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Quantized Gravitational Field. II
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A consistent formulation is given for the quantized gravitational Geld in interaction with integer spin
6elds. Lorentz transformation equivalence within a class of physically distinguished coordinate systems
is verified.

INTRODUCTION
' 'HE quantization problem posed by the gravita-

tional field is not that of exhibiting canonical
variables but rather consists in verifying that the
generators of coordinate transformations, which are
only known implicitly, satisfy the necessary commuta-
tion properties. A technique appropriate to this
problem has been devised, ' in which canonical operator
variables are combined with mathematical parameters
of a functional-transformation group. %e shall apply
this method to construct a consistent formulation for
the quantized gravitational field coupled to matter
fields of spin 0 and 1.

The following is a summary of results obtained by a
heuristic application of the quantum action principle to
the gravitational field and a spin 0 matter field. ' The
operator reduces to

They obey the equal-time commutation relations

—it T'(x), T'(x')]
= —(q"'(x) T/(x) +q"' (x') T/ (x') )Bsh (x—x'),

—iLT/. (x),T/(x'))
= —T&(x)8/, h (x—x') —T/,.(x')a,h (x—x') .

The generality of these relations can be inferred from
the alternative example of a unit spin matter field.

SPIN-1 MATTER FIELD

Ke consider only an Abelian-gauge field. The action
operator in a prescribed metric field g„„ is

W= (dx)( 'F~"H + 'F—~"-( g) '/'g -g F""-j-

where

JV= (dx)I Jla&Boq"'+do8o/1/j

action subject to the constraints

r/, + T/I 0, r"+T"=——0,
where

r/, II/„Bcq' +——8/„(21I&„q' )—&i/(2IIk„, q' )

q ro = 1/(2/&) q'(8„,8,q"'+Q) —2/&II«q'(q"'q "—q""q' )ll»„,

in which

Q= eq "c/~q &/»qk/ —oBmq-
—-'q"a~lnq'(2a)hZq

XVe have also included in the definition of 7' an arbitrary
po~er of the quantity

q= detq~',

and F„„is a tensor density. The constraint equations
obtained by variation of A0 and F~' are, respectively,

g Pol&, p

He&= (-g) "'g/'~g/F"".

The latter appears in the time gauge as'

&(771) &(n)»kl &(0) g A. (m)~X(n)~
l ZX — 0 —1/2 )/~

and two algebraic consequences are given by

H„q—lqk q/ H —( g) spy g g pic+2—pokq„po&

= e&o&og
' 'Hy/(F" —2eo'"e&o)'P'/) .

The resulting canonical variable form of the action
operator is

(dx) L
—F'"Bo~~—eo"'e&o&'T~ —eo"'g '/'T j

in order to suggest, in a potentially constructive way, where
the ambiguity thus far implicit in the discussion. The
corresponding operators of the spinless-matter field are Tt) —L)PO/'ql/2q Pol+ sH q 1/2qlcmq&nH—

T/= —4 B/4

T/ s
t (yo)s+g~qk&By+ql/orn2y2]
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4Vith the aid of the canonical commutation relations,
effectively given by

—i/H/„-/(x), P'"(x')]= (6/„"8/ —3/ "8/:)h (x—x'),

' Notation: (—g) = —detg„„, g=detgJ, g, and (—g)»'=g(0)0g»2.
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one verifies that T~ and T' obey the previously stated
commutation properties.

EXTENDED OPERATORS

The significance of g~' and II&& is obtained by writing

q"'= q"'r+ , (B-kql+Blqk) b—klB qm+BkBiq

g qkl7 qkkT P

and, similarly,

11kl IIkl + 2 (BkiIl+BlIIk) bklBmIIm+BkB111 ~

One also recasts the constraint equations in the forms

BlIIkl BkIIll 2BkBLIIl+2V IIk 2Bk
&

BkBlq" = (V')'q= —2&18',

with the aid of the definitions

rk t. 2(B1II——kl —BkII«), —
~'= t' +1 /(2 &)lBkBlq"',

|tk ——tl,+Tk, 8 =t'+T .

