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A generalized pseudopotential for hard-sphere interaction is obtained, which is valid for all angular-
momentum states. This pseudopotential is then used in the evaluation of both the ground-state energy
and the excitation spectrum for a dilute Bose system of hard spheres. The calculated ground-state energy
agrees with that obtained by other authors; the excitation spectrum obtained for liquid helium resembles the
phonon-roton spectrum introduced by Landau.

1. INTRODUCTION

HK problem of a quantum-mechanical system of
many particles with hard-sphere interaction has

been considered by many authors. In particular, Lee,
Huang, and Yang' used a pseudopotential method and
obtained many interesting results on both the equi-
libriurn and nonequilibrium properties for the system
under consideration. This method is based on the idea
of replacing the hard-sphere boundary condition on the
wave function by a pseudopotential to facilitate the
perturbational calculation. The same idea was intro-
duced by Fermi' in the scattering problem, but he
limited the use of pseudopotential to the Born approxi-
mation. Huang and Yang' generalized the Fermi
pseudopotential to include all the partial waves, but
the form of their generalized pseudopotential is rather
complicated. For this reason the calculation in LHY
is still based on the 5-wave Fermi pseudopotential.
Henceforth many people' ' have made attempts to
modify the Fermi pseudopotential for the purpose of
simplifying the many-body calculations or to introduce
some new pseudopotential with broader range of
validity.

We report in this paper a new form of pseudopotential
which is simple in form and gives, in general, exact
results for two-body scattering problems or for many-
body problems with the assumption of binary inter-
action. It is also, in our opinion, easier to handle than
the pseudopotentials mentioned above. The derivation
of this generalized pseudopotential forms the main body
of Sec. 2. The other conclusion reached in Sec. 2 is
that any well-behaved potential consisting of a hard-
core part can be treated as the sum of a potential
defined outside the core region and our generalized
pseudopotential.

In Sec. 3 our generalized pseudopotential is applied
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to a system of many particles. We make use of the
second quantization formalism and write down the
hard-sphere Hamiltonian, which is independent of
statistics. We then confine ourselves to a dilute Bose
system in Sec. 4 and obtain its ground state energy,
which agrees with that obtained by other authors. The
excitation spectrum is discussed in Sec. 5. The inter-
esting result is that if we stretch the validity of the
present calculation and apply the result to liquid
helium, we can produce the phonon-roton spectrum
introduced phenomenologically by Landau' to explain
the low-temperature properties of liquid helium II.

2. PSEUDOPOTENTIAL FOR HARD-SPHERE
INTERACTION

For two particles with hard-sphere interaction, the
wave function can be written, in general, as

U((r)
4(r)=Z ~~- I'~"((),v)

and the function U&(r) satisftes the Schrodinger equation

0' d'U, (r) t(t+1)0'
+ E U)—(r)=0, (2.1a)

2p dr- 2pr~

with the boundary condition

U((r) =0, r& a, (2.1b)

where u is the diameter of the hard sphere. The slope
d&U(r)/ rdsuffers a discontinuity at r=a. It is well

known that such effect can be produced by including a
6-function term in the second-order differential equa-
tion. In general the following homogeneous differential
equation reproduces the solution in (2.1):
A"-d'zz((r) l(t+1)A'

+ E, N((r)—
2p 8r 2pr

h' dzz~ (r+ e)
=- lim —5(r —a) (2.2)

6~0 dr

where e is a positive in6nitesimal quantity. With the
boundary condition N~(0)=0, the general solution of

' L. Landua, J. Phys. (USSR) 11, 91 (1947).
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(2.2) is

u1(r) =
81k» j1 (kr), r(u (2 3)

~1(r) =&1krj1(kr)+~1k»5~1(ku) j1(kr)
—j1(ku)n1(kr)j, r)u (2.4)

where j& and m& are the spherical Bessel and spherical
Neumann functions, respectively, and k'k'j2y=E. H
we integrate both sides of (2.2) form u —e to u+e we
obtain

du, (r)/dr
~
.. . .=0.

From (2.3) and (2.5) we conclude that

in the region r&~a. Huang' in his treatment of a Van
der Waal type potential breaks it into a pseudopotential
part and an attractive part. Our present treatment
gives the justification for this type of procedure.

