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The asymptotic vanishing of these surface integrals is
in the nature of a boundary condition characterizing a
physically closed system. This property can be veriGed,
if one retains only the slowly decreasing terms in the

asymptotic behavior of the Gelds,
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The outcome of these considerations is the commuta-
tion properties
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which completes the formal veriGcation of Lorentz
invariance. But a much more careful examination will

be required to test whether the loosely stated physical
boundary conditions can be maintained as assertions
about operators in relation to a class of physical states.
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In an earlier paper by the author, examples of the motion of a point charge were found to be consistent
with the hypothesis of Abraham that the mass of an electron (or positron) is entirely electromagnetic.
Further consequences of this hypothesis are developed. It is shown that the conservation laws of the electro-
magnetic field and Maxwell's equations require that the total Lorentz force (including the self-force) on
the charge should vanish. This result can be expressed as a Lagrangian equation of motion. The canonical
four momentum of the charge is the product of the magnitude of the charge by the four potential of the
6eld at the position of the charge. When the dissipative form of the potential for an uncon6ned point charge
is used, the integro-diGerential equation of motion of the earlier paper is obtained for a particle with zero
"bare" mass. A mechanical momentum and mass are dehned; these are associated with the singular part
of the Green's function for the D'Alembert equation. The rate of change of this mechanical momentum is
equal to the sum of the external force, the radiation damping force (with the correct sign obtained by the
use of the retarded fields), and the gradient at the position of the charge of its Coulombic self-potential
energy. For a particle assumed to follow a continuous trajectory, the integrals in the integro-di6erential
equation of motion are evaluated by a procedure in agreement with, but much simpler than, that of Dirac.
The result is the unrenormalized equation of Dirac for a particle whose mass is the divergent Coulombic
self-energy. The effective momentum and mass in this equation are reduced to half of the mechanical
momentum and mass by the force term arising from the gradient of the Coulombic self-potential energy.

INTRODUCTION
' 'N a previous paper, Ii, an integro-di6erential equa-
l ~ tion for the motion of a point charge was described
and applied to the examples of motion of a free particle
and of a nonrelativistic simple harmonic oscillator. The
equation was obtained by assuming the validity of the
Lorentz force equation in addition to Maxwell's field
equations. The force on the charge at the field point
was taken to be the Lorentz force produced by the
fields of a source charge in the limit where the field
charge is identiGed with the source. It was pointed out
that the motion of the charge in the examples considered
was consistent with the Abraham hypothesis that the

' B.Leaf, Phys. Rev. 127, 1369 (1962). Referred to as I in this
paper.

mass of the electron (or positron) is wholly electro-
magnetic. In the present paper further consequences
of this hypothesis are developed. It is shown in Sec. 1
that the conservation lavrs of the electromagnetic Geld
and Maxwell's equations require that the total Lorentz
force (including the self-force) on a point charge vanish.
In Sec. 2, it is shown that this result can be derived from
a Lagrangian function, similar to the usual Lagrangian
for a particle in an electromagnetic field, but with the
bare mass suppressed. The canonical momentum of the
charge obtained from this Lagrangian is p =ed, (z)
where A is the four potential of the Geld at the position
s of the charge e. When the dissipative form (3.1) of
the potential for an unconGned point charge, plus the
potential of the external 6elds, is used for A, the integro-
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Since D(x) and D(x) satisfy the differential equation,

B'D(x)/Bx '= B—4(x) and B'D(x)/Bx '=0' (3 8)

where s= Lx(r), t(r)), so that with s' x(r'),

p„x=e' dr'z„'b(s s—')', (4.3)

BA „(x)/Bx.=0. (3.10)

therefore, D(x) is the singular part, and WsD(x) is a
nonsingular part of the Green's function for the
D'Alembert equation. ' D(x) is determined by the
initial and boundary conditions of the system, which in
the present case of an unconfined charge is the radiation
condition at infinity. The causality principle discussed
in I determines the choice of sign for WD(x); the lower
sign corresponding to the retarded solution gives the
correct sign for the radiation damping. It is readily
verified that A„x(x) and A„D(x) satisfy

