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Pion-Proton Elastic Scattering from 3 Gev/c to 5 GeV/cf

M. L. PERL,* L. W. JONES, AND C. C. TING)

The University of Michigan, Ann Arbor, Michigan

(Received 19 June 1963)

Results of a spark chamber experiment on elastic scattering of pions on protons are presented and analyzed.
The processes studied were n+p at 2.92 GeV/c, and n p at 3.13, 4.13, and 4.93 GeV/c. The data are 6tted
to an exponential function of the four-momentum transfer, t, in several different ways in attempts to explore
systematic energy and angular dependences. No shrinkage of the diffraction peak is seen in comparing the
coefFicients of a linear exponential fit for

~
t

~
&0.4 (GeV/c)'; at larger ~t I, however, the cross section falls off

with increasing energy. The large-angle differential cross section is examined for structure and is compared
with all other large angle scattering data. The results are compared with proton-proton scattering data
over the same energy range and substantial differences between the two processes are evident.

I. INTRODUCTION this paper, all kinematical quantities and differential
cross sections are in center-of-mass systems; energies
are given in GeV, momenta in GeU/c, distances in cm,
and wave numbers in cm ', unless otherwise indicated.
An exception is the laboratory momentum of the inci-
dent pion which is used to specify each of the four sets
of data.

Before discussing specific theories, it is useful to
recall the features of high-energy pion-nucleon elastic
scattering. The first distinctive feature of pion-nucleon
elastic scattering when the laboratory momentum of the
incident particle is above 2 GeV/c is a narrow forward
peak which contains almost all of the total elastic cross
section. This same feature occurs in all other instances
of high-energy elementary-particle elastic scattering
which have been measured thus far: for example, pp, ' '
pp, ' and E+p.' The second distinctive feature of pion-
nucleon elastic scattering is characteristic of all other
measured system as well: The total elastic cross section
is a rather slowly varying function of energy compared
with any particular inelastic channel. As examples of
these features at 5 GeU/c, the n p di6erential cross sec-
tion, which has a value of about 30 mb/sr in the center-
of-mass system at 0', drops to one-tenth of its value at
21' and to one-hundredth of its value at 32'. Further-
more, the forward peak contains at least 95'%%uo of the
total elastic cross section up to 32 . The total elastic
cross section at 5 GeV/c is 6.5 mb, whereas at 10 GeV/c
it is 4.6 mb. ' This forward peak may be interpreted as
diffraction scattering, noting that in this range of
momenta the wavelength of the pion is of the order of
or less than the nucleon radius. The diffraction peak
follows classically from the imaginary scattering ampli-
tudes corresponding to the various inelastic channels.

%hile the diffraction analogy justifies the existence
of a forward peak, it does not explain the very small

HIS paper reports the results of measurements of
the elastic differential cross section of m mesons

on protons at 3.15, 4.13, and 4.95 GeV/c, and of tr+

mesons on protons at 2.92 GeV/c. These measurements
are compared with other published pion-proton elastic
scattering data at similar and higher energies and with
proton-proton elastic scattering results. The relevant
theories are reviewed and examined in the light of
these data.

The results of the measurements of the diffraction-
peak part of the differential cross section have already
been reported. ' They were interpreted with respect to
the Regge theory of elastic scattering and the conclu-
sion was that although the diffraction peaks had, at
least approximately, the predicted exponential be-
havior, there was little or no evidence for the predicted
shrinking of the tr p diffraction peaks with increasing
energy. Higher-energy measurements of the 7r p elastic
diffraction peak' subsequently confirmed the nonexist-
ence of the shrinkage. Section V of this paper is devoted
to a further discussion of the diffraction peak results,
mostly with respect to the precise shape of the diffrac-
tion peak.

This experiment used thin-plate spark chambers and
a liquid hydrogen target and was carried out at the
Bevatron of the Lawrence Radiation Laboratory. The
apparatus and method of analysis are briefly described
in Sec. III. In Sec. IV, completely analyzed results of
the experiment are tabulated and plotted. Section VI
is devoted to a discussion of the large-angle scattering,
for which only very preliminary results have been pub-
lished. 3 In Sec. VII pion-proton and proton-proton
scattering are compared and discussed. Throughout
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elastic-difrerential cross section at large angles; that is,
it does not explain why almost all elastic scattering is
diBractive. An admittedly weak explanation is that as
the energy increases substantially, the total cross sec-
tion of any particular channel usually decreases rapidly.
There is nothing special about the elastic channel, and
therefore its total cross section shouM decrease rapidly,
except that the diffraction requirements "force" the
elastic scattering to stay large in the forward direction.
Part of this argument is made explicit in the "sta-
tistical model theory" of large-angle scattering given
in Sec. II.

Most of the theoretical work has been concerned with
the diffraction region, where data are more abundant
and theoretical treatment is more straightforward.
Convenient kinematical parameters for describing the
process are s, t, and I, defined as follows in terms of
incident pion and proton four momenta, qt and pt,
respectively, and of the corresponding outgoing four
momenta, qs and ps.

The variable s is the square of the total c.m. energy;
and t is the square of the four-momentum transfer,
given also by

t= —2i tii'(1 —cos8), (2)

where q is the three momentum and 8 is the scattering
angle of the pion. For purposes of discussion we desig-
nate the diQ'raction region as the range of 0 for which

~
l

~
(0.8 (GeV/c)s. While no break in the cross section

exists at this value, it is found that almost all of the
forward elastic peak is included in this t region and that
the diffraction region theories are expected to hold
best for this region. When comparing the pion-proton
with the proton-proton system we shall use this same
separation point.

A large-angle scattering region of particular interest
which occurs in pion-proton and other elastic scattering
of unlike particles (but not in proton-proton scattering)
is the region near 0= 180'. As described in Sec. II, this
region is supposed to be dominated by processes com-
pletely different from those which produce the diffrac-
tion peak. There has been particular interest in the
possibility of a backward peak near 180'.

II. THEORIES OF PION-NUCLEON

A. General Consideration

1. Isotopic Spin Dependence

Pomeranchuk' and others have shown that as the

'I. Pomeranchuk, Zh. Eksperim. i Teor. Fiz. 34, 725 (1958)
Ltranslation: Soviet Phys. —JETP 7, 499 (1958}j;V. S. Bara-
shenkov, Usp. Fiz. Nauk 72, 53 (1960) Ltranslation: Soviet
Phys. —Usp. 3, 689 (1961)j.

energy increases, the total ir+p and ir p cross sections
shouM become equal. There is no proof that the total
elastic cross sections or the differential cross sections
should become equal, but all the theories of scattering
outlined below indicate strongly that the diffraction
scattering should become independent of isotopic spin.
This is probably not true for large-angle scattering,
particularly for the 180 region where the major dif-
ferences discussed below might be expected to occur.

Z. Forward E/astic Scattering

The scattering amplitude is defined by

(«/«)(8) = If(&) I', (3)

B. Theories of Di8raction Scattering

1. Optical Model

The partial-wave expansion for the scattering ampli-
tude is

00

f(8) = Q (2l+1) (1—r)i)Pt(cos8) .
25k L=p

The simplest derivation of the diffraction peak is then
obtained (as shown in the Appendix) by setting

L=M, g)=a, 0&l&L,

and

gi ——0,
where a, which is real and less than 1, is the amplitude
of the transmitted wave from a unit incident wave. The
quantity (1—a) is then the "opacity" and R is the radius
of the proton in this simple model.

The following results are obtained for the diffraction
region:

f(8) =-', (1—a)kR',

Jt(kR8) '—(8) = (1-a)'R4k'
dQ kate

o„,=2~(1—n)R'.

and the optical theorem states, neglecting Coulomb
scattering,

Imf (8)= (k/44r)o4. 4,

where k=
~
q~/A. Then

(do/dQ) (8) =
~
Ref(8)

~
+ (k /16trs)of 4s (5)

It is usually assumed from rough measurements and
from calculations using forward dispersion relations
that the Ref(8) is small compared with the Imf(8).
This assumption will be tested again with the present
data, but most of the diffraction theories are based on
a purely imaginary value of f(8)
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Although a more sophisticated optical model can be
made, io we will use only the simple Eqs. (8).

Z. Theories Based ort the Martdetstartt Represerttatiort

All relativistic and field-theoretic descriptions of
elastic scattering have come, at least partially, from the
Mandelstam representation. The basic idea, that the
scattering amplitude is to be derived by studying the
singularities in the cross channels which are the pion-
pion system, has been discussed in detail by Chew. "
Diffractive scattering in terms of the singularities of
the pion-pion system alone has been studied by a
number of authors. ""The general reasoning is based
on the fact that the diffraction peak occurs at small
negative values of t and the pion-pion singularities
occur at small positive values of t, whereas the crossed-
channel pion-nucleon singularities occur at very large
negative values of t. The supposition is then made that
the diffraction peak can be understood in terms of
closely lying pion-pion singularities. We may replace
f(0) by f(s,t) and factor out the t=O behavior of f(s,t)
so that

do/dQ= [f(s,t')]'= [f(s,0)]'[f(s,t)/f(s, 0)]'
Setting f(s,t)/f(s, 0) =F(s,t) yields

do/dQ= f(s,0)'F (s,t) .

f(s, t) = (14)

where the i sums over all the trajectories. While this
f(s, t) has a limited type of s dependence, there are too
many unknown functions to allow testing of the theory
by present diffraction data. Thus, Eq. (14) could fit
almost any data.

The applicability of the simple Regge theory to the
diffraction scattering problem has recently been brought
into serious doubt, not only by high-energy elastic-
scattering data' but also by unpublished calculations
reported to demonstrate the existence of cuts in the
complex cr (angular momentum) plane.

The number of unknown functions can be reduced by
assuming that at large s the I' trajectory is the most
important one since for small

I tI, crt (t) is larger than
other tr;(t). Keeping only the term containing the next
largest o, , say n~, we may write

3. The Eegge Theory

According to the ideas of Chew and Frautschi, "
Frautschi et al. ,

" and Drell, "pion-nucleon diffraction
scattering may be explained by the F (Pomeranchuk
or Vacuum), P, (Pomeranchuk prime), and p trajec-
tories. The scattering amplitude for large s and small
I tI is written

Finally, f(s, t) = (1/8srgs)
XIP (t)(s/so) "'+P (t)(s/s, ) 'I'&1,

f(s,O) = (1/87rgs)
(15)

X 0 s s - ~o) O s s -(o~ .

I
ql' do

7r dt
so that

p. (t) '
The high-energy approximation Ref(s,0) =0 and Eq. F(s t) —(s/s, )&~pi&&—&

(5) yields p. (0)

P 0 1 0
do m (do

I f(s,0) I' F(s t) =
I

F(s t) (12) Assuming nt (0)=1, the first two terms in F(s,t) are
dt

I
qI' ddt o

do/dt= —(o,.P/16zh')F(s, t) . (13)

Now the observation of high-energy diffraction scat-
tering has shown that F(s,t), i.e. , the shape of the dif-
fraction peak, is not very energy-dependent. Therefore,
the aim of relativistic diffraction theories has been to
produce an F(s,t) in which the s dependence is small
and the t dependence not only fits the data but has
some justification from the Mandelstam representation.
This has been done by Amati et ul."and by Lovelace. "
With our data the s dependence can be only roughly
examined, and we will confine ourselves to the simplest
Regge theory in examining it. Even if the Regge theory
were not right, it would still provide a convenient way
to parameterize the s and 3 dependence of the elastic
scattering.