3. MANY-BODY SYSTEM

We make use of the pseudopotential derived in last
section to construct a many-body Hamiltonian with
hard-sphere interaction between pair of particles. As
in I HY we make an assumption of interaction through
pairwise-pseudopotentials, namely, we take as the
interaction term the following

u, (r) =0 for r& u,

except when k satisfies the following equation

(2.6) A2

H'= lim P 6(r,,—u) r;, (3.1)
2mg &+2 BP fj r &

—a+e

ku j1'(ku)+ j1(ku) =0. (2.7)

A2 8
V„=— -5 (r—u) r—

2pQ ~r r=a+e
(2.9)

so long as the energy of scattering does not satisfy (2.7).
i:.- We shall use the pseudopotential V~, in the many-
body calculation in the next section. In view of the
fact that there is this discrete set of energies for which

V~, does not exactly replace the hard-sphere potential,
we have to examine its effect on the calculated results.
Our unperturbed many-body system is a collection of
free particles, which have a continuous energy spectrum
in the limit of infinite volume. So long as the discrete
set does not cause any singularities in the perturbational
calculation, we argue that it should have no effect on
the calculation. As far as the present calculation is
concerned, it can be seen from later sections that no
such singularities occur. In a formal way this defect
of V~, can be corrected for by associating with it a
projection operator, which selects out this particular
set of states and replaces them by the exact hard-sphere
solutions. A type of projection operator, which would

project out the hard-sphere solution, has been proposed
by Siegert. ' But, in our opinion, such a formal mathe-
matical scheme would not improve the present calcu-
lation for a dilute Bose system.

It is easy to see that an additional potential term in

Eq. (2.2) would not change the form of the pseudo-
potential, so long as the added potential is nonsingular

8 A. J. P. Siegert, Phys. Rev. 116, 1057 {1959).

Equation (2.6) together with (2.4) gives exactly the
solution of (2.1). From (2.2) we can write down the
equation for the wave function p(r) as

A2—VQ(r)+EP(r) = lim 8(r—u) —rP(r) . (2.8)
2p 2pc Br

Therefore, for two-body scattering problems, the
following pseudopotential can be used as an exact
replacement for the hard-sphere boundary condition:

8
&& e*(x)e(x')~(» —u) —»e(x') e(x)

r=a+ e

where qt1~ and qtt are the usual field operators for free
particles and r=

~

x—x'~. The difference between

periodic and rigid box boundary conditions has been
discussed for hard-sphere interaction by Eyges. "

We use the annihilation operator a& defined by

q(x)= P uke'" ", (3.3)

and write H in momentum space:

A2 2' ak2
H= Q k'ug*uk+llm Q 5p+q 8 1,pup uq usu$

281 'IQ p, q, s, 'fi

sinQu u+e Q (t—s) cosQu sinQu
X ——+ (3.4)

Qu 2 Q Qu (Qu)'

whci e
&== —l((p —«) —(t—s) (1+ iu))

It is to be noticed that the factor c in the definition of

Q is indispensable in getting the correct results. The
Hamiltonian (3.4) is independen. t of statistics.

' K. Huang, Phys. Rev. 119, 1129 (1960).
"L.Eyges, Ann. Phys. (N. Y.) 2, 101 (1957).

The validity of this approximation has been thoroughly
discussed by Huang and Yang. ' In addition, Wu' has

proved that there should be no three-body pseudo-

potential. It is also doubtful that up to the order of
accuracy of the present calculation, the higher body
pseudopotentials would change any of our results
obtained by using (3.1).

We recast (3.1) in the language of quantized fields,

and with periodic boundary condition applied to a box
of volume 0, write down the m.any-body Hamiltonian

A,2 P/
2

d'xqtt*(x) V'q (x)+lim —d'xd'~'
2' 25SQ
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4. GROUND-STATE ENERGY FOR A
DILUTE BOSE SYSTEM

We apply (3.4) specifically to a dilute Bose system
consisting of E particles. Ke adopt Bogoliubov's"
approximation in replacing the creation and annihilation
operators for zero momentum particles, a0~ and a0, by
a c number, (lUo)'", where Eo is the occuPation number
for the zero-momentum state. In this approximation,
the Hamiltonian H in (3.4) can be rewritten. as

b, = (1—nk') —'"(ak+tkka k*),

k= (1—tkk ) (a—k+Clkak ) ~

If nk is chosen to be

(4.6)

We first try to find the energy eigenvalues of the
pairwise part of the Hamiltonian, H„, by following
Wu's method. 4 For the reason of completeness we have
to repeat part of his treatment here. We make a
Bogoliubov transformation of the form

H =H„+Ht+H„,
A'

