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For large s, small t, and neglecting m compared to M,
this becomes

cos8~—1+(2st/3M') . (A11)

(A11) has a different behavior from (A9), because in
(A11) even if s is large, a small t, namely t close to lp,

can still keep cose~ small.
For the reaction p+p —+ I+sr+ and for backward

elastic scattering a similar difhculty appears. In these
cases since t0&0 there is a point t=O corresponding to
0)0; and putting t=0 into (A7) for the particular
unequal mass conditions (A6), yields cos&ls= —1 for all
s. Thus, the simplicity of coso& being necessarily large
when s is large is lost, and with that loss of simplicity
goes the usual direct argument that that Regge tra-
jectory will dominate the process.
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The effect of the J=2, T=O 7l- —x interaction on the ~—S invariant amplitude, 8(+) is analyzed. It is
found that the 7i-—Ã scattering data is inconsistent with a J=2, T=0 m —7t phase 520 which rises to above
13' around 650 MeV. The data are consistent with a 8-function contribution at 1200 MeV but it is impossible
to say whether this corresponds to a resonant phase or only a sharp peak in the corresponding absorptive
part of the amplitude.

1. INTRODUCTION

N the sr+sr ~ N+N channel of the pion-nucleon
~ - system only states with isospin T=O and angular
momentum J~&2 contribute to the pion-nucleon total
invariant amplitude 8&+&. Since this amplitude aGords
a means of investigating the J=2, T=O x™—x interac-
tion without interference from the J=O, T=O state it
is of interest to consider possible methods of studying
g (+)

The m —S total invariant amplitudes, A (+' and 8(+&

have been studied at 6xed angles in both the forward
and backward directions" since no difIjculties due to
divergences of Legendre series are encountered in these
cases. It is necessary, however, to approximate unitarity
by retaining only a small number of terms in the partial-
wave expansions of the amplitudes. The resulting errors
may be considerable if the convergence of these series
is slow, as is to be expected if there are appreciable
low-energy m —

m eGects. Accordingly, it is of interest to
consider the amplitudes formed by integrating the total
amplitudes over all physical angles. These amplitudes
have distant singularities which cannot be calculated
in terms of convergent Legendre series but have the
advantage that the contributions of alternate terms of
the partial-wave expansion are much reduced in the
low-energy physical region. Thus, it is possible to calcu-

*This work has been supported in part by the Air Once of
Scientific Research, OAR, European Once, Aerospace Research,
U. S. Air Force.

' J. Hamilton and W. S. Woolcock, Physics Department,
University College, London, 1962, Rev. Mod. Phys. (to be pub-
lished). This paper gives a detailed review of ~—X dispersion re-
lations in the forward direction.

2 D. Atkinson, Phys. Rev. 128, 1908 (1962).

late nearby singularities more accurately than in the
fixed-angle case at the expense of introducing distant
singularities which must be represented by some ap-
proximation scheme.

Hence, a dispersion relation is written for the ampli-
tude formed by integrating B(+& over all angles and the
results are analyzed by methods similar to those which
have been successfully applied to the analysis of m

—X
partial waves' so as to give values for 520, the J=2,
T=0 x —x phase. The dispersion relation is described in
Sec. 2; the contribution from the sr+ sr ~ 1V+g channel
and its relation to the J=2, T=O ~—x interaction are
considered in Sec. 3, and the analysis of the results in
terms of the phase 82' is discussed in Sec. 4.

2. THE DISCREPANCY

(i) Kinematics

The notation follows the standard usage. The total
amplitude with isospin T is given by

f&&r&(s,x) fp&r&(s, x)
B&r&(s,x) =SsrW +, (1)

(W+M)' —ts' (W—M)' —tt'

where fs& ' and fs& ' are expressible in terms of partial-
wave expansions

fi"&(s,x) = E ft+"&(s)P&+s'(x)
i=0

—Z f &'&( )f .'( ), (2)
i=2

co (f '"&E*& EI f~'"'&~& fi+",'&~=&)ri &*&
— &s&'

l=l
' J. Hamilton, P. Menotti, G. C. Oades, and L. L. J. Vick,

Phys. Rev. 128, 1881 (1962).
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iiii. Phys. (N. Y.) 12,4 J. Hamilton an d T. D. Spearman, Ann. Phys.
172 (1961).

an upper oun isb d is obtained for Bp (+' s of the form

8ir 2'.q+1 16m.R

in i/2

su ested by Regge-pole theories,
E. increases logarithmical/y with energy
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(iv) Evaluation of the Discrepancy

In (8) it is possible to calculate all terms, apart from
the discrepancy, using physical pion-nucleon data. In
this way valu s are calculated for hn&+& (s) in the ranges
22 ~& s &&32.7 and 59.6 ~&s ~&80.These are shown in I'"ig. 2;
the separate contributions are described below.