"R.Serber, Phys. Rev. Letters 10, 357 (1963)."G. F. Chew, S iVatrix Theory of Strong Int-eractions (W. A.
Benjamin, New York, 1961).

' D. Amati, S. Fubini, and A. Stranghellini, Phys. Rev. Letters
1, 29 (1962); D. Amati et al. , Nuovo Cimento 22, 569 (1962}."C.Lovelsce, Nuovo Cimento 25, 730 (1962).

2 Re[p, (t)p,*(t)]
(s/s )no it)+ay i ti—2 (16)

lp (o)I'

Lacking knowledge of the p(t), these two terms can be
separated only by their s dependences. However, the
observed s dependence of F is small. This F(s,t) may
be rewritten making use of the following assumptions.
Considering rrt (t) =n, (t)+t), , Eq. (16) can be factored
to the following functional form:

F(»t)=I pt (t)/pt (0) I'(s/so)'"'" 'Ll+g(t)s '] (1&)

In the case of the I" trajectory, 6 is presumed to be
about 0.5. Thus, although it is predicted that the dif-

"G. F. Chew and S. F. Frautschi, Phys. Rev. Letters 7, 394
(1961)."S.C. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys.
Rev. 126, 2204 (1962)."S.D. Drell, in Proceedings of the 106Z Annual International
Conference on High-Energy Physics at CRRX (CERN, Geneva,
1962), p, 897.
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do. (do p(t) "/ s

dt ddt t e,P(0) use
(18)

For small
~
t~, the experimental data are well fit by

do/dt= (do/dt) t=s exp[A (s)tj. (19)
Thus, if

n(t)=1+n'(0)t and P(t)=P(0) exp[s)tj,

we may write

do/dt= (do/dt) t=s exp[(y+2u'(0) lns)tj, (20)

fraction scattering peak due to the Pomeranchuk tra-
jectory will shrink with increasing energy, the situation
may be altered by the presence of terms from other
trajectories. Only the leading term will be kept in the
following discussion, although the parameterization of
Eqs. (16) and (17) should be borne in mind. This same
point has been made by Hadjioannou et a/."in discuss-
ing the t dependence of pp diffraction scattering.

Continuing with the Pomeranchuk trajectory alone,
we may drop the subscript I' and write

then

0'= 180'—8,

( -/ (~)(8')=(1—a)' 'LB(k 8')j', (21)

where B(kR8)' is a function plotted in Fig. 1 for com-
parison with the diffraction-peak function [Jt(kR8)/
kR8]'. The ratio of the backward-peak height at 180'
to the forward-peak height at 0' is 1/k' R', and since kR
is the maximum angular momentum t. which enters
the reaction, the backward peak is 1/L' times the
height of the forward peak. Since I.=kR at, say, 4
GeV/c=10, the backward peak predicted in this way
is quite small in comparison with the forward peak.
The total backward elastic-scattering cross section in
this peak is

oelastic backward peak 0 78 (1 a) sr~ (22)

Z. Backward Peak from Partia/ Wa-ne Expansion

Blokhintsev" has shown how the same assumptions
which lead to the diHraction peak also lead to a peak at
180'. We have given an alternative derivation in the
Appendix, where we show that if

where
y= tl —2tr'(0) lnss.

C. Theories of Large-Angle Scattering

1. The Stutistica/-Mode/ Theory

Thus, this theory predicts a small backward elastic
peak whose total cross section goes inversely as k' or
approximately inversely as s. We shall examine the
data with reference to the existence of such a peak.

Fast et a/." have calculated the cross section for
elastic scattering with the scattering considered as just
one of the many final-state channels occurring in the
statistical model of high-energy elementary-particle
collisions. The statistical model is concerned with cen-
tral and not with peripheral collisions. Therefore, it may
yield that part of the elastic cross section which is not
given by the diffraction theories, all of which are con-
cerned with peripheral collisions. In effect, the sta-
tistical model assumes some probability for a "time-
like" intermediate state: an excited or "compound"
nucleon. This is in contrast to the "space-like" inter-
mediate state, or propagator, of peripheral models.
Time-like intermediate states appear to be a valid
physical concept at energies below 2 GeV (the resonance
region). The question of the validity of the statistical
model may be interpreted as asking whether the proba-
bility for the formation of time-like intermediate states
falls off only slowly with increasing energy and whether
it is through these states that some rare final states,
such as large-angle elastic scattering, are reached at
high energy. Fast et a/."find that the total nondiffrac-
tional cross section decreases exponentially with increas-
ing center-of-mass energy, according to the exponent
(—3.17E, ). They assume the angular distribution to
be isotropic in the center-of-mass system.

"F. Hadjioannou, R. J, N. Phillips, and W. Rarita, Phys. Rev.
I.etters 9, 183 (1962).

G. Fast and R. Hagedorn, Nuovo Cimento 27, 208 (1963);
G. Fast, R. Hagedorn, and L. W. Jones, ibid 2?, 856 (1963). .

(M' —m')'
cos8& —1

2[ q['s
(24)

Singh and Udgaonkar" have discussed briefly the back-
ward peak to be expected on the basis of the strip ap-
proximation to the Mandelstam representation. They
estimate that the width of the peak in terms of u should
be about four times the width of the forward peak in
terms of t. At 4 GeV/c the half-width would be 0.4
(GeV/c)' in terms of u, or 0.12 in terms of cos8.

Several authors have conjectured that sr+p elastic
scattering near 180' might be attributed mostly to a
neutron exchange [Fig. 2(a)]. If this very simplified
way of using the singularities of the cross pion-proton
channel is valid, sr p elastic scattering near 180' might

"D. I. Blokhintsev, Nuovo Cimento 23, 1061 (1962).
ss V. Singh and B. M. Udgaonkar, Phys. Rev. 123, 1487 (1961).

3. Backward Peak from a Neutron or Ãucleon Isobar Pole

As stated earlier, in principle, the elastic scattering
near 180' should be calculable from singularities in the
cross pion-nucleon channel. The relevant relativistic
invariant is now I, where

u= [(M'—m')'/sj —2
~ q ~

'(1+cos8) . (23)

Here M is the proton mass and m the pion mass. It
will be noticed that unlike t, which is 0 at 0=0 and is
always negative in the physical region, u= (M' —m')'/s
at 8= 180' and is negative only for
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.25

FzG. 1. The func-
tions LJr (kR8)/kR87'4
and LB(kR8)7' ver-
sus kR8.

discussion of Sec. IIC3 into the Regge language, in vr+p,
180' scattering we would hope to investigate the Regge
neutron trajectory.

The kinematic relation (24) causes a difFiculty in the
Regge treatment of the I channel. The basic idea of the
Regge theory is that the cosine of the scattering angle
in the cross channel should be much greater than 1.
For the t channel,

l.0 2.0

s—[(-,'t —m') '"—(-,'t —M') 't'g'
cose, —& 1+

2 (-,'t —m') 't'(-'t —M')'~'
(25)

lt R 8

be attributed mainly to the exchange of the —,', ~ nucleon
isobar [Fig. 2(b)j. In these surmises the hope is that
higher-order diagrams such as the ss, —,

' isobar for s-+P

and Fig. 2(c) for both ~+p and s. p will not change the
result much. But Cook et at."have shown that in m+p,
180' scattering the calculation based solely on neutron
exchange gives the absurdly large answer of 90 mb/sr.
Clearly, then, the other diagrams must be considered.
No one has found specific means of doing so, but an
unpublished calculation of Pomeranchuk" gives the
~+p, 180' differential cross section as about 1 mb/sr.
Ke will compare this prediction with our data, al-
though the means of calculation is not known to us.

4. Regge Theory for Large Arcgles

The differential cross section at large
~

t
~

values can
be fitted by Regge trajectories in the t channel because,
as shown in Eq. (17), there is considerable freedom in
the large

~

t
~

predictions. The question arises of how the
amplitudes from the t and I channels can be combined
if the values of I are of the same order of magnitude as
the values of t.

One solution is to follow Drell's suggestion" and
assume that the amplitudes from the I trajectories are
very small in comparison with those from the t tra-
jectory. Here we are saying in another way what was
said in the last section: From the standpoint of both
Mandelstam theory and Regge theory, the I channel
somehow contributes very little to the large-angle
elastic scattering, except perhaps near 180 . Therefore,
we will continue the s, t parameterization discussed in
Sec. IIB4 into the large-angle region, out approximately
as far as ~t

~

—2 GeV/c. In the proton-proton case the
shrinkage of the forward peak is most apparent at
large t values, which are outside the diffraction region.
YVe shall see if this is also true for the pion-proton case.

One may explore the contribution of I channel tra-
jectories near 8=180'. In particular, translating the

2' V. Cook, B. Cork, %. R. Holley, and M. Perl, Phys. Rev.
130, 762 (1963).

2~ Y. D. Soyukov, G. A. Leskin, D. A. Suchkov, Ya. Va.
Shalamov, and V. A. Shebanov, Zh. Eksperim. i Teor. Fiz. 41,
52 (1961) Ltranslation: Soviet Phys. —JETP 14, 40 (1962)7.

In the forward peak, s))t, and, thus, cos8g))1 for
s&)Mm; but for the I channel,

2[su —(ms —Ms)s]
cos8„~—1+

(u —m' —M')' —4m'M'
(26)

At u= (Ms —m')'/s, i.e., at 0= 180', cosa„=—1 for all
s, and at u =0, cosg„=+1for all s. To obtain a "large"
value of cos8, say 3 or 10, requires a fairly large value
of

~

u
~

as given in Table I. Now the Regge theory gives

TABLE 1. The values of cos8 at 4.0 and 10.0 GeV/c in s p elastic
scattering for particular values of cos8„.

cos8

—1.0
+1.0
+3.0

+10.0

4.0 GeV/cs. p
cos8

—1.000 180'
—0.974 167'
—0.925 158'
cannot be reached

10.0 GeV/cs. p
cos8 0

—1.000 180'
—0.992 173'
—0.987 171'
—0.941 160'

(a) tb) (c)

FIG. 2. Feynman diagrams for backward elastic pion-nucleon
scattering for the cases (a) ~+p ~ ~+p with neutron exchange,
(b) x p —+71=p with doubly charged ~

—
~ nucleon isobar ex-

change, and (c) 7rp —+ mp with one nucleon and two or more pions
exchanged.

a simple forward-peak prediction, once the Pomeran-
chuk trajectory is taken as dominant, because for small

~

t ~, cr&(t) can be taken as linear and the theory holds
best at t =0, which corresponds to 8=0. But in the
backward hemisphere there is the ambiguous region
extending from 0=180' to the angles listed in Table I
at which cos8„becomes large; and this includes the
region of small I, where the Regge theory would other-
wise be most applicable. Therefore, Regge predictions
of a backward peak, interpretable as a nucleon or
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nucleon isobar trajectory, are vague. In particular,
predictions of the s behavior, analogous to the predicted
shrinkage with increasing s of the forward peak, seem
dificult. It is only at energies much higher than those
in this experiment, i.e., cases in which the ambiguous
region has shrunk considerably, that the Regge pre-
dictions become clearer. Therefore, in spite of the
great interest in finding an effect of the nucleon .or
nucleon-isobar Regge trajectory at 180' pion-proton
scattering, our data force us to ignore this question
unless the Regge predictions are clarihed.