As a result we have, to within an additive total dif-
ferential,

(dx) IIkldqk'= (dx) LIIkir&qklr

+e,d(—,'q, )—B'd(—2.11)7,

which is the sum of a generator of operator variations and
the generator of an infinitesimal transformation param-
eterized by —2&lII= P.
This description is conveyed by the operator commuta-
tion relation

—il qk'r(2), II„„~(2,"')7= (b „kib(x—x'))r

and the diGerential-state-vector equation

»&lI &&lfI~*)I» &=1 »&1')—

operator constructions of III, and q,

IIk = Pkl 501+k2BkB15)272b/b)l,

q= (—2K) $2ib/bp —2x'.

These are written in a symbolic notation with the aid of
the functions defined (apart from boundary conditions)
by —V $1(X—X )=b(X—X ),

—V2$2(x —X ) = 5)1(X—X ) .
Thus,

and

IIki = 11kF+2iSi (Bkb/b &1+8 lb/beak
——2'bklB „b/b] )

+4iBkB1$2B b/bg 1/ (2—k)BkB,P.
As one can verify, with the aid of the explicit con-
struction,

(b„„"'b(x—x'))r
=b„„k'b(x—x') ——,'bk'b„„b(x—x')

+ 2 (b» BkBm+b» BlBm+bm BkB&&+bm BlB&&)$1(X X )', (b"'B—„B—„+b„„BkBl)nk (x *')—
j2BkBlB Bm$2»(X—X ),

these extended operators obey the simple canonical
commutation relation

—iI qk'(2:), II „(2.")7=b k'b(x —x').

CONSISTENCY

The fundamental problem in formulating, the theory
has now resolved itself into verifying, or imposing
consistency on the four functional differential equations
that govern the states (pl,

("(*)+T.(*))«I=o
(, (~)yT'(*))(Pl =o.

Let us consider first the extended operator

G,= (dx) (rk+ T')bxk

Equivalent versions of the latter are

-'(b/b~. (*))«I=«I&.(.)
'(bfbF (~))(k I

=« I
B'(*),

L- (bfb~. ( ))-B.(*)7«l =o,
L'(bfbe(.))-B (*)7«l =o

In the last form a representation of the field operators
by means of eigenvalues and functional differential
operators is understood.

tA'e can now interpret q~' and III,~ as extended
operators by introducing the functional differential

and observe that it generates the transformation
accompanying the arbitrary infinitesimal spatial co-
ordinate transformation be~. Thus

—il q"'G 7= bx B q"'+q —'B bx"

+q'"B bx' 2q"'B b2™—
2LIIkl&Gz—5= —b2 "BmIIkl —IImlBkb*"

IIk„Bkbx"+IIk—lB bx

and, for the example of the spin-0 matter 6eld,

—ity, G.7= —b2: B y
—iL&t&', G 7= —bx B 1t&'—&toB„b2:
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These are infinitesimal transformation laws of the
various three-dimensional tensor densities. (We speak
of a tensor density of degree 8 if the object is obtained
from the corresponding tensor by multiplication with
(g''2) '). Indeed, q~' and Il~q are tensor densities of degree
+2 and —1, respectively, while p and p' are scalar
densities of degree 0 and +1, respectively. The com-
mutation properties of the set of operators G, corre-
sponds to the composition law of successive infinitesimal
transformations for the group of general coordinate
transformations. Two successive infinitesimal coor-
inate traDsformations, performed in alternative order,
are connected by another infinitesimal transformation,

gt12]gk —$(2)glj $(1)gk $(1)pig $(2)gk

and correspondingly

—il G,&'& G~&"7=G."".
The implied commutation relations are

—L( +T)( ) ( +T)(*')7
= —(r)y T() (x)a~8(x—x') —(r~+ T~) (x')a)b(x —x'),

which can also be derived from the transformation
properties of rI,+TI„a vector density of degree +1,
—iLrl, +Tk, G,7= 8x 8„(r~—+T~)

—(r„+T„)8gbx (rt,+Tg—)B„bx

It will be noted that the commutation relations are
obeyed separately by vk and T&. The group structure of
these commutators confirms the consistency of the
three functional diBerential equations,

(rg+ Tx) (& l
=0.