A. ReBs&+& (s)

In the range 59.6&~s&~80, ReBs&+&(s) is evaluated in
terms of Woolcock's s, p, and d partial waves, ' values
being needed for energies up to about 215 MeV. In
order to evaluate ReBs~+&(s) in the region s~& (M—1)',
use is made of the crossing relation

B&+&(s, t) = —B&+&(u, t),
where I is relat "d to s and t by

(13)

with a theorem by Sugawara and Kanazawa' are suf-
ficient to ensure that (8) is well defined without having
to introduce a subtraction.

In the case of the series for ImBs1+&(s) since the
contribution from each value of l is of the form
(—1)'(Imf~&+& —Imf~ &+&) and since Imf~+&+& &~0, the
high-energy value of ImBs&+&(s) is strongly dependent
on forces of the spin-orbit type and it is very probable
that it falls off more quickly than suggested by (11).
It is assumed in the calculations that

0 &
~

ImBs~+ (s) (
&~16zjs' ', (12)

above 2 BeV.

terms of the s, p, a,nd d partial waves, values being
needed for energies up to 400 MeV, and ReBs&+&(s) is
then obtained by use of (13) and (5).

B. The I'hysica/ Integral

ImBs&+&(s) is evaluated in terms of the s, P, and d
partial waves up to 400 MeV. Above 400 MeV contri-
butions from the three resonances, T= —,D3~2 at 600
MeV, T=-,', Ps~~ at 900 MeV, and T= » I'q~2 at 1350
MeV are estimated from experimental data on total
cross sections and inelasticity. Smooth ba, ckground (i.e.,
nonresonant) terms are also added so as to fit onto the
low-energy values at 400 MeV and onto the alternative
high-energy behaviors at 2 BeV, one being set equal
to zero above this energy and the others falling to zero
as +16ir/s'" above 2 BeV.

C. The Crossed Integral

Here ImBp~+&(s) is evaluated using the crossing rela-
tion (13) in a similar manner to that described above for
ReBs&+&(s). ImB&+& (u, t) is expressed in terms of the s,
p, and d waves below 400 MeV and by the three reso-
nant terms, together with smooth-background terms, in
the region between 400 MeV and 2 BeV, enabling
ImBs1+&(s) to be calculated for 8~&s&~32.7. The be-
havior as s -+ 0 is related to the behavior of ImB&+& (N, 1)
at high energies and backward angles. Here again there
is considerable uncertainty and two alternative forms
for ImBs~+&(s) are calculated, one falling linearly to
zero and the other remaining constant as s —+ 0.

n= 2M+2 —s—t, (14)
D. The Born Term

together with (5), the definition of Bs'+&(s). For s in
the range 0~&s~&(M—1)' values of B&+&(N,t) are only
required for physical energies and angles. ~ In calculating
ReBs&+&(s) for 22&~s&~32.7, ReB'+&(N, 1) is evaluated in

This is evaluated using a value for the coupling con-
stant, G~', corresponding to %oolcock's value for the
pseudovector coupling constant, f' =0.081.s The method
of calculating the long-range crossed Born term is
similar to that described by Hamilton and Spearman. "

Rc g ts&

E. Errors

These are of two types corresponding to errors on the
low- and high-energy data. The errors associated with
uncertainties in the high-energy behavior and also with
the behavior as s —+ 0 are hard to estimate. Some indi-
cations as to the form of these errors are provided by
the alternative high-energy behaviors considered. These
errors, which are estimated to be &5 at s=59.6, are
only slowly varying functions of energy and it is especi-
ally important to note that it is very unlikely that they

rIG. 2. Values for ReB0(+) and for the discre ancy ~3(+)(s).
The vertical lines indicate the changes in 6&(+) s) produced by
the different high-energy behaviors.