III. APPARATUS AND METHOD OF ANALYSIS

The pion beams were obtained from the Bevatron
of the Lawrence Radiation Laboratory. The x beam
was produced at 0' inside the Bevatron magnet and the
x+ beam was produced at 26' in a straight section. This
large production angle limited the maximum m-+ mo-
mentum to 3 GeV/c and led to difhculties in normaliza-
tion of the ~+ data due to proton contamination of the
beam. The momentum spread of the beam was &3%
at half maximum for the m. p and somewhat larger for
the m+p.

Figure 3 shows a schematic horizontal view of the
equipment. " The two small spark chambers 1 and 2
measure the angle of the incident pion. The double
spark chambers 3, 3' and 4, 4' measure the angles of
tracks going out the sides. The spark chambers 5 and
6 are spaced 2 ft apart in order to give a good angular
measurement of forward-going particles. The scintilla-
tion counters in Fig. 3 were operated in coincidence
circuits so that a signal had to be received in coincidence
by at least one left-hand and one right-hand counter in
order to pulse the spark chambers and record a
photograph.

Using a combination of mirrors, the vertical and
horizontal projections of the tracks in all spark cham-
bers were imaged onto a single 35-mm 61m frame. A
typical elastic scattering event is reproduced in Fig. 4.
Since the counters were designed to accept particles
from every point in the target making an angle of
~15' with the horizontal plane, the photographs

~~ The apparatus and technique of this experiment are further
discussed in E. Bleuler et ol. , Nucl. Instr. Methods 20, 208 (1962).

1 FOOT

FIG. 3. Schematic, scale diagram of the experimental arrange-
ment. SCI—SC6 are spark chambers, the black bars labeled C are
coincidence scintillation counters, and those labeled A are anti-
coincidence counters. The axial cylinder indicates the location of
the 18-in. liquid-hydrogen target.

generally show at least two roughly coplanar tracks.
Within wide limits, all events showing just two out-
going particles, A and 8, were measured to determine
angles and intercepts of the tracks 2 and 8, as well as
of the incoming pion track, m. These measurements
were then processed by a computer to select elastic
events according to criteria of coplanarity, vertex fit,
and agreement with elastic kinematics. If we let ~, A,
and B be the unit vectors in the direction of motion in
the laboratory of the incident pion, particle A, and
particle 8, respectively, then the degree of coplanarity
is defined by the angle p where sinp=es ~ (Ax 5)/

~

A & 8 ~. Given that 8g and 8s are defined from cos8g
= m A and cos8tt ——ee B, the degree of conformity of 8~
and 0~ with a particular kinematic curve is measured
by the distance D in degrees, defined as the perpendicu-
lar distance of the measured 8~-8~ point to the par-
ticular kinematics curve, as shown in Fig. 5.

Of course, the precison of the angular measurements
is limited by finite spark width, multiple scattering,
optical distortions, etc. , so that nonzero ranges of P and
D must be allowed. If these ranges are made too small,
real two-body 6nal-state events will be excluded. If
these ranges are made too large, 6nal-state events of
three or more bodies may have too large a probability
of acceptance. The elastic diffraction scattering has a
large total cross section, several millibarns in this
momentum range; and for these small angles the
background-event contamination was negligible. There-
fore, the diGraction scattering data were used to deter-
mine the ranges of P and D. We found that both P and.
D fit a normal error curve with standard deviations of
0.4' and 0.6', respectively. These directly measured
standard deviations in g and D agreed with those
calculated from the standard deviations in the direct
angular measurements. Calculations also showed that
P and D standard deviations were almost independent

FIG. 4. Photograph of an elastic scattering event taken from
the data film. Here 18 views of the 9 separate spark chambers
combined on one film may be seen. The liquid-hydrogen target
lies behind the fiducial plane containing the roman numerals.
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TanLz II. Elastic scattering ditIerential cross sections for 2.92-GeV/c s-+p; s= 6.38 (GeV)', Ins= j.85.

cos8 (da/dQ) (mb/sr)

—t[GeV/c]'
at center of

interval

—u[GeV/c]'
at center of

interval [4a /(k~g, t) g'(d~/dQ)

0.97
0.96
0.94
0.92
0.90
0.88
0.86
0.84
0.82
0.80
0.78
0.76
0.74
0.62
0.49—0.24—0.58

to 0.96
to 0.94
to 0 92
to 090
to 0.88
to 0.86
to 0.84
to 0 82
to 0.80
to 078
to 0.76
to 0.74
to 0.62
to 0.49
to —0.24
to —0.46
to —0.92

7.33 &0.64
4.80 a0.33
3.81 %0.29
2.30 &0.21
1.62 ~0.18
1.03 &0.13
0.87 %0.13
0.71 a0.12
0.53 ~0.11
0.39 &0.09
0.43 &0.10
0.27 &0.08
0.086+0.022
0.016~0.014
0.023&0.012
0.035&0.021
0.004+0.004

0.082
0.118
0.164
0.212
0.258
0.306
0.352
0,400
0.446
0.494
0.540
0.588
0,752
1.05
2.06
3.17
4.11

3.54
2.53
1.41
0.474

0.4654&0.0406
0.3048&0.0210
0.2419+0.0184
0.1460&0.0133
0.1028&0.0114
0.0654+0.0082
0.0552&0.0082
0.0451&0.0076
0.0336&0.0070
0.0248&0.0057
0.0273&0.0063
0.0171a0.0051
0.0055&0.0014
0.0010&0.00089
0.0015+0.00076
0.0022&0.0013
0.0002&0.0002

of Og and 0~, and could be used in considerations of
large-angle elastic scattering when the background was
important. Because of the loose criterion used in se-
lecting events for measurement, events were obtained
not only near the kinematics curves of interest, but for
a wide range of values of 0~ and 0~. This gave a dis-
tribution of background events in the 0~-0~ plane
which was found to vary slowly. If one considers an
arbitrary line in the 8~-0~ plane, the background events
which lie within one standard deviation in D of this
line and are coplanar to within one standard deviation
in P yield an average background cross section of 0.004
mb/sr. This, then, determines the lower limit to de-
tection of the differential elastic-scattering cross sec-
tion in the present experiment. As will be seen in Sec.

I20

lOO

80

60

40

20

204 40' 60~ 804 l 004 l 204 i 40o

FIG. 5. Kinematics of laboratory scattering angles for 4.0 GeV/c
elastic ~p scattering, with a typical data point shown to illustrate
the meaning of the distance D. The two possible curves for a given
measured pair of angles are shown where, for curve I, 8g=8,
8g=8g, and for curve II, Hg =8~ and gg ——8,

IV, the large-angle scattering cross sections are very
small, and this background is the principle source of
the errors quoted.

The large-angle cross section was determined as
follows. For a particular range of cose along the a. p
kinematics curve, all events coplanar to one standard
deviation in @ and within six standard deviations of D
on both sides of the ~ p curve were collected. The
events were distributed into equal intervals in D, and
a weighted least-squares fit was made using the number
of events in each D interval as the measured observable
and D as the independent parameter to the equation
of a linear background plus a Gaussian distribution of
elastic events around the kinematics curve. The errors
were then increased over counting statistics by a factor
proportional to the square root of p''4 for the fit as
described above. This factor was typically between 1.0
and 1.5.

The data were corrected for the nuclear interactions
and multiple scattering of the recoil particles in the
target, spark chambers, etc. The eRective d angle sub-
tended by the coplanarity counters was evaluated as a
function of 8~ and 8~ averaged over the target volume
for the different 0~ and 0~ relationships for each incident-
beam momentum. The effective target length corre-
sponding to the different scattering angles was also
computed and used with the above factors to convert
corrected numbers of elastic events to differential cross
sections. The results and errors presented here for large-
angle scattering differ from those reported earlier'
primarily as a result of the explicit analysis subse-
quently performed.

The following data sample is drawn from over 50 000
photographs and corresponds to from 1500 to 1800
elastic events in each of the four data sets.

24P. Cziffra and M. J. Moravscik, University of California
Radiation Laboratory Report UCRL Report 8523, 1958
(unpublished).
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TABLE III. Elastic scattering diiferential cross sections for 3.15-GeV/c s' p; s =6.81 (GeV)', ins= 1.92.

cos8

0.97 to
0.96 to
0.94 to
0.92 to
0.90 to
0.88 to
0.86 to
0.84 to
0.82 to
0.80 to
0.78 to
0.76 to
0.66 to
0.56 to
0.37 to

—0.13 to

0.96
0.94
0.92
0.90
0.88
0.86
0.84
0.82
0.80
0.78
0.76
0.66
0.56
0.37—0.13

—0.47

—0.47 to —0.92

(d~/dn) (rnb/sr)

9.30 &0.64
6.15 &0.34
4.99 ~0.29
3.15 ~0,23
2.08 &0.19
0.96 ~0.11
0.64 a0.11
0.45 ~0.09
0.48 &0.09
0.26 &0.07
0.31 ~0.08
0.069&0.022
0.036&0.019
0.036%0.017
0.019&0.010

0.000+0.007—0.000

0.003+0 003—0.003

—tLGeV/c j'
at center of

interval

0.090
0.128
0.179
0.231
0.282
0.333
0.384
0.436
0.487
0.538
0.589
0.743
0.999
1.37
2.25

3.33

4.34

—zc(GeV/c]'
at center of

interval

3.65
2.76

1.69

0.674

[4~/(hog. g) j'(do/dn)

0.4554 &0.0313
0.3012 &0.0166
0.2~~A &0.0142
0.1543 a0.0113
0.1019 &0.0093
0.0470 &0.0054
0.0313 &0.0054
0.0220 &0.0044
0.0235 &0.0044
0.0127 &0.0034
0.0152 &0.0039
0.0034 &0.0011
0.0018 &0.00093
0.0018 &0.00083
0.00093&0.00049

0.00000+—0.00000

0.00015+ '—0.00015

IV. RESULTS

The results are tabulated in terms of do/dQ (mb/sr)
and (do/dQ)/(ho~/4')' versus cose and t in Tables II
through V. The errors given are statistical except for
the large-angle points, where the statistical errors are
scaled up somewhat, as discussed in Sec. III. In addi-
tion to the quoted statistical errors, there is a normaliza-
tion uncertainty in the 7r-p data of &8/~ and in the

a+p data of possibly +Io%%uq (due to uncertainty in the

proton contamination of the a.+ beam).