B2A K(x)/Bx 2 4s.j (x) B2A D( )x/B x2 0 (3 9)

and that each separately satisfies the Lorentz gauge
condition,

p„D= We' dr'z„'B(s s')2e—(r r') .— (44)

As shown in the Appendix,

pp mzp

p„o= +e'z„,

BeA„x(s)/Bs„= m—(z„z„+,'z„z-„),

(4.5)

(4 6)

(4 7)

BeA D(s)/Bs„=Re'(z„dz„/dt+Z~„+ ',z„dz„/dt-

+ ,'z„z~,dz, /Ch)-, (4.8)

where m is the divergent quantity,

In the presence of external fields, the total potential
A„(x) is the sum of the dissipative potential produced
by the charge, and the external potential A„'"'(x)
which, like A„D(x), satisfies the homogeneous wave
equation. Accordingly, the total potential becomes

A„(x)=A„(x)+A„o(x)+A„'"'(x). (3.11)

m=e' dgb(P)=e'/~P~, for /=0. (4.9)

Also, (4.7) and (4.8) give

z„BeA x (z)/Bz„= ,'mz„, — (4.10)

z,BeA,o (s)/Bs„= W (2e'/3) Pdz„/dt+z'z„), (4.11)
Corresponding to the decomposition of the total

potential given in (3.11), the total particle momentum
defined in (2.8) becomes the sum,

so that

(s) = dp„x/dr+z—„BeA x (s)/Bz„= ——,'mz„, (4.12)
p p Ic+p D+p ext (3.12)

4. EVALUATION OF INTEGRALS

According to Eqs. (3.4) to (3.7),

A„x(x)= e drz„b(x —s)',

A„D(x) = We diaz„B(x—s)"Lh —t(r)],

(4.1)

(4.2)

Ke now adopt as representing the "mechanical"
momentum of the particle, the kinetic term p„x, which
is derived from the singular part of the Green's function
for the O'Alembert equation, ' i.e., the part independent
of boundary and initial conditions. Justification for
this choice of p„x to represent the mechanical momen-
tum will appear in Eq. (4.5). The equation of motion
(1.6) or (2.9) can now be written as

dp„x/dr =z„BeA„x(s)/Bz„+F„o(s)+F„'"'(z), (3.13)

where the Lorentz forces F„D(s) and F„'"'(z)are obtained
from (1.6) by using the fields F„,o(x) and F„„'"'(x)
derived, respectively, from the potentials A„o(x) and
A„'"'(x) which are solutions of the homogeneous wave
equation.

F„(s)= dP„D/dr+—z„BeA D(s)/Bs„
= W (2e'/3) (dz„/dt z.'z) . —(4.13)

—,mz„= + (2e'/3) (dz„/Ch z'z )+F„—'"'(s) (4.16)

S. DISCUSSION

Equation (4.16) is the unrenormalized Dirac equation
obtained when B„(r) in (1.9) is taken to be zero, in
accordance with the Abraham hypothesis. The integro-
diBerential equation given in I (2.8) or I (5.1) is
obtained when the dissipative potentials (3.2) and (3.3)
are used to evaluate the self-forces F„x(s) and F„D(s)
in (1.6). When the integrals are then evaluated for
continuous trajectories as described in Sec. 4. the Dirac
equation (4.16) results.

The evaluation of p„x in (4.5) can be taken as justify-
ing the choice of P„x to represent the mechanical

Equation (3.13) becomes

dp„x/dr = 2nzz„+ (2e /3) (Ch„/Ch z, z„)+F '*t (z—) (4 14)

Equation (2.9) becomes

dp„/dr = ,'mz„+ (2e'/3-) (,'dl„/dt+z, 'z„)-
+z.BeA „'"'(s)/Bs„(4.15).