' M. Sngawara and A. Kanazawa, Phys. Rev. 123, 1895 (1962).' See Ref. 1 for details of these partial graves.' J. Hamilton, P. Menotti, T. D. Spearman, and W. S. Wool-
cock, Nuovo Cimento 20, 519 (1961}.

' J. Hamilton, T. D. Spearman, and W. S. Woolcock, Ann.
Phys. (N. Y.) 17, 1 (1962).' W. S. Woolcock, in Proceedings of the Air-en-Provence Inter-
national Conference on Elementary Particles (Centre d'Etudes
Nucleaires de Saclay, Seine et Oise, 1961), Vol. I, p, 459. Also
see Ref. 1.

'0 See Appendix of Ref. 4 for details of the separation of long-
range crossed Born terms.
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will produce a large displacement of the values of
d~+ (s) for s&~32.7 relative to those for s&-59.6.

The other type of error, due to uncertainties in the
low-energy data, has a stronger energy dependence.
The physical and crossed integrals are dominated in this
region by the (s,—,') resonance peak and so the main
source of error lies in the values for ReBst+&(s). It is
estimated that these errors are about +1 at the two
thresholds, increasing slightly as s increases to 80 and
increasing more rapidly as s decreases below s=32.7,
rising to +2 at s= 22. It should be noted that the errors
in ReBsi+&(s) will satisfy, at the thresholds, the crossing
relation

Error(s=59. 6) = —Error(s=32. 7)

and that there will be a correlation of approximately
this form away from the thresholds. Thus, these errors
will tend to displace the values of A. i+&(s) for s~&32.7
in the opposite direction to those for s~)59.6.

3. CONTRIBUTIONS FROM THE CIRCULAR
CUT, Isl=~ —I

(i) The Absorptive Part on the Circle

The absorptive part of B&+&(s,t) in the channel
or+- —+A+X is given by the helicity amplitude
expansion"

7+1/2
ImB&+&(s, t) =8'

~J(@+1)]'l'
even J

&&(iP qs)~ 'Ps'(cos8s) Imf s(t), (15)
where

ga =4t—1)
p'=Ms ,'t, ——

cos8s=(s —p +ps)/(2sp gs),

and f '(t) are the helicity amplitudes. Ignoring those
states with J)~4 gives

The kernel K(s, t) can be calculated exactly" giving

1
u(t)=exp

ass(t')
d't'

t' —t
(19)

itbeing assumed that Ass(t') falls of suKciently quickly
for the integral to exist. Then, since u(t) is real for
t&4and has the phase —ass(t) along the cut 4~&t&~,
u(t) f '(t) has only the cuts —~ &t~&0 and 16(~t&".

In the region —25~&t~&a, values for Imf '(t) are
calculated in terms of the single-nucleon Born term and
the m.—X (ss, -', ) partial-wave amplitude, '4 the results
being shown in Fig. 3. The contributions of the other
x—37 partial waves can be neglected since they are
much smaller than the (ss, ss) term which is itself only
34%%uq of the Born term at t= —25. Beyond t= —25 the
series expansion of Imf '(t) in terms of m.—1V partial
waves diverges and values for Imf '(t) cannot be
calculated in this region. Accordingly, f (t) is givenby

1 1 u(t') Imf '(t') c
f '(t)= — — dt' +, (20)

u(t) m' ss t,
' t t+to—

where the pole term has been added to approximate
the contribution of the region —tx) (t~&—25 and where

(ii) Imf '(t) and the 1=2, T=O ~-" Interaction

The Omnes method" is used to calculate the helicity
amplitude in terms of a J=2, T=O m- —x phase shift
ass. The helicity amplitude f '(t) is analytic in the t

plane cut from 4&~ t(~ and —tx) (t&~u, where
a=4—1/M', and, in addition, has the phase ass in the
region 4~& t ~&16. Consider the function

30m.
1mB'+&(s, t) = (s+t/2 —M' —1) Imf '(t). (16)

6

horn tenn alone

This expression then enables the discontinuity of
Bet+&(s) across the circular cut to be calculated for
that part of the circlehaving ~arg(s)

~

&~66', the series
expansion (15) diverging beyond this arc.