2.92 GeV /c m p ~ a p

The data are plotted in Figs. 6 through 9 on a semi-
logarithmic scale versus t. The energy-independent ex-
ponential character of the diRraction peak is readily
apparent. At 3 GeV/c there is some contribution to the
elastic cross sections out to rather large angles (large
~t~). At 4 and 5 GeV/c, however, the cross section
appears to fall to very low values in the backward
hemisphere, and our data in this region permit only
upper limits to be placed on the elastic cross section.
In Fig. 10 the data are plotted with all negative pion
points on one graph to emphasize the similarity in
slopes of the diRraction peak. In Fig. 11, a log-log graph
is presented with all four sets of data included for com-
parison with such theories as Serber s diGraction calcu-

100.
5, 15 GeV/c ~ p~» p

[
I

1
I

1

&

[
I

FIG. 6. Elastic scat-
tering differential cross
sections for 2.92-GeV/c
~+p. The error's shown
are statistical. An addi-
tional normalization un-

certainty of +&o%, is
not indicated. The open
circle at t =0 is the opti-
cal theorem prediction.

1a—

i

.01—

FIG. 7. Elastic
scattering differen-
tial cross sections for
3.15-GeV/c s p. The
errors shown are sta-
tistical. An addi-
tional normalization
uncertainty of &8+&
is not indicated. The
open circle at t=0 is
the optical theorem
prediction.

10.r

,01

.001 I I

3e

-1{GeV/c)
4. a

'1 i 1 i 1

1, 2, 5.
-1 (Ge V/c)
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TABLE IV. Elastic scattering differential cross sections for 4.13-GeV/c s p; s=8.65 (GeV)p, Ins=2. 16.

cos8

0.98
0.96
0.94
0.92
0.90
0.88
0.86
0.84
0.82
0.80
0.76
0.72
0.60
0.48

to 0 96
to 0.94
to 092
to 0.90
to 0 88
to 0.86
to 0.84
to 0 82
to 0.80
to 0 76
to 072
to 0.60
to 0.48
to —0,26

—0.26 to —0.48

—0.48 to —0.93

(dn/dO) (mb/sr)

11.39 +0.58
5.92 &0.34
3.30 &0.24
1.96 ~0.19
0.80 &0.12
0.60 &0.10
0.45 ~0.09
0.22 &0.06
0.21 &0.06
0.15 &0.05
0.08 &0.04
0.013&0.008
0.017+0.012
0.005&0.003

0 000+OI005—0.000

0.000+0.003—0.000

0.104
0.173
0.243
0.312
0.382
0.451
0.520
0.590
0.659
0.763
0.902
1.18
1.60
3.09
4.75

5.92

5.26
3.77

2.10

0.940

—tLGeV/cg' —uPGeV/cg'
at center of at center of

interval interval

L4~/(kate.

g) j'(dn/dO)

0.4514 +0.0230
0.2346 &0.0135
0.1308 &0.0095
0.0777 ~0.0075
0.'03)7 %0.0048
0.0238 &0.0040
0.0178 &0.0036
0.0087 &0.0024
0.0083 &0.0024
0.0059 &0.0020
0.0032 ~0.0016
0.00052~0.00032
0.00067&0.00048
0.00020&0.00012

0.00000+0.00020—0.00000

0.00000+0.00012—0.00000

IOO.

4.l5 GeV/c m. p w p

I l I

lation. ' It is apparent that the scatter in the data for

~

t
~
)1.0 (GeV/c)' precludes any statement concerning

a fit to a power-law formula. Finally, the data do not
show evidence of a backward peak (about 180'), al-
though at 3 GeV/c a slight rise in the cross section
behind 90' c.m. is not excluded.

V. DISCUSSION OF THE DIFFRACTION PEAK

A. Shaye of the DiBraction Peak

From Figs. 6 through 9, or from Fig. 10 one can
observe that the di8raction peak is at least roughly
exponential for ~t~ out to 0.8 (GeV/c)'. A purely ex-
ponential diGraction peak such as that predicted by the
simplest Regge theory (Sec. IlB3) would be described by

do/dQ= exp(A p+A ttj. (2 "/)

4.95 aeV/c ap~m'p
I l

I O.—K

b o
Cg

b

.I—

o

.0I—
.0I—

.00 I
I

2.
I I

3
2- I (Ge V/c)

5.
I

6.

FIG. 8. Elastic scattering differential cross sections for 4.13-
GeVjc m. p. The errors shown are statistical. An additional nor-
malization uncertainty of &8% is not indicated. The open circle
at t =0 is the optical theorem prediction,

I

e.
I

6.
I I I.00 I

I, ? 5.
-t(GeV/cP

FIG. 9. Elastic scattering differential cross sections for 4.95
GeV/c p p. The errors shown are statistical. An additional nor-
malization uncertainty of &8% is not indicated. The open circle
at t =0 is the optical theorem prediction.
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—II GeV/cg'
at center of

interval

—uLGeV/c J
at center of

interval(de/dQ) (mb/sr) L4s/(kog, i) g'(da/dQ)

0.4453&0.0223
0.2257&0.0103
0.1050&0.0075
0.0621&0.0062
0.0412&0.0048
0.0213&0.0034
0.0089&0.0024
0.0062&0.0020
0.0023+0.0010
0.0012+0.00086

0.0000+0.00048—0.00000

o.oooo+O 0OO5'—0.00000

p oppo+0. 00027—0.00000

o.oooo+—0.00000

0.0000+0.00027—0.00000

0.0000+0.00020—0.00000

cos8

0.127
0.212
0.296
0.381
0.466
0.550
0.635
0.720
0.804
0.889

1.02

12.98 &0.65
6.58 ~0.30
3.06 ~0.22
1.81 &0.18
1.20 ~0.14
0.62 &0.10
0.26 &0.07
0.18 %0.06
0.068%0.030
0.034%0.025

p ppp+Oi014—0.000

p pop+0. 015—0.000
0.000+0.008—0.000

o.ooo+0 002—0.000
o.ooo+ 0 8—0.000
o.ooo+—0.000

0.98 to 0.96
0.96 to 0.94
0.94 to 0.92
0.92 to 0.90
0.90 to 0.88
0.88 to 0.86
0.86 to 0.84
0.84 to 0.82
0.82 to 0.80
0.80 to 0.78

0.78 to 0.74

0.74 to 0.57

0.57 to 0.38

0.38 to —0.21

—0.21 to —0.55

—0.55 to —0.93

1.46

6.172.22

3.87 4.52

5.84 2.55

7.37 1.02

fitting procedure. For later use, (do/dQ)s ——exp/A sj is
also listed in Table VI. P(x ) is the probability of ob-
taining a larger x' than the y' value obtained in the
particular fit. The observation of the exponential nature
of the diffraction peak is confirmed for the interval
0( I, tt &0.4 (GeV/c)' for three of the sets of data;
only the 3.15 GeV/c s. p shows a low E(x').

However, on extending the fits to values of ~tI up
to 0.8 (GeV/c)', it is clear that the "tail" of the dif-
fraction peak flattens out from (e.g. , rises above) a
purely exponential behavior. This is made more apparent
from the values of A~ fitted to the data in the interval
0.4&

~

I
~
&0.8 and 0(

~

tI &0.8, which are smaller than
the values of A& fitted only to the data within the in-
terval 0&

~

t
~
&0.4. Thus, the linear fit appears adequate

for the latter range of
~
t(„butis not as satisfactory for

the larger range of ~ItI. Only for the 4.95-GeV/c data

The test of the exponential nature of the diffraction
peak is made quantitative in Table VI, where the
parameters As and Ai of Eq. (2'/) are tabulated. These
parameters were obtained by a weighted least-squares

I I I I I I I I I

40
O, I— 4.I3 GeY/c

3,15 GeY/c

+ 4,95 GeY/c

b~&

L .OI—
b~e 0+0 LO

'
I I I lllllI I I I II

2.92 GeV/c
OIA a

4'a

A

+ 3.I5 GIV/c v
A. 4.I3 GeV/c w

a 4,95 GeV/c ~4 0
.IO—

FIG. 11. Normal-
ized elastic differen-
tial cross sections for
all data from this ex-
periment plotted on
a log-log scale in
order to examine pos-
sible power law de-
pendence. Error bars
are not shown.

Op
+op,

.OOI—

bg
DIO-

bII
0 0

+A
d 0+ + 4a0

A
A

.OO IO—

.OOO I
I I I I I I I I I I I I

O .2 .4,6 .8 I.O i.2 l.4 I.S i.8 2.0 2.2 2& 2k
-t (GeV/c)

!
*0

+
I I I I III1

IO.

FIG. 10. Normalized elastic differential cross sections for the
x p data superposed on one graph. Error bars are not shown in
order to clarify close-lying points.

I I I I I I III I I I I I lilt
.I I.O

-t(GeV/c )
2

OOIO"

TABLE V. Elastic scattering differential cross sections for 4.95-GeV/c s p: s=10.19 (GeV)s, lns= 2.32.
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TAsLz VI. Values of the coefficients in the expression do./dO= exp(A0+A 1t) fit to the data over
different intervals of four-momentum transfer, t.

System

pi b (GeV/c)

minimum
~

t
I

(GeU/c)2

0& It~ &0.4 (GeV/c)'

0.4& ItI &0.8 (GeV/c)'

0& tI~ &0.8 (GeV/c)'

(da/dt's), (mh/sr)
A()
A1 (GeV/c)-'
~(x)
A, (Gev/c)~
p(x')

A1 (GeV/c) 2

&(x')

2.92

0.082

12.4 a0.9
2.52~0.07
7.6 a0.3

0.20

5.6 ~0.7
0.40

6.6 +0.3
«0.01

3,15

0.090

21.0 ~1.3
3.04~0.06
7.9 +0.3

0.02

5.2 &1.0
0.05

7.5 %0.2
«0.01

4.13

0.104

27.6 &1.8
3.32+0.07
8.4 a0,3

0.20

4.7 &0.6
0.40

7.5 w0. 2
«0.01

4.95

0.127

32.5 &2.4
3.48w0. 07
7.8 &0.3

0.10

7.8 &0.8
0.90

7.4 &0.2
0.30

da/dQ= exp(A e+A rt+A 2t') . (28)

Figures 12 through 15 display the data plotted only to
t= —1.4 (GeU/c)', with the curves of Eq. (28) corre-

is P (x'))0.01 for the linear fit over the interval
o&

gati

&o.8.
By adding a quadratic term, the data can generally

be fit much better over the larger range of
~

t ~, so that
in Table VII fitted quantities are listed for the equation

sponding to values of the coeKcients from Table VII
Lo&

~

t
~

&0.8(GeU/c)'j plotted for comparison.
While Eq. (28) is an empirical expression suggested

by the discrepancies of Eq. (27), the plausibility of such
an expression is also suggested by the arguments of
Sec. II. Thus, in the context of the simple Regge theory,
cr(t) may be nonlinear, P(t) may contain a dependence
other than expLyt], or the contributions of other poles
may modify the t dependence as in Eq. (17).