H„= 42rapN/1+ (1—$)']
2m

(4.1)

&0' sinka
+lim p (k2+ko2f(k))ak*ak+ — ak*a k"

e—p0 kg0 2 ka

tt' slnka)

ka i
slllka cosk(a+ o))

!f—4yg2
ka )

(4.7)

k0"
+—cosk(a+o)aka k, (4.2)

2

II)= lim
-o mn p e.p+q&0

4maA'
(lU&)"' 2 (a (I,q)a *a "a

where

y
—lk 2(k2+k 2f (k)) l

the Hamiltonian H„can be written as

H„=Eo+lim Q E. (k)bk*bk
e—+0 k+0

+C—(Pill)ap+2 apao} ~

271 aA
Hs llm 2 b p+2—s—t, oap ao asat

'mQ p, g, s, &&0

(4.3) (sinka
+lirn Q ko'!

' 02m«0 E ka

where

—cosk(a+o) !bk*b k*, (4.9)

slnQa a+5 Q' (t—s)

Qa 2
~

~ ~

cosQa sinQa
(4.4)

Qa (Qa)'

The symbols used in (4.2) and (4.3) are defined in the
following:

cV

p = llII1 —
)N~~ g

Q —+ oo

A2 A2

Eo= 42rapU'[1 (1—~&)2]+—firn Q (k +ko'f (k))
2m ' 0 4mk~0

( sinka cosk(a+ o) '~
'"

X —1+I 1—4y '—
ka )

(4.10)

t' sinka cosk(a+ o) ) '"
!E (k)= (k2+k 2f(k))! 1—4y, '-

ka

(4.11)

g=lVo/Ã,

ko' ——Strap),

slll2ko a+ o cos2 ko slll2 ko)

'2ko 2 -—2,ko (-'2k')2)

sink (a+-', o) a+ o cosk (a+-,' o)
+ + k

k(a+-,'o) 2 k(a+-,'o)

sink (a+-,' o)
1

k2(a+-,' o)2

sinP~a a+o P~ (y~q)
+g~(1,a) =

where

cosE'+a sinE+a
X

P~a (P~a)2

P+=u+(1 ~&)(o/2a).
"N. N. Bogoliubov, J. Phys. (USSR} 11, 23 (194'7).

On the other hand, if the choice is

nk= (2yk cosk(a+ o))

sinka cosk(a+o) ~
"'

!X 1—
! 1—4yk'

ka )
then,

(4.5)
H, =Eo+lim Q E. (k)bk*bk

e—p0 k&0

, (4.12)

k2 (sinka—lim P ko'! —cosk(a+o) !bkb k. ( 4.13)
)' ' 2es k~0 E. ka

Qko4A2 " sinka cosk(a+ o)
dk- = 0. (4.14)—llIn

0 16m,2m

From either (4.9) or (4.13), the ground-state energy for
Hp is given by (4.10). If we let 0 —+ ~, the summation
in k can be replaced by an integral and for large values
of k the second term in (4.10) is asymptotically equal
to the following integral:
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FIG. 1. Excitation en-
ergy for various values
of xp~.

In order to carry out the next higher order term in
the ground-state energy, we treat H4 by perturbation
theory. For this we have to have the relevant state
vectors. From (4.6), (4.7), and (4.12), we can define
the right and left ground-state vectors of H~ by

Q ~
Ok) = Q Ek exP (—nkak*a i,*)

~
cv)

k&P k&p

(4.18)

g(0k~= glkk(A
~

exp( —nkaka k),
k&P k&P

2
X

where ~Ã) is the 1V-free-particle ground-state vector,
which is related to the null-particle state vector ~0) by

F~p h
4~ap[1 —(1—5)'j

2V 2m

+-
Sm7r p

kp'- slnka
dk k' k"+ coska+

2 ka

kp4 sin2ka I/S-

2ka(k'+ ~ kg (coska+ sinka/ka) )'

kp4 sin2ka
+— . (4.15)

2 2ka

This integral is equal to zero because e is positive. If
we subtract from (4.10) term (4.14) with the limit
taken inside the integral sign, we can interchange the
integration and the limit k —+ 0 in (4.10). Then,

(4.19)

In order to have (Ok
~

Ok) = 1, the product of the normal-
ization factors in (4.18) is given by

+k+k ~ k~k ~ (4.20)