The contribution to the discrepancy from a given arc
around the front of the circle takes the form

%mt (a) =0 ~ Imf f2) ~0

.i+&(s)=
&max

dtK(s, t) Imf '(t), (17) -0.15 I I I

~ 2 0 -2 -4 4 4 t0 12 14 5 -1$ -20 -5 -24 40t~

when t,„,„ is related to P-,„, the maximum value of
arg(s) by

t,„=4(M'sin'(-', p-, )+cos'(-', p,„,„)).
» W. R. Frazer and J. R. Fulco, Phys. Rev. 119, 1420 (1960}.

Pro. 3. Values of 1mf '(t) for 25&t&a. Thebroken-
curve indicates the Born term contribution.

'2 See M. Marinaro and K. Tanaka, Nuovo Cimento 23, 537
(1962) for details of a similar calculation of the partial-wave
kernels."R. Omnes, Nuovo Cimento 8, 316 (1958}.Also see Ref. 14.

"W. R. Frazer and J. R. Fulco, Phys. Rev. 117, 1603 (1960}.



the additional contribution above the four-pion thresh-
old has been neglected.

The values of the pole position and residue are deter-
mined by fitting (20) and the corresponding derivative
relation to values for Ref' (0) and d Ref '(t)/Ct~ ~=p.

These constants have been calculated by the method of
Ball and %ong," using forward direction x —S scat-
tering data, giving the values

20, 310, 4P, QO, QO . 7P

e

l+& -336
(S) =-

S+52

(e)

Ref '(0) = —0.260+0.006 (21)

Ref "(0)= —0.069&0.002. (22)

20, QO, 40, 5P, 6,0, 7,0, 8,0

The errors are due primarily to the error on the value
of f', the total value of the other contributions being
only about 2% of the Born term.

In order to calculate values for the helicity amplitude,

f (t), it is convenient to introduce some parametric
representation for the phase i'&ps (t) Asuit. able two param-
eter form having the correct threshold behavior and
giving a, phase which rises to a single maximum and then
falls to zero at high energies is

2

rises to 5 at t=22
~» 1$ « t =22

n '&8 ea t 36

(b)

4,0 60 70, 8,020, 30
0

6-Functional fit

bs'(t) =aqp'/(1+bqs'), qp &~ 0. (23)

This then enables st(t) to be evaluated exactly giving
-6-

Imf (t) = 0.36 f& (t-70)—u 2(1 '"
u(t) =e-"s' exp

1+bqps 3(b PIG. 4. Pits to the discrepancy. The vertical lines represent the
estimated errors at threshold due to uncertainties in the low-energy
data. (a) represents the fit by a single pole on the left-hand cut;
(b) gives the Gts for various phase shifts bs' (c) gives .the Qt for
a 8-function contribution at t=70. In comparing the fits it is im-
portant to note the approximate correlation of errors described in
Sec. 2 (iv).

1(1 '" 2t'1 '~'
+qs' —

i

— +qs'-i —,t&~4
3kb 3kb

(24)
2 1)'i' 1(1

=«p —-
I

+qs'-I-
I

1+bqss 3 b) 3~bi
which have the correlation noted in Sec. 2(e). In judging
this and subsequent 6ts it should be remembered that if
the values of the discrepancy in the region s&~ 59.6 are
increased by changes in the values of Recap&+&(s) then
the values in the region san&32. 7 are decreased or vice
versa.

In view of certain evidence that the J=2, T=O
x —

m interaction may be fairly strong, it is of interest
to obtain an upper bound on the phase shift 62' consist-
ent with this discrepancy. The work of Atkinson" gave
values for 820 rising to around 45' at t= 21 while Love-
lace and Masson" obtained values rising to 50'&1.0'
at t= 30. Accordingly, values of the parameters a and
b are chosen so as to give a phase with maximum value
around t=22 and the contribution of Imf ', over the
front of the circle calculated. The best fit to the dis-
crepancy is then obtained by adding a pole term to
represent the remaining contributions. The results are
shown in Fig. 4(b) where it can be seen that it is impos-
sible to fit the shape of the discrepancy if the maximum
value of the phase, 62' rises above j.3' at t=22. If the

+qs'- — —(—qs)', t &4.
3 b

In this way Imf '(t) can be calculated in the region
t ~& 4 for any values of the parameters a and b. Substitu-
tion in (17) then gives the contribution from the front
of the circle to A~&+&(s) for the particular phase hs'(t)
chosen.

