle energy
becomes Bat and the self-consistent solution ceases to

exist increases as f increases:

f=0.1 kpc=2. 1

f=3.0 kpc=2. 4.

(To obtain these values the approximation Vu= M(r —c)
was used. The actual values are somewhat less. ) We
conclude that it is possible that the self-consistent
solution would continue to exist at high density were
oB-energy shell propagation treated properly. To settle
this point, it would be necessary to solve the equations
of Appendix A of Brueckner and Gammel" in which
off-energy propagation is treated exactly.
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