The state of H„with one quasiparticle of momentum
k excited is given by

1k)= ~&k'f k*~ ok), (1k
~

=&k'(Ok
~
6k, (4.21)

where the normalization (1k
~
1k)= 1 yields

Ek'Ikk' ——(1—nk') '"(1—nk') '"(1—nkn, ). (4.22)

Now we are in a position to evaluate the non-vanishing
matrix elements of H& and write down straightforwardly
the energy shift to Ep due to H& in second-order pertur-
bation theory:

For a —+ 0, the second term in (4.15) is reduced to

Sum'-p

Qo

dk k'(k'+ko'-)

k04 ) "-' k04

+—. (4.16)
(k'+ko')'~ 2

A'o 2z'PPap

V m

This integral has been evaluated in I.HV and, hence,
we can just quote the result and obtain

AEO ———lim Q (E. (k)+L'. (k')
P 2m k &k' &k" &0

k +k'+k" =0

+E~'. (k")—Lo) '256ir'-a'p/Q —'(1—nknk)
—'

X (1—nk. nk. )
—'(1—nk"nk") —'[g+(k, k')n, n,

—
g (k,k')nk" +sym. ]X[g (k,k')nknk

—g+(k, k')n, "+sym. ]. (4.23)

In the limit a —+ 0, this is reduced exactly to (4.18) in
Wu's paper. ' We refer to his careful treatment of this
summation and quote his results below

J.'o= (-', 7r —v3)m-apX[(a'p) In(127ra'p)
The depletion factor $ has been evaluatecl in LHY to be

(a'p)'"+0[(a'p)3,
3+ir

(4.18)

which is also valid with our generalized pseudopotential.
To the order of accuracy of the present calculation it
is absorbed into the term 0(a4p') in (4.17).

+0(a'p) j. (4.24)

In other words, we have also reproduced the logarithm
term in the ground-state energy using our generalized
pseudopotential. It may also be mentioned that, unlike
Wu's case, the upper momentum cutoff which he has
to introduce in the calculation should come out auto-
matically because of our form of nk.
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liquid He II. Similar spectrum has been obtained for
hard-sphere Bose system by Brueckner and Sawada, "
Abe, ' and Beliaev" from different methods.

The present calculation for the ground-state energy
or excitation spectrum is only valid for very dilute gas,
for which (a'p)(&1. However, we would like to stretch
the validity of our calculation and apply the results to
liquid He II, for which the following parameters are
adopted:

p=(3.6A)-s, ~=1.6A.

We stretch the validity of (5.1) in the following manner:
We assume that the excitation spectrum valid for high
values of a'p would have the same analytic form as in
(5.1) except that the constant xs' would be enhanced
from its present value of Sera'p$; the value of xs' is then
to be 6xed by relating it to the observed sound velocity
in liquid He II. According to (5.1), the sound velocity,
V., should be related to xo' by

V = (2x')'"
2szc

(5.2)

k in A

FIG. 2. Excitation energy for special choices of parameters
pertinent to liquid helium II as mentioned in the text. We have
used the conversion factor

6.06A2

Ko
2mo' s' (in A')

The phenomenological curve by Landau and theoretical curve
by Brueckner and Sawada are reproduced for comparison. The
Landau curve is taken from Ref. 7. The analytical expression
for the Brueckner-Sawada spectrum and their choice of parameters
can be found in Ref. 12.

S. Phonon-Roton Syectrum

From either (4.9) or (4.13), the excitation energy of
quasiparticles from diagonalizing H~ is given in (4.11).
We now rewrite it in a more convenient form

2m' sinx)E,(x) = x'+xssx' cosx+ xi

where

x()' sinx) '
+—cosx— i, (5.1)

x i

x—=ke and xo—=kou.

We plot E. (x) in Fig. 1 for different values of xs and
it is seen that for certain values of xs, E, (x) exhibits
a phonon-roton behavior proposed phenomenologically
by Landau' to explain the superQuidity behavior of

The experimental value of V, for liquid He II is 237
m/sec and this would give a value of 12 for xss. A plot
of E,„versus k for the above-mentioned choice of
parameters is given in Fig. 2, where Landau s original
curve and the curve by Brueckner and Sawada are
also reproduced for comparison.

Our chosen value for e is smaller than the measured
scattering length for liquid He II of about 2.5 A. This
discrepancy may be accounted for by the difference of
the actual soft-core potential among the helium atoms
and the model hard-core potential used in the calcu-
lation.

Xo1e added in Proof After sub.mitting this work, we
received a private communication from Marshall
Luban, stating that he has taken a similar approach
independently and will present his results in the near
future.
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