From Tables VI and VII there appears to be little

IOO

2,92 GeV/c 7r+p ~'p

I I I I I I

5 l5 GeV/c m p~n p

I I I I I I I I

IO IO—

der mb I—
dQ sr

dtr mb I—

O.I—

o

I I I I I I I I I I I I

, I .2,3 . t .5 .6 .7 .8 .'9 I.O I.O l.2 1.3 I.&

-I l GeV/c} 2
.Ol I I I I I I I I I I I I I

,I .2 .3 .4 .S .6 .7 .8 .9 LO ll I.R . I.$ L,4
-t (Ge V/c)

E'zo. 12. Elastic scattering differential cross sections for 2.92-
GeV/c ~+p over a limited t range together with the fitted curve
da/dQ=exp(AD+Art+Aqt~) over the range 0& It ~

&O.g (GeV/c)2.
The open circle at t=0 is the optical model prediction.

Fzo. 13. Elastic-scattering differential cross sections for 3.15-
GeV/c ~ p over a limited t range together with the htted curve
do/dQ=exp(Ab+Art+A2t') over the range 0&

I tI &0.8 (GeV/c)'.
The open circle at t=0 is the optical model prediction.
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TABLE VII. Values of the coefficients in the expressions d~/dQ= exp(A p+Art+A ptp) fit to the
data over different intervals of four-momentum transfer, t.

System

p l„b (GeV/c)

0&
~ t~ &0.4 (GeV/c)'

0 &
~
t

~
&0.8 (GeV/c)'

0&
~ t~ &1.0 {GeV/c)'

0 &
~
t

~

&0.8 (GeV/c)'

0&
~
t

~
&1.0 (GeV/c)'

0 & (t
~

&
~ (

tamx (GeV/c)'

(do/dQ) p {mb/sr)
Ap
A 1 (GeV/c)
A 2 (GeV/c) 4

~(x )

(do./dQ), (mb/sr)
A p

A, (GeV/c)
A 2 (GeV/c) 4

&(x')

(do'/dQ) p (mb/sr)
A p

A (GeV/c)
Ap (GeV/c) 4

~(x )

(da/dQ) p {mb/sr)
A p

A 1 (GeV/c)
A (GeV/c)
~ (x')

(do/dQ) p (m.b/sr)
A p

A 1 (GeV/c)
A (GeV/c)
~ (x')

~

t ~,„(GeV/c)'
(do'/dQ) p (mb/sr)
Ap
Ar (GeV/c)
A 3 (GeV/c)-6
~(x )

2.92

16.9 &3.0
2.8 ~0.2

11.0 +1.8
7.2 a3.8

0.60

14.2 &1.4
2.7 a0.3
9.2 %0.7
4.0 a 1.1

0.20

13.5 %1.3
2.60 &0.09
8.8 &0.7
3.2 ~1.0

0.10

12.5 +1.0
2.53 a0.08
7.8 +0.4—3.1 &1.0

0.05

11.9 &0.9
2.48 &0.07
7.5 ~0.4-2.1 a0.8

0.05

4.1
9.0 a0.5
2.19 &0.05
6.1 a0.2—0.308%0.017

«0.01

3.15

14.8 a2.2
2.7 a0.2
5.2 a 1.4—7.4 %2.8

0.15

22.0 &2.2
3.1 &0.1
9.6 ~0.7
2.9 a1.1

«0.01

22.6 a 1.9
3.12 &0.08
9.9 &0.6
3.2 a0.8

«0.01

20.9 &1.6
3.04 %0.08
8.9 W0.4-3.0 a 1.2

0.01

20.4 &1.3
3.02 %0.06
8.7 a0.3—2.5 ~0.6

«0.01

4.35
13.1 a0.6
2.57 &0.05
6.4 ~0.5—0.286&0.015

«0.01

4.13

29.6 a4.6
3.4 &0.2
9.5 &1.4
1 .4 a2.7

0.05

35.7 a3.5
3.6 &0.1

11.5 a0.7
5.5 +0.9

0.20

33.6 a2.8
3.51 &0.08

11.0 &0.5
4.7 a0.7

0.10

30.9 &2.3
3.43 %0.08
9.7 &0.4-4.7 a0.7

0.30

28.1 %1.8
3.34 &0.07
9.1 &0.3-3.2 a0.5

0.10

5.9
16.2 &0.7
2.78 &0.05
6.3 ~0.4—0.156&0.006

«0.01

4.95

41.2 &10.6
3.7 % 0.2
9.7 & 2.3
3.6 & 4.9

0.40

34.3 & 4.0
3.5 & 0.1
8.1 W 0.7
0.9 & 1.0

0.30

32.6 % 3.4
348 & 0.1
7.6 & 0.7
0.3 & 0.9

0.40

32.8 & 2.9
3.49 + 0.9
7.7 & 0.4—0.5 & 0.8

0.30

31.6 ~ 2.6
3.45 & 0.08
7.4 ~ 04
0.04 a 0.6

0.40

7.4
23.6 & 1..2
3.16 ~ 005
6.3 ~ 0.2—0.105% 0.005

«0.01

choice between Eqs. (27) and (28) in the interval
0(

~

t
~

(0.4. However, the P(x') is increased signifi-

cantly for the 4.13 and 2.92 (GeV/c) data by including
the ts term of Eq. (28) over the interval 0&

~
t~ &0.8.

The consistently poor fit of the 3.15-GeV/c data to
Eqs. (27) and (28) is not understood. Unless a sys-
tematic error entered into the data, either there is an
unusual statistical fluctuation in some data points or
the physics at this energy is basically different. Com-
parison of the data curves and the A parameters reveals
that the 3.15-GeV/c data is at least qualitatively
similar to the other data.

Average values of A & and A 2 can be found by taking
the values of the A parameters for Eq. (28) fitted over
the interval 0&

~

t
~

(0.8 as the most significant, and by
noting that there are no significant differences between
the data or the values of A ~. The average value of A ~

for the four curves is 9.6 (GeV/c) —', and that of As is
3.3 (GeV/c) '. Since the P(x') of obtaining the experi-
mental values of A ~ and A 2 from these average values is
0.05 and 0.02, respectively, we cannot say that all the
curves are characterized by the same A & and A 2. But
we can use these average values for comparison with

the average Ai of 7.9 (GeV/c) ' obtained from Table
VI for the interval 0&

~
t~ &0.4. These two averaged

f ts give

0&
~

t
~
&0.4 (GeV/c)

(drr/dQ) = (do/dQ) p expL7. 9tg,

o&
I
t

I
(o.8 (GeV/c)'

(29)

(do/dQ) = (do/dQ) p exP/9. 6t+3.3ts],

which serves to emphasize further that there is a sub-
stantial deviation from the simple exponential when

~
t~ is extended to 0.8 (GeV/c)'.

Of course, the quadratic terms may still be important
at smaller

~

t ~; our measurements do not go to small
enough angles to allow exploration of this possibility.

B. The Forward Scattering Cross Section

Table VIII lists the square of the imaginary part of
the forward scattering amplitude, (kai, p/4pr)s, and the
forward scattering cross sections (do/dQ)p obtained by
the various 6tting methods of Sec. VA. The errors given
with the (do'/dQ) p quantities are derived from the
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TAnLE VIII. Total cross sections, ~i, values of (koi/4ir)p, and values of (dp/dQ) at 0' extrapolated according to the various fits of
Tables VI and VII. (The ratio, (It, of the extrapolated value of (do/dQ) p to (kp i/4ir)p is tabulated in each instance. The total cross sec-
tions are taken from Refs. 26 and 27.)

System

pi b (GeV/c)

o.«b, i (mb)
k (cm ')

(kp i/4pr)P (mb/sr)
normalization uncertainty

exp (A p+A it)
0 &

~

t
~
(0.4 (GeV/c)'

exp (A p+A it+A it')
0& ~t~ (0.4 (GeV/c)'

exP (A p+A it+A its)
0& ~It~ &0.8 (GeV/c)'

(dp./dQ) p (mb/sr)

(do/dQ) p (mb/sr)

(do/dQ) p (mb/sr)

2.92

28,7 +0.5
0.549X10'4

15.8 &0.5
30%

12.4 a0.9
0.79&0.24

16.9 &3.0
1.07&0.37

14.2 &1.5
0.90&0.29

3.15

31.3 &0.5
0.574X 10'4

20.4 &0.7

21.0 %1.3
1.03+0.11

14.8 ~2.2
0.72&0.17

22.0 &2.2
1.08%0.14

4.13

29.9 a0.5
0.668X 10&4

25.2 &0.8

27.6 &1.8
1.09&0.11

29.6 &4.5
1.17&0.20

35.7 ~3.4
1.41&0.18

4.95

29.1 & 0.5
0.739X 10'4

29.2 ~ 1.0
8%

33.2 & 2.7
1.14+ 0,14

41.2 ~10.1
1.41m 0.35

34.3 + 3.9
1.18m 0.14

least-squares fitting procedure. At each energy an
estimated over-all normalization uncertainty is also
listed. For the pr+p data this error is large and precludes
any meaningful comparison. The ratio (R= (do/dQ)p/
(ko«p/4pr)s include the errors on each quantity and the
normalization error.

First we observe that the (do/dQ)p values at a par-

ticular energy vary according to the fitting method, the
"quadratic" fits usually giving a higher value than the
"linear" fit. Considering just the pr p data, we next
observe that in eight out of nine cases the ratio (R
= (do/dQ)p/(ko. «p/4pr)' is greater than 1.00, indicating
a real part to the forward scattering amplitude. Of
course, in each case the error is such as to allow the

4.!5 GeV/c + p~vr p

laa l I I l I I I I I I I 100

4.95 GeV/c m' p~ e p

I0

I—d& mb
dQ er

der mb I—
dQ sr

I I I I I I I 1 1 1 I I I

.I .2 2 4 .5 .6 .7 .8 .S I,O I.I l.2 I.3 l.4
-I (GeV/c)2

FIG. 14. Elastic scattering differential cross sections for 4.13-
GeV/c pr p over a limited t range together with the Gtted curve
dp/dQ= exp(A p+A it+Apts) over the range 0(

~
t

~
&0.8 (GeV/c)'.

The open circle at t=0 is the optical model prediction.