The various contributions to r'+ T' are, individually,
scalar densities of degree +2. (It should be recalled
that g„g,q"'+Q=g&, ~R.) The corresponding commuta-
tion relation,

i $(r +T') (x—), (rI,+T~) (x') 7
=-(("+T) (*)+("+T')(*'))&.~( -"),

shows the consistency between the functional di6eren-
tial equation

("+T)«I =o

and the set of three referring to spatial coordinate
transformations.

All this rejects the automatic way in which three-
dimensional covariance is assured by the formalism.
The essential problem is contained in the commutation
properties of the operator set (r'+T') (x). Let us note
first that To(x), for both examples of integer spin fields,
involves q"'(x) without spatial derivatives. The con-
tributions to rL'( )x, 'T( x) 7will then come entirely
from the terms in 7'(x) involving Ill, q(x), and thus are
proportional to B(x—x'). Such a result is symmetrical
between x and x', and

ro(x) T„(x )7+l T; (x) ro(x')7 —0

Hence,

I
(r'+T') (x) (r'+T')(x')7

= Lr'(x), r'(x') 7+LT"(x),T"(x') 7,
and the necessity of a resulting group structure demands
that the 7-' commutators have the same form as those
of T' in relation to ~k and Tk, respectively.

It is more convenient to consider q'v'. We first
note that

Lq""(x),q'r'(x') 7= I:q'(~~~@"'+0)(*),
Iip tq'(q'"q'™—q"q"")II„„(x')7—(x+-+ x'),

where the last term indicates the interchange of x and
x' in the preceding commutator. The result is a linear
function of the IIk& symmetrically multiplying a function
of the qk', and it is not dificult to verify that

—i[q'r'(x), q'r'(x')7
= —(q"q~'(x) . r)(x)+q"q"'(x') . r((x'))8~6(x —x')

in which the dot appears to indicate the symmetrization
of multiplication. Symmetrization is also applied to the
extended operator expression for 7~, but this is not
significant if it is agreed that

—iLB„q"(x),II„(x)7= lim 0„„"8„8(x—x') =0,

as will be the result of any symmetrical approach to the
limit. It must also be remarked that there are various
equivalent. ways of writing the coeKcient of 7'6(x—x'),
since

(f(x)g(x')+f(x') g(x))V~(» —x')
= (f(x)g(x)+f(x')g(x'))V5(x —x') .

Thus,

il q'r'(x). q—'r'(x') 7
= —(q"q"'(x) . rq(x')+q"q"'(x') . r~{x))8~5(x—x') .

The q' factors can also be included in the T' comrnuta-
tion relation and the result will indeed have the anal-
ogous form. There is one basic difference, however.
Although symmetrization with q"qk' is trivial for T~,
it is not for v-& since the latter does not generally corn-
mute with its factor. But the verification of consistency
for the equation

q ("+T')(*)«I=o,

which is equivalent to

("+T')(*)&kl=o,
demands that the commutator of two such extended
operators yield the combination r&+T& on the right-
hand side only, in position to annihilate the state
(jl. Thus, all depends on the commutation relation
between q"qk' and 7-~.
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The product q"q"' is a tensor density of degree Bs+2, in which we have written

2$~2sqkl G 7 )Xan8 (q2sqkl)+q2sqanl8 )Xk

+qpsqkan8 8xl (go+2)q2sqkl8 8xan

which asserts that

—iLq''q"'(x) r-(x')7
= —" "'(*') ( —')+ ' "'(*) -" - ( —')

+qpsqkn(x)8 'B„b(x—x')
—(Ss+1)q"q"'(x)8 8(x—x') .