Equation (1.6) becomes
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momentum of the particle. In this intepretation

m(r) = -s„p„'
= —(e'/4zr') s„d4xb'(x —s)

&((p d'kdr'(k. k,) 's„' expLik„(x„—s„')],

(5 1)

F„x(s)= ', m,s„—-(5.3)

is independent of the gauge of Asia(x).
Another point to be noted is that quantities like A„(s)

which are functions of s, and were so considered in the
Lagrangian I.(s,s) of (2.7), appear upon evaluation of
integrals to depend on i, i, etc. and not on s at all. The
Lagrangian formalism described earlier requires that
these quantities be treated as functions of s.

In (4.16) we see again that the correct sign for the
radiation damping term, F„D=W (2e'/3) (ds„/dt s,'s„), —
is the lower sign, corresponding to the use of retarded
fields, in agieement with the causality principle discus-
sed in I.

' The integral (5.&) is independent of the particle velocity.
It can be evaluated for trajectories which have jump discontinu-
ities. A jurnp discontinuity LbP in the rest frame of the particle at
time r gives for m(r) the fmite value, ez=e /! Axe!. As Axe-+ 0,
continuity of the trajectory is restored, but also the divergence
(4.9) reappears.

» This term appeared in I(3.3) and I(A2.8) as —lim e„e(8/Srr, )
X (es/ae) in the rest frame of the charge. It was there incorrectly
equated to zero. We now see that the only e6ect of this term is to
reduce the divergent electromagnetic mass in the equation of
motion by half.

is the rest mass of the particle. When evaluated for
continuous trajectories, 's according to (4.9), it is the
divergent value in the rest frame of the particle at time
~ of the Coulomb potential energy of the charge, or
more correct)y, twice the Coulomb energy. The usual
explanation of the reduction of the Coulomb self-energy
to half of egos (where pox is the scalar self-potential in
the rest frame of the charge) employs the model of a
distributed charge e, where the factor ~ appears in the
work of creating the charge from its elements. Such an
explanation is not suitable to our model of a point-like
elementary charge e. A different explanation appears in
the equation of motion (4.14). On the right-hand side
we see that a part of the force changing the mechanical
momentum of the particle is the term

',ms„=-s„ried„x(s)/r)s„= Begs—x/r)s„, (5.2)

which is the four gradient of the Coulomb self-potential
energy. "As a result of this force, the inertial reaction of
the particle to the action of external and damping
forces, F„'"'and F„D is only sms„ in (4.16).The effective
mechanical momentum and mass in (4.16) are, there-
iore, sp„~ and sm. It should be noted that while
dP„x/dr= ms„, the rate of change of mechanical
momentum as given in (4.5), depends on the use of the
Lorentz gauge for A„x(x) in (3.11), the self-force term
of (4.12) or the inertial reaction of (4.16),

d»Lf(x) jg(x) =2'g(x')/If'(x') I, (Ai)

where the summation Q, extends over the zeros of
f(x) (the values of x=x; for which f(x;)=0), does not
hold unless all the zeros are of first order. If x; is a zero
of order zz, then f'(x,)=f"(x;)= = f'" "(x;)=0,but
f'"&(x;)WO. The same method used to derive (Ai)"
can be used to obtain, with (=x—x,,

d»L f(x)]g (x)

n, ! g&"' (x;)
dÃ(k" )k", (A2)

I
f&"'&(x;)I s=o k!

where zz; is the order of the zero of f(x) at x=x;. Since
b(P') is an even function of $ for any value of n
therefore, only even value of the integer k will contribute
to the summation.

For the case in which f(x) has a single zero of second
order (zz=2) at x=x, , (A2) gives

2 ~ gis&(x, )
d»l f(x)jg(x) = 2 — — d8(P)$" (A3)

I
f"(x,) I

r.=o k!

for even-integral values of k. Also, with e(x—x,)
defined as the step function of (3.3),

dxh[f(x) jg (x)e(x x,)—
2 g'"'(x, )

If"(x) I
"-' d~3(e)I~I' (A4)

for odd-integral values of k. But since"

I ~l~(e) =3(~), (A5)

"D. Ivanenko and A. Sokolow, Ktasszsche Fetdtheorze (Aka-
demie-Verlag, Berlin, 1953), p. 16.