T

I I I I I I I I I II
.2 .3 .4 .5 .6 .7 .8 .9 LO I. I L2 L3 l.4

-&IGeV/c)

FiG. 15. Elastic scattering differential cross sections for 4.95-
GeV/c 7r p over a limited t range together with the 6tted curve
dp/dQ= exp(Ap+A it+Apts) over the range 0&

~
t

I &0.8 (GeV/c)'
The open circle at t =0 is the optical model prediction.
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TABLE IX. Total cross sections, 0&, and total elastic cross sections, 0'e& ti„where 0.,l t,, is the integral under the data points plus the
contribution from k=0 to the first data point taken according to the Gts of Tables VI and VII. LIn the case of the tr+p data, where
normalization is less certain, a value of 0,1 ti, is also given in which the data are scaled so that the linear fit passes through the optical
theorem point (ktrt/4tr)'. ]

System

pi.b (GeV/c)

trtotat (mb)

treteetie (mb) for:
1. exp(A0+AIt) fit:

0 &
~
i

~
&0.4 (GeV/c)s

ere lactic/trtotal

2. exp(A0+AI)+A2t') fit:
0& (t~ &0.8 (GeV/c)s
treiaetic/trtotal

3. fit to optical point
exp(A 0+A It)
0& ~t~ &0.8 (GeV/c)e
&elastic Ototal

4. Normalization shifted to
allow linear fit to pass
through optical point
&elastic Ototal

2.92

28.7a0.5

4.6~1.5

4.8&1.0
16.7%

5.1&1.0
17.8%

5.9~1.0
20.6%

3.15

31.3&0.3

6.2&0.7
19.8%

6.4+0.8
20.4%

6.1&0.7
95

4.13

29.9&0.5

5.9a0.6

6.3&0.8
21.0%

5.6&0.6
18 7'Po

4.95

29.1~0.5

6.5~0.7
22

6.5&0.8
22.4%

6.1+0.7
21.0%

ratio to be 1.00. A weighted average over the data and
over the three 6tting methods results in the following
values for the ratio R:

(R= 1.20+0.05 for 4.13 and 4.95 data combined,

(R=1.12&0.04 for all ir P data.

Therefore, if the differential cross section behaves as
an exponential in I for small ~t~, the ~Ref(0)~s/

~
Imf (0)

~

' may be about 0.1 to 0.2 in this energy range.
In order for the

~
Ref (0)

~

' to be smaller, the differential
cross section must flatten out a little for very small

~

t ~.
If the method of Cronin" is followed, so that single-

integral dispersion relations are used to calculate the
value of LRef(0)]', one finds that the LRef(0)]' aver-
aged over this momentum range is about 0.5 mb. As
this yields (R—1.017, the measured (R=1.12+0.04 is
too high by 2.5 standard deviations.

This can be interpreted in three ways. First, the nor-
malization of the data may be wrong. Second, the ex-
ponential form, and particularly the use of the quadratic
term, may be wrong for very small

~

t
~

. Thus, the linear
exponent gives an average (R of 1.09+0.06, which is
lower than the average (R obtained when all the 6tting
methods are used. The third interpretation is that the
foward dispersion relations are wrong, but this in-
volves such a fundamental relationship in field theory
that much stronger evidence would be required than is
presented here. Therefore, our preference for an ex-
planation goes 6rst to a systematic error in the nor-
malization of the differential cross section and second
to the possibility of an incorrect form having been
used for dtr/dII at very small ~I~.

s' J. W. Cronin& Phys. Rev. 118, 824 (1960).

It may be noted that the ratio (R appears, from the
data presented here, to increase monotonically with
incident pion energy. This same trend is consistent with
the value of (R determined in preliminary analysis of
2 GeV/c ir p data taken at the same time as these
data, and this trend is also consistent with the results
of Brandt et al.8

C. The Total Elastic Cxoss Section

In Table IX we present the total elastic cross section
according to the various fitting methods used to ex-
trapolate the data to small angles. In each case the
elastic cross section is evaluated from the experimental
data points for all values of t greater than the minimum
observable. The fitted curves are used only to estimate
the cross section between these minimum measured
points and the point t=0. We have also included in
Table IX an elastic cross section based on extrapolation
to the optical theorem point at t=0.

As a result of more careful normalization, extrapola-
tion, and background subtraction, the elastic cross sec-
tions of Table IX average a few percent lower than the
preliminary values given earlier. The total cross sec-
tions given are from the smooth curve of Diddens et ul."
These values average slightly higher than the ones ob-
tained earlier"; consequently, the ratios of elastic to
total cross sections (averaging about 20'Po for the tr

data) appear to be in somewhat closer agreement with
the optical model proposed by Serber" (0.185 for t) = 1)

"A. N. Diddens, E. W. Jenkins, T. F. Kycia, and K. F. Riley,
Phys. Rev. Letters 10, 262 (1963).

7 M. J. Longo and B. J. Moyer, Phys. Rcv, Lptterz 9, 466
(1962).
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than was indicated earlier. But from Table IX it is clear
that, in addition to normalization uncertainties, the
exact value of the total elastic cross section is sensitive
to the manner in which we extrapolate to t=0. These
data must be interpreted accordingly.

Then the quantity (1—a) was found from the equation

ot,,t, 2ir (1———a)R2

The results are given in Table X.The maximum kE sing

l ABLE X. Nuclear radius (R and opacity (1—u) calculated from a
simple optical model to fit to the data at each energy.

System 'p 7 p p & p

Pl b (GeV/c)
kR
R (10 "cm)
(1—a)
&(x'l

2.92
6.25&0.3
1.14%0.05
0.35w0.04

0.04

3.15
6.25~0.3
1.09%0.05
0.42%0.04

&0.01

4.13
7.05w0.3
1.05+0.05
0.43&0.04

0.10

4.95
7.25~0.3
0.98a0.04
0.47&0.04

0.05

used was about 3.0, corresponding to
~

t~ of about 0.3
to 0.4 (GeV/c)'. Only the most forward points were
used because the simple optical model with a uniform
opacity drops below the experimental points for larger
angles, making it impossible to get any meaningful fit.
For example, if at 2.92 GeV/c the next two points are
also used to obtain a value for kR, the kE. changes from
6.25 to 6.1 and the minimum y' increases from 8.4 to
17.0. As there are 3 degrees of freedom, this corre-
sponds to a much worse fit.

The values of R are quite similar to those found at
some other momenta in 7r p elastic scattering. Thus, at
1.43 GeV/c, R= 1.08X10 "has been reported" and at
5.17 GeV/c, R=1.04X10 " has been reported. " Our
average value for R for the m p system is (1.04&0.03)
X10 " cm. The probability of these values having
come from the same true value is 20%.

The optical model prediction of Serber' cannot be
tested easily by our differential cross-section data; the
statistical accuracy of the data for

~

t
~
& 1.0 (GeU/c)' is

poor, and it is only for these large
~

t
~

values that sig-
nificant deviations between an exponential- and a

M. Chretien, J. Leitner, N, P. Samios, M. Schxvartz, and
J. Steinberger, Phys. Rev. 108, 383 (1957)."R.G. Thomas, Phys. Rev. 120, 1015 (1960).

D. The Simple Optical-Model I'it
to the Diffraction Peak

The forward part of the diffraction peak was used
to evaluate R and (1—a) in the simple optical model
for a partially absorbing nucleus. A weighted least-
squares fit was used to evaluate E. from the equation

do k2ot, P Ji(kR sing)—(0) =
dQ 16m' kE sing

power-law fit can be expected. Yet our data are suffi-
cient to demonstrate that the differential cross sections
for large

~
t~ fall more rapidly for 4 and 5 GeV/c than

for 3-GeV/c scattering. This is in disagreement with
an optical model containing no energy dependence. All
the x data are plotted in Fig. 11 on a log-log scale.

E. The Variation of the Diffraction-Peak Width
and Shape with Energy

While the simplest application of the Regge theory
to the diffraction peak through Eq. (19) may be in-

applicable in principle, the exponential shape of the
peak allows one to use the parameterization of Eq. (20)
as a rough test of the variation of the diffraction-peak
width with energy. In a previous paper, ' A& was taken
from our data and other published results, and it was
shown that there was no statistically significant evi-
dence for a charge of Ai with energy (specifically with
lns) from 3 to 16 GeV. The same conclusion holds for
all the fits we have tried. We find no systematic change
in the various sets of exponential parameters with s,
and, specifically, we see no shrinkage of the diGraction
peak for small ~I ~. We may now compare our average
A i of 8.0&0.2 (GeV/c) ' for the 0.0& t

~

&0.4 (GeV/c)
interval with the recent measurements of Foley et al.'
of ~ p elastic scattering in the 7- to 17-GeV/c region
and with the measurements of Brandt et al. ' at 10
GeV/c. Over the ~I

~

interval 0.2 to 0.4 (GeV/c)', the
Brookhaven published graphical data yield A&—7.7
(GeU/c) ', and the Brandt data yield Ai ——7.5+0.3
(GeV/c)'. The excellent agreement demonstrates that
the statement of no shrinkage made by Foley et al. can
be extended down to 3.0 GeV/c. The constancy of Ai
over this entire energy range is rather remarkable.

Our three-parameter fit over the interval 0& ~I
~

&0.4
(GeV/c)' yields average values of Ai ——8.9+1.0 and
A2=1.2&1.8; over the interval 0& ~t~ &0.8 (GeV/c)'
it yields A&=9.6~0.4 and A2 ——3.3~0.5. For this same
interval at 10 GeV/c, Brandt eI at. give A i= 11.4+1.07
and A2 ——8.9+2.8. Since these 10-GeV/c parameters are
diGerent from both sets of ours, there seems to be a
definite change of shape of the diffraction peak over
the 3- to 10-GeV/c region, although the average slope
(using just a two-parameter fit) does not change over
this energy interval. While some of the difference be-
tween the quadratic coeKcients at 5 and 10 GeU/c

maybe due to the data for very small ~t~ at 10 GeU/c,
the deviations from an exponential 6t between the two
sets of data at large

~

I
~

appear significant.
The original shrinkage concept in the Regge theory

came from the energy dependence of the linear term in
the exponent as shown in Eq. (20). In an attempt to
find a more subtle type of energy dependence, we can
write a generalization of Eq. (20), i.e. , an expansion
of Eq. (18) as follows:

do/dt= (do/dt) i=p ex. p[(ViI+V2P+ )
+2(nit+n2t'+ ) lns]. (30)
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NOW there iS nO eVidenCe fOr n, /0 in pr p elaStiC SCat-

tering and yet it is strongly intuited that the slope of
the Pomeranchuk trajectory at t =0, (dn(/)/dt) ~=p,

should be positive. "According to this idea, therefore,
if u~ ——0, n2 should also be quite small and the first
substantial n term would be np, reducing Eq. (30) to

da/dt= (da/dt) p exp L(pit+& pt'+. )+2npt'

inset.