The commutator of interest is

—1/(2/l)8k8lqk'= 0"=—Op

8l2(11kl—8kl11 ) = 0'= Qk.

We first note the equal-time commutator equation

L(0"—8')( ), (o. "—83)( ')7&~i =o,
where

—iLHP(x) 8'(x')7= —22a. '(x')8k8/8(x —x')

22rk l —(qk anq l n
q lkq an)nII

+q
—1/211 ql/2(qkanqln qklqann)

It should also be observed that

i[—q"qk'(x), ~l (x') 7
= —qpsqk'(x') 8 lb (x—x') —(8s—3)q"qk'(x) 8 38 (x—x') .

Accordingly, we haveIt can now be seen that there is a unique value of s for
which the right-hand side is an antisymmetrical ( i/8—3 (x),8'(x') 7+2(B/ (x)
function of x and x', and +Bl'2rkl(X'))8kb(X —X'))((

l
=O.

Lq''q"'(x), l(x')7+Lq"q"'(x'), (*)7=o,
namely,

S= g.1 28 ~kl —
Qaa 2+8 fkl

Kith this choice, we have

—it'ql/2(2-P+ P) (x) ql/2(2. P+ P) (xs)7
= —(qqk'(el+ Pl) (x)+qqk'(2. l+ Tl) (x'))8k'(x —x')

and all consistency tests are satisfied.
The addition of an arbitrary numerical multiple of

q'~'=g to

rP=1/(2/l)(8k8lq"l+Q) —2/lq 2/2IIklql/2(qklq " q"naq™)11—

will not alter this conclusion. This is also true of the
additive term q'j'q~'III, ~, in any multiplication order.
But if one uses the particular combination

1 (ql/4qki11 +q—1/211k q3/4qkl)

that term can be removed completely from 7', without

affecting ~~, by the canonical transformation

II„.l(x) s exp iX (dx)g—'/' IIkl(x) exp 8 (dx)g"2

= IIkl (x)+-,'Xql/4qkl (x) .

fkl flk (qknaqln qklqann)II

+q—2/211 ql/2(qknaqln qklqann)

2(bk 8—/„hkl8 „)—II

and a further rearrangement of the commutator equa-
tion yields

( —i' (x)pP (x')7+ (8k (x) +lllk (x'))8kb (x—x')
ig(8o —8 )(xP) PP(x )7+;L(8o lllP)(x'), 0"(x)7

+ (8lfk'(x)+Bl'f"'(x'))8kb(x —x') )(( l

= O.

Extended operators have spatially-localized com-
mutation properties. But the reduction of extended
operators is a nonlocal process, and, consequently, the
individual commutators in the preceding equation will
not vanish for finite lx —x'l. This effectively denies
physical significance to the detailed specification of
energy distributions by means of 'the operator P(x).
The situation divers with regard to integral aspects,
however, since

LORENTZ INVARIANCE

The coordinate conditions +=x"((k= (k, p= —
gp)

define a physically distinguished class of Lorentz
transformation equivalent coordinate systems. The
explicit verification of I orentz invariance, in its
four-dimensional aspects, concerns volume integrated
properties of the energy density equal-time commutator.
The energy and momentum density operators 8"(x)
are to be obtained through the reduction of the extended
operators 8n(x) by means of the four functional differen-
tial equations

(0 (,)-8 (s))&gl =o,

(dx) 0'= —1/(2/l) dpk8, q»