Instead of B„(r)=0 in (1.9) as required by the
Abraham hypothesis, Dirac's renormalization procedure
assumes

B„(r)= m—.rrs„+gms„, (5.4)

according to (1.10). A negatively infinite mass is
introduced to subtract the divergent positive electro-
magnetic mass. In effect, Dirac replaces -', mz„on the
left-hand side of (4.16) with m, rrs„, where m. rr is
assumed to be the finite experimental mass. This
procedure disposes of the factor ~ in the inertial reaction
of (4.16) as well as of the divergence. But Dirac's
effective mass, m, «(or the negatively infinite term), is
not calculated by the theory, whereas m is given by
(5.1). The fact that (5.1) diverges when evaluated for
continuous" trajectories must be considered a defect of
present theory.

APPENDIX

While the integrals (4.5) to (4.8) can be evaluated by
the procedure of Dirac, ' the method is long and tedious.
An alternative will be described here. Note 6rst that
the usual expression for evaluating the integral



1326

Ag a,nd (A4) "d""therefo& e

„( )I (A7A7

)I j d$5(5) (A6)gLf (g) jg($)

LEAF

I,, ~, , aP( —")'j/""~ ~ ~(s)/gs„= —~

2= —e

I(s ~
sp zv

( I)2

(s ~ s.)i.

4 5) andbta.,„dire tly(A6) "d (A7) ~ ~ ~applying
(46)

d (4g) ~e W
.
n (4 7) an

d 'g(s —&') g( (A9)

's t"e(A6) contamsion but(A7) is
diverg

(A&o)i)~~(~—r )g(&
—~8

ence,

and similar&Y0 (A8 an&/I &I

R 196ovE132 NUM BVO«ME

f Collectivefor t e Calculatio& oHartree-Fock p '
Ma&F Particle 3'

A prox&rr atio&
S stem

Genera»ze
tes of a Firti«

REVIEWPH YSI CAL

g(() ( (

ae
;t must 6rstte the integrals

t the values of r
o eva

2 '
satisfied

Since

aylor's series a oin a

e noted that
n a light cone o

d the Expand g g'

z d'/d&+"-"+' " "
(A(2)

ed to move at I .
h g fnnctio»s

(~~)= —(&Q+~ ~"
i ~)+O(r r)—

charge» as
f ' for ~"'ch

g
+-'i i,&.de /d

) obtain(A6) and
econd-orderhere f(') ""' ""

St

M / tt

KERMAN

olo, Cambridge, aas . . Institute of Techno ogy,massachusetts Insi u o o

AND

ABRAHAM KLEINt

Philadelphia, ennso Pennsylvania, iUniversity o

d 29 May 1963)(Received

elements ofonal matnx e
t

ago
h d 1 1

n — article sys

eneralizatlon are e

erators are of t e
— hase approxima ion ent the random-p

of ny system
I I

p

eview and cri
'

ed after a rev

-
Th

the equa iont' ns of motion.

f the latter are p
uantum number

nctions o
f th

r iesoft eex'dfid hlf- o
t to be given by a

restudy of t e

'n andarem
s reviously been

f a system in un' orm"pushing" t e o
average fieId.

CTION AND REVIEWI. INTRODU

dis to descri e an
es of collective moti

t l
~ ~c arac

in part throug*Thisworkw s ps su porte ln par
Contract

F dtot A. P. Sloan on

(GHFA).

. 127 1650 (1962).
cn reference rom reader y

the literature is W.

an extension of
A 1 d h

aturally as an
ve

H tree Fock appfl d

dub be it
f the most frui uSeveral o e