4. RESULTS

The discrepancy h»t+&(s) is shown in Fig. 2. The
value is only about 15'Po of that of the low-energy
values for ReBpi+& (s) and it can be seen that it is a very
slowly varying function of energy over the range
22~&s~&80. There is slight curvature near to the two
thresholds but this is very small and can be completely
removed by small variations of the low-energy p-wave
contributions.

It should first be noted that the discrepancy is well
fitted by a simple pole situated on the left-hand cut as
can be seen in Fig. 4 (a). Here the errors shown are only
those due to uncertainties in the values of ReBpl+&(s)

'6 See Ref. 2 for details of the phase shift.
"C. Lovelace and D. Masson, in Proceedkags of the 196Z

Annlal International Conference on High-Energy Physics at CER1V,
edited by J. Prentki {CERN, Geneva, 1962), p. 510."J.S. Ball and D. Y. Wong, Phys. Rev. Letters 6, 29 (1961).
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parameters are altered so as to move the peak out to
t=36 then the maximum value of the phase giving an
acceptable Qt increases, a maximum value of 18' giving
a G.t well within the errors. These diferent phases are
shown in Fig. 5. It should be noted that these results
will be insensitive to all but the strangest high-energy
behavior since changes in the discrepancy due to changes
in the high-energy terms should only alter the pole
terms v»hich have been added to represent the effect of
distant singularities.

It has also been suggested, both theoretically' and
experimentally, "that the phase 82' may resonate around
1200 MeV. A meaningful calculation of the contribu-
tion of such a phase to the discrepancy is very much
more diS.cult. A helicity amplitude obtained by solving
(20) with a phase which is large in the high-energy region
is subject to large errors due to neglect of the inelastic
contributions and to the increasing importance of the
errors on the pole position and residue. "Also the main
contribution of this amplitude to the absorptive part
of 8&+& around the circle will occur beyond the region
of convergence of the helicity amplitude exapnsion.

If such a d-wave resonance is sufficiently narrow for
the corresponding helicity amplitude to be neglected in
the low-energy region it is possible to approximate
1mf '(l) by a single 5 function. If it is further assumed
t.hat (16) represents an asymptotic expression for the
absorptive part of 8(+), even beyond the region of
convergence, then the contribution of such a 8-function
approximation over the whole of the circle can be calcu-
lated. The 6t using such an approximation, together

"S.D. Drell, in Proceedings of the I96Z Annttal International
Conference on IIegh Energy Physics at CER-E, edited by J. Prentki
(CERN, Geneva, j.962},p. 906."J.Hennessy, J. J. Veillet, M. di Corato, and P. Negri, in
Proceedirlgs of the 1068 Aemlal International Conference orI High-
Energy Physics at CERN, edited by J. Prentki (CERN, Geneva,
1962), p. 603. Also see J. J. Veillet, J. Hennessy, H. Bingham,
M. Block, D. Drigard, A. Lagarrigue, P. Mittner, A. Rousset,
G. Bellini, M. Di Corato, E. I'"iorrini, and P. Negri, Phys. Rev.
Letters 10, 29 (1962).

~ See L. L. J. Vick, Physics Department, University College,
London, 1963, Nuovo Cimento (to be published), for a discussion
of the difBculties associated with solving the Omnhs equation at
high energies.
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with a pole to represent the left-hand cut, is shown in

I'ig. 4(c). It can be seen that the fit is quite good, but
it is impossible to say whether the normalization con-

stant associated with the 8 function is consistent with a
resonant phase or only with a fairly sharp peak in the

high-energy values of Imf '(t).
Thus, the m. —iV scattering data is consistent with a

J= 2, T=0 x —x phase, 82", which does not rise above a
maximum value of about 13' at t 22 (650 MeV) or
18' at t=36 (840 MeV). The data are also consistent
with a 5-function contribution at t= 70 (1170MeV) but
the difhculties involved in solving the Omnes equation

at these high energies make it impossible to say whether

the normalization constant associated with this

function is consistent with a phase shift having a fairly
narrow resonance or whether it only corresponds to a
peak in the absorptive part of the helicity amplitude

f-'(t)
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