(31)

To see if Eq. (31) might be applicable, the data have
been fitted to

1.0

—t =-0. 1

I

t =-0.2 g

t=-0, 5

da/dt = expLA o+A at+A pP] (32)

over the interval 0(ItI (0.8 (GeV/c)'. The t' term
was left out so that the statistical uncertainty in the A3
term would not be too large. The parameters are given
in Table VII. The result is similar to the quadratic fit
in that there is no major change in the P(xp); and the
4.95 (GeV/c) Ap is smaller than the lower momentum
Ap values, just as the 4.95 (GeV/c) A& is smaller than
the lower momentum A2 values. Thus, there is no
evidence either for or against the use of the A~t' term
instead of the A~t' term.

tp

—t=-07 T
b Ic',

t~- 2.010

F. The Diffraction Peak and Large-Angle Scatter-
ing as a General Function of s and t

10
2.0 2. 1

gn S
2.2 2.5

In this section we shall treat more than the diffrac-
tion peak in order to see how all da/dQ behaves as a
general function of s and t. First, the results are pre-
sented in graphical form in Fig. 16, which goes out to
values of It —2 (GeV/c)'. At this

I tI the data change
from giving a value for the cross section to giving
primarily upper limits. In Fig. 16, (4x/ka4, 4) (4Ea/dQ),
which we shall refer to as the normalized differential
cross section, is plotted versus s for various values of t.
The errors include the statistical error from each
measured point propagated through the interpolation
process and the normalization error, which is equivalent
to an uncertainty in (da/dQ). At t= —0.1, —0.3, —0.5,
and —0.7 (GeV/c)', there is generally a slight rise in
the normalized differential cross section with increasing
s. As discussed in Sec. VB, this same effect produces
an increasing ratio of the extrapolated (da/dQ)p to the
optical theorem (da/dQ)p and can easily be due to an
energy-dependent error in the normalization. If the
normalization is correct, then this effect is a slight
broadening of the diffraction peak without a change in
the slope. By taking forward scattering dispersion
theory as correct, one implies that the shape of the
differential cross section at very small

I II is changing
throughout the region.

For t= —1.0 and —2.0 (GeV/c)', the normalized
differential cross section is clearly decreasing with s.
At t= —1.0 it decreases by a factor of 2 in s, going from
6.8 to 10.2 (GeV/c)'; and at 3= —2.0 it decreases by a
factor of about 5 over the same interval.

For another means of studying the entire differential
cross section as a function of s and t, we have made a

FIG. 16. Normalized differential elastic scat tering cross sec-
tions for the three ~ p data sets plotted versus lns, with straight
lines fitted through points of the same four-momentum transfer.
The points are interpolated from the data of Tables III, IV, and
V, with error bars indicated which include statistical errors of the
data, as well as interpolation and normalization uncertainties.

weighted least-square fit for the entire range of ItI
to the equation

da/dQ= e pLxA o+A it+A &t'+A 3P+A43

The results are presented in Table XI. Except for
the 3.15-GeV/c data, the equation is a fair fit. In
contrast, Eqs. (28) and (32), which use only three
parameters, are very bad fits in all cases. Comparing
the different sets of data, one 6nds as before that the A
parameters are roughly the same for all the data, but
that the spread is outside statistics. In particular, we
observe that

A, &A,&A»A4,

so that for It I (1 (GeV/c)' we can think of this as a
converging expansion of some function of t. Although
we have produced a reasonable fit to all the data out
to large

I
t

I
values, present theory provides no way to

interpret the parameters. At most, one can say that
these parameters are certainly allowable in more com-
plex forms of the Regge theory.

In comparing the graphical and parametric methods
of examining the general s and t dependence, it is
interesting to note that as the incident pion momentum
increases from 3.15 to 4.95 GeV/c, Ap, Ap, and A4 all
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TABLE XI. Values of the coeflicients in the expression do/dn= exp(A 0+A&t+Ast'+A st'+A 4t4)

Fit to the data over the ranges of four-momentum transfer t indicated.

System

pi,s (GeV/c)
Ap
A, (GeV/c)~
As (GeV/c) 4

A& (GeV/c) '
A4 (GeV/c} '
P(x)
Maximum ~t~ (GeV/c)'

2.92
2.65+0.09
9.3 ~0.7
4.4 &1.2
0.7 ~0.6
0,02~0.08

0.20
4.1

3.15
3.25+0.08

11.2 &0.6
6.2 &1.1
1.5 ~0.5
0.13&0.08
((0.01

4.4

4.13
3.50+0.08

11.0 ~0.5
5.5 ~0,7
1.2 ~0.2
0.09%0.02

0.15
59

4.95
3.64+0.08
8.9 +0.5
2.0 ~0.6
0.1 %0.6
0.00&0.01

0.05
7.4

decrease. Now for ~t~)1.0 (GeV/c)', these are the
important parameters; consequently, the large

~

t
~

value scattering will tend to decrease as s increases, as
is apparent in Fig. 15. In addition, the parametric fits
demonstrate that the decrease in the cross section with
increasing energy is probably not due to a chance
cancellation of the odd and even powers of t in the ex-
ponential, but rather to a decrease in all terms.

VI. DISCUSSION OF LARGE-ANGLE SCATTERING

A. Shape of the Large-Angle Differential Cross
Section and Existence of a Backward Peak

From the tables and graphs already presented it is
clear that the general character of the differential cross
sections is a roughly exponential drop to 1 or 2 (GeV/c)s
four-momentum transfer, with the cross section at
larger ~t~ either flattening or (at higher energies) con-
tinuing to fall. At 4.13 and 4.95 (GeV/e) our data
primarily represent upper limits for

~

t~ )2 (GeV/c)'.
Thus, our entire data can be represented in terms of
t-channel processes through more complex application
of Regge theory or through some alternative. In par-
ticular, it does not appear necessary to invoke I-
channel processes (e.g. , baryon exchange) in order to
interpret this experiment.

%e may use our upper limits to the cross section at
large angles to set limits to the width or height of a
possible backward peak in the differential cross section.
Our data extend only to cos8= —0.93 and are sensitive
to a differential cross section of the order of 5)&10 '
mb/sr. The limits placed on large-angle scattering by
the present data and by other published data are sum-
marized in Table XII, where do./dQ for 0)cos8) —1.0,
do/dQ for the backward steradian, and the maximum
observed angle (center of mass) from each experiment
are tabulated. As an example, one may postulate a
backward peak which has the same width as the forward
diGraction peak and is given by

do/dQ= exp/As+A r(u —us)],

where No is the value of I at 180' and the diGerential
cross section is a function of 8'=180'—8. Our data
indicate that in this case a backward peak at 4.13
GeV/c would have to be less than 1/24 the height of
the forward peak.

The broader peak suggested by Singh and Udgaonkar"
from the strip approximation is more strongly limited
by the data, but the slightly narrower peak obtained by
the optical-model approximation applied to 180' (see
Sec. II and the Appendix) is not as strongly limited,
in view of the maximum angles observed in this experi-
ment. Our data suggest that such a peak would have to
be less than 10% of the forward peak. As stated in Sec.
II, neither the virtual nucleon and nucleon isobar ex-
change theory nor the Regge theory of the backward
peak give a width prediction, so we cannot set a limit
on those particular theoretical predictions.

The bubble-chamber measurements (which do extend
to 180') in. sr p set limits of 30 ttb/sr, and in sr+p set
limits of 14 to 90 ttb/sr over our energy range; these
limits are consistent with our data. Since the diGraction
peak is completely contained in the 6rst steradian in
this energy range and totals about 6 mb, the total
elastic cross section in any backward peak is, roughly,
less than 1/200 of the total elastic cross section for sr p
and less than 1/70 for sr+p. Therefore, in comparison
with the forward peak, the height of the backward peak
is either very small or its width is very narrow. The
only data on this point come from the experiment on
sr+p by Kulakov et ttl."using counters at 3.14 and 4.6
GeV/c. At 180' they found do/dQof 0.92&0.47 and
0.38+0.24 mb/sr.

This experiment only measured do/dQ over a solid
angle of 0.002 sr about 180 in the center of mass.
From other measurements listed in Table XII, it is

highly probable that the total backward elastic peak is
less than 30 pb. To reconcile these two numbers one
must postulate a very narrow backward peak, mostly
lying behind cos8= —0.985 to —0.995.

The theoretical interpretation of such a peak is
obscure. It is too narrow to be explained by the back-
ward peak arising from the optical model. It is also too
narrow to be treated with present Regge theory, be-
cause it lies in the region shown by Table I to corre-
spond to small cos8„.It is too small for the simple
nucleon exchange calculation given by Cook et ul. ,' al-
though it may fit the unpublished calculation of
Pomeranchuk.

30 B.A. Kulakov et al. , in Proceedings of the lP6Z Annua/ Inter-
national Conference on High Energy Physics at CERE (C-ERN,
Geneva, 1962), p. 584.
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TABLE XII. Data, for x p elastic scattering in the backward (c.m. ) hemisphere, and in the steradian centered at 8=1 80'
from various experiments including the present one. (All cross sections are in pb/sr. )

System

Incident pion labora-
tory momentum

(GeV/c)

1.43—1.51
2.0

2.8
2.8
3.15

4.13
4.95

7.0—8.0

1.5

1.69
2.0
2.5
2.8
2.8
2.92

7.0—8,0

pb/sr—1.0&cos8&0

300& 60
150+ 30—50
100+ 20—50

100+ 40
4+ 10

3
&5
&6

760&150

320& 30
200~ 60
70% 30

6% 6
18& 11

yb/sr for the last stera-
dian in c.m. system—1.0 &cose & —0.841

300&150

&30

8+ 10
8( 5

(10
&30

650+600—300
250~150
40~ 40
80a 60

&14

13m 11
&90

6max
(c.m. )

180'
152

149'

180'
180'
157'

158'
158'
180'

158'

164'
158'
162'
180'
180'
157'
180'

Reference

a,b
b

d

This exp.

This exp.
This exp.

f

f

b

1

This exp.

3.14
4.6

at 180' do/dQ= 920&470 pb/sr
at 180' do/d0=380&240 pb/sr

a M. Chretien, J. Leitner, N. P. Samios, M. Schwartz, and J. Steinberger, Phys. Rev. 108, 383 (1957).
b K. W. Lai, L. W. Jones, and M. L. Perl, Phys. Rev. Letters 7, 125 (1961),
e Yu. D. Bayukov, G. A. Leskin, and Ya. Ya. Shalamov, Zh. Eksperim. i Teor. Fiz, 41, 2016 (1961) Ltranslation: Soviet Phys. —JETP 14, 1432 (1962)).
d L. P. Kotenko, E. P. Kuznetsov, G. I. Merzon, and Yu. B. Sharov, Zh. Eksperim. i Teor. Fiz. 42, 1158 (1962) t translation: Soviet Phys. —JETP 15,

800 (1962)j.
e R. A. Aripov, V. G. Grishen, L. V. Sil'-vestrov, and V. N. Strel'tsov, Zh. Eksperim. i Teor. Fiz. 41, 1330 (1961) /translation: Soviet Phys. —JETP

14, 946 (1962)j.
f V. Cook, B. Cork, W. R. Holley, and M. Perl, Phys. Rev. 130, 762 (1963).
g J. A. Helland, University of California Radiation Laboratory Report UCRL —10378, 1962 (unpublished).
"Yu. D. Bayukov, G. A. Leskin, D. A. Suchkov, Ya. Ya. Shalamov, and V. A. Shebanov, Zh. Eksperim. i Teor. Fiz. 41, 52 (1961) Ltranslation: Soviet

Phys. —JETP 14, 40 (1962)). (This is a ~ +n —+ w +n measurement and charge independence is assumed. )
' Yu. D. Bayukov, G. A. Leskin, and Ya. Ya, Shalamov, Zh. Eksperim. i Teor. Fiz. 41, 1025 (1961) I translation: Soviet Phys. —JETP 14, 729 (1962)].
j B.A. Kulakov et al. , in Proceedings of the 196Z Annual International Conference on High-Energy Physics at CERN (CERN, Geneva, 1962), p. 584.