(dx)xkp~p= 1/(2„) d~, (xk8 qlm

refer to extended operators localized on the boundary
surface. It is reasonable to presume that the nonlocal
commutators connecting surface and internal points of
a region tend to zero asymptotically, with increasing
volume. The resulting integral commutators will
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involve the combinations

and

(le) (yk+frlfkl) =+a+ lf fkl

(dX) [gk (pl+a fml) gl (yk+g fmk) ]
—Jkl+ d& (&kfml &lfmk)

The asymptotic vanishing of these surface integrals is
in the nature of a boundary condition characterizing a
physically closed system. This property can be veriGed,
if one retains only the slowly decreasing terms in the

asymptotic behavior of the Gelds,

v"-&kl+ (xl4~)~~k~l [x[,
rrkl -1/(gz)P„Lbl 8k[x[-'+8k fll[x[-'

—xsrlkl8„[ x
[

—'—as8kal8„[ x [ g.

The outcome of these considerations is the commuta-
tion properties

jTPO Jok] Pk

fLJok Jolj Jkl

which completes the formal veriGcation of Lorentz
invariance. But a much more careful examination will

be required to test whether the loosely stated physical
boundary conditions can be maintained as assertions
about operators in relation to a class of physical states.
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In an earlier paper by the author, examples of the motion of a point charge were found to be consistent
with the hypothesis of Abraham that the mass of an electron (or positron) is entirely electromagnetic.
Further consequences of this hypothesis are developed. It is shown that the conservation laws of the electro-
magnetic field and Maxwell's equations require that the total Lorentz force (including the self-force) on
the charge should vanish. This result can be expressed as a Lagrangian equation of motion. The canonical
four momentum of the charge is the product of the magnitude of the charge by the four potential of the
6eld at the position of the charge. When the dissipative form of the potential for an uncon6ned point charge
is used, the integro-diGerential equation of motion of the earlier paper is obtained for a particle with zero
"bare" mass. A mechanical momentum and mass are dehned; these are associated with the singular part
of the Green's function for the D'Alembert equation. The rate of change of this mechanical momentum is
equal to the sum of the external force, the radiation damping force (with the correct sign obtained by the
use of the retarded fields), and the gradient at the position of the charge of its Coulombic self-potential
energy. For a particle assumed to follow a continuous trajectory, the integrals in the integro-di6erential
equation of motion are evaluated by a procedure in agreement with, but much simpler than, that of Dirac.
The result is the unrenormalized equation of Dirac for a particle whose mass is the divergent Coulombic
self-energy. The effective momentum and mass in this equation are reduced to half of the mechanical
momentum and mass by the force term arising from the gradient of the Coulombic self-potential energy.

INTRODUCTION
' 'N a previous paper, Ii, an integro-di6erential equa-
l ~ tion for the motion of a point charge was described
and applied to the examples of motion of a free particle
and of a nonrelativistic simple harmonic oscillator. The
equation was obtained by assuming the validity of the
Lorentz force equation in addition to Maxwell's field
equations. The force on the charge at the field point
was taken to be the Lorentz force produced by the
fields of a source charge in the limit where the field
charge is identiGed with the source. It was pointed out
that the motion of the charge in the examples considered
was consistent with the Abraham hypothesis that the

' B.Leaf, Phys. Rev. 127, 1369 (1962). Referred to as I in this
paper.

mass of the electron (or positron) is wholly electro-
magnetic. In the present paper further consequences
of this hypothesis are developed. It is shown in Sec. 1
that the conservation lavrs of the electromagnetic Geld
and Maxwell's equations require that the total Lorentz
force (including the self-force) on a point charge vanish.
In Sec. 2, it is shown that this result can be derived from
a Lagrangian function, similar to the usual Lagrangian
for a particle in an electromagnetic field, but with the
bare mass suppressed. The canonical momentum of the
charge obtained from this Lagrangian is p =ed, (z)
where A is the four potential of the Geld at the position
s of the charge e. When the dissipative form (3.1) of
the potential for an unconGned point charge, plus the
potential of the external 6elds, is used for A, the integro-