It would seem wise to wait for further experimental
elucidation of this peak before developing the theory
further. The measurement of large-angle elastic scatter-
ing at these high energies is made dificult by the
problem of inelastic contamination, and the counter
technique employed by Kulakov et ul. 30 seems particu-
larly subject to this kind of error.

B. Energy Dependence of the Large-Angle
Scattering

On the basis of the data in Table XII, only qualita-
tive statements can be made regarding the energy de-
pendence of the elastic cross sections in the backward
hemisphere. Below 2.5-GeV/c pion momentum, the
existence of resonances in the total pion-nucleon cross
section has been established; these resonances are
probably the most important determinants of magni-
tude and shape for the large-angle cross sections near
the resonance energies.

The statistical modeV' makes no predictions about
the angular distributions of the elastic scattering
through this channel except that any distribution should
be symmetric about 90 c.m. The energy dependence of

large-angle scattering predicted by the statistical model
is an exponential multiplied by a factor such as s '
to give the probability of forming an intermediate state.
From the Regge theory of the t channel, the cr(t) for all
Regge trajectories should approach —1 for su%ciently
negative t. This would give rise to a dlGerential cross
section at large

~

t
~

such that do/dQ ~ s ' in this region.
The data at 3 GeV/c and the upper limits given for the
higher energies are consistent with either prediction,
e.g. , that the cross section in the backward hemisphere
falls rapidly to very low values with increasing energy.

VII. COMPARISON OF PION-PROTON WITH
PROTON-PROTON ELASTIC SCATTERING

Qualitatively, the pp differential elastic scattering
resembles the m.+p data presented above. A detailed
comparison, however, reveals signihcant di6erences be-
tween the two processes. Available pp data in the same
energy range as our xp data have been fit in the same
manner as the mp data. In Table XIII, the coefficients
for the fit

do/dD= exp' a+A ttf; 0&
~

t
~

&0.4 (GeV/c)' (33)
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TABLE XIII. Values of tT . ues o the coeScients in the e
/) dth i d idn=/, 0/ = p(Ap+Ait+A2P) in the ran e rans er 0& ~t~ &0.8 (GeV/e c)2 for proton-

g (GeV)2
Proton kinetic energ (GeV)

lns

6.15
15.1

2,71

4.40
11.8
2.47

2.87
8.9
2.19

2.85
8.9
2.19

2.24
7.7
2.04

2.10
7.5
2.00

2.00
7.3
1.99

1.35
6.1
1.81

0 & gati & (0.4)
4.0~0.15 3.9&0.1 3.7&0.064.0. . . . ~0.06 3.8+0.06 3.4+0.09

010 050 0.01 0.99

3.5~0.05 3.5&0.05 3.1&0.04
6.9~0.3 6,3~0.2 5.9+0.2

0.80 0.40 0.90

O& [tl &O.8
Ap
Ai
A2
-P(X2)

4.2&0.8
9.4+2.0
3.4a3.2

0.15

4.0~0.14
8.8+0.8
3.8+0.8

0.15

3.9+0.06
8.9+0.8
3.7&0.3

0.15

3.8+0.07
6.9+0.5
0.6&0.6

0.05

3.8+0.15
8.2+0.7
3.6%0.7

0.30

3.6%0.06
8.2+0.5
3.6&0,7

0.20

3.6&0.06
6.7+0.5
1.1a0.7

0.20

Reference

aB. C . . andCork, W. A. Wenzel, and C . , r. , hys R

b d b

, and C. W. Causey, Jr. , Phys. R
wick, G. B. Collins, P. J. D

. Courant, E, C. Fowler H. andweiss, and H. Tafa t, ys. Rev. I, 2160 19

1962); W. F. Fickin er1962) W F F' '
g private communication

and

do/dQ= exp/A s+A it+A &ts I.
)

0&
~

t I &0.8 (GeV/c)' (34)

are given for the pp d t F'
h o o (f

a a. figure 17 c
es rom the linear 6t

i}1 l' of h f A=e orm Ai ——Ci+Cs lns have been fit

to the pp data and to the 7r p data. A cl
'h d tf

would have th
vi en or the

ve e same value for x and
pp data, such that A I

f b t ]6 (G V)s

esp qua e e gi

I I I II I I I I I

Thfe Exp.

Ref««ef

i,bi

I I I I I I
\

yy Reference a

cf

TABLE XIV. Values of the c
over the ran e

es o t e coeKcient Ai in the

& ~tI &0.4 (G V/ )' fo Ioor ower energy 2r p elastic-scat tering

System

p«b (GeV/c)
Ag
~ (x)
s (GeV)'
lns
Reference

1.34
7.3a0.4

0.25
3.41
1.23

1.43-1.51
7.3a0.6

0.45
3.64
1.29
b,c

2.0
8.7a0.5

0.20
4.65
1.54
b, d

I I I I I I I
'

I.O Ig, 1.4 LS Le LO

I' I f I I I f II I I I

Lo aa L~ a.e ae
ln e

FIG. 17. The
ts to pp and p elastic-scatte

'
data

exp(A +A t=) in the range 0& tt'
Ir'nes are fitted to the lotted.d-.d - -.t.l P P. ~ -PP. -P -.

y
ering con-

References:
(a) See B. Cork, W. A. Wenzel and

Rev 1Q7, 859(1957) (b) T F'" "n"
uJii, G. B. Chadwick G. B C ll

A
, J. Sandweiss, and H. Taft

~. G A S ith thesis Yale 196
'nitinger E Picku D K

R . 125, 2082 (1962) W. g r {priva e communication);
m o, 4 7 ( ); ( ) K. VV.

()M Ch JI. NP
, Ph . R . 108, 383 (1957 h

, W. A. Wenzel, and T. F.

' L. Bertanza et a'L, Nuovauova Cimento IQ, 467 (1961)
. Jones, and M. L Perl, Phys. Re

Ph . R 8, 383 (19
. Cook, B, Cork. . . . eefe

einberger,

ork, T. F. Hoang, D. Keefe
f, Ph . R . 123, 320 (196

. . . z~ A f

TABLE XV. ~ an A2 for fits o all the ataV. verage values of A

over the range of four-mour momentum tr-ansfer 0&
~

r t &0.8 (GeV/c)2.

System

(GeV/c) '
As (GeV/c) 4

pp

7.9&0.2
2.7a0.3

9.6&0.4
3.3&0.5

The z- p and pp diffraction eaks c
db '

h
XV presents the

e quadratic" fit off Eq. (34). Table

and rr p over the
e average values of A
e s range 6 to 12 GeV 'i

aild As foi pp
e e . The quadratic

emonstrate the na-e c a alI1 (i
i raction peak, although there is no si-
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I.O

IO

92. GeV/c o
I 5 GeV/c +
I S GeV/c

95 GeV/c a

V
R

It is thus clear that 2r p and pp elastic scattering
behave quite differently in this region of energy.
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APPENDIX

We will derive formulas for the forward and back-
ward peaks for the simplest type of optical model.
From (6) and (7)

IO

Then

(1—a
f (0) = i P (2l+1) (Pt(cos0) .

3=O
(A1)

I,Q

!
I.S 20

-t(Ge V/c)

2.5
I

5.0

FIG. 18. Data for xp normalized elastic scattering differential
cross section for !t!&0.4 (GeV/c)2 with smooth curves from pp
elastic scattering differential cross section at s=7.5 and 11.8
(GeV)' plotted for comparison.

nificant difference in A 2 values between the two
processes. When the entire angular range is considered,
however, further significant di6erences in shape appear.
In Fig. 18 the normalized differential cross sections of
all the present 2r+P data for ~f! )0.4 (GeV/c)' are
plotted together with smooth curves for the pp scatter-
ing at s=7.5 and 11.8 (GeV)'. For ~t~ )1.0 (GeV/c)',
the 2r~P elastic cross section appears consistently to be
several times smaller than the corresponding pp.

t(1—a
f(0) =

I ((Pr+2'(cos0)+ (PL'(cos0)]. (A2)
i 2g

For 0 close to 0', cos0—1—(st0'), so that for forward
scattering cos0 is replaced by 1—(-',8') in (A2).

For 8 close to 180' let 8'=180'—0, so that 0' is
small. Then

cos0——(1——',0").

For the backward scattering, (A2) then beco'mes

1—8
f(0') =

. (~" '(—L1—!0"])+~.'(—L1—!0"])}
2ik

(A3)

~

~

~

1—8
(-1)'L0" '(1-l0")—0.'(1-l0")]

2ik

Now, letting x be L1—P0')) in (A2) and (1—(-',0")]
in (A3), we note that

Then

t1—x '
xi +"

2

(L+1)! (L 1)(L+2) 1——x) (L 1)(L 2) (I.+2—) (L+3—) t(1—x) '
6)r, '(x) = 1— I+

2(L—1)! (1)(2) 2 3i (1)(2) (2) (3) ( 2

(L 1) (L 2) (L—3)—(L+—2) (L+3) (I.+4) (1—x +' ' '

(1)(2) (3) (2) (3) (4) ~ 2

(L+1)!— L+2 ((L+2)(L+3) (1 1)(L+2)) (1—x).—
0,+,'(x)+0,'(x) =

2(L—1)! L 2 ) 2

X
(I.+2) (L 1)(L+3)(L+4) (L 1—) (L—2) (L+2) (L—+3)) 1—x '

12 12 ) 2

( (L+2) (L 1) (L 2) (L+3)(L+4)(L+3—) (L —1) (1.—2) (( 3) ((+2) (L+3—) (L+3.)—

)144 144
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Thus,
(I.+1)!—( 2 (1—xq (1—xi'

6'~i'(x)+»'(x) =
I
2+- —4(L+2) (2L+2)l I+ i'2 (L+2) (L—1)(L+3)(2L+2)l

2(I,—1)! & I. k2) &2i
1 (1-xy '

——(L+2) (I.—1)(L—2) (L+3)(L+4) (2L+2)l l +
144 &2i

whereas
(L+1)! 2 (1—x) (1—xy '

»+ '(x) —»'(x) = ——l (L+2) (4)I i+i'(L+2) (L—1)(L+3)(6)l
2(L—1)! I. k 2

1
+—(L+2) (L—2) (I—2) (L+3)(L+4) (&)I I

+".
144 (2i

Now we set L))1 and replace x by 1—(28') or 1—(28"). The forward diffraction peak differential cross section
Then is therefore

6'i.+i'(x)+»'(x)
L4g4 L6g4

do/dQ= [(1—a)'R'/8'][Ji(kR8)]'
= (1—a)'k'R4[J (kR8)/kR8]'.

L2 1— (A4)
(2) (4) (12)(16) (144) (64) Similarly, setting L8'= kR8' and using (A5) and (A3),

»pi'(x) —0'r, '(x)
L2g~2 L4g~4 I 6g~6

=L 1— + + . (A5)
4 (4) (16) (36) (64)

Now
X2

(1—a
f(8') =

I (—1)'(kR)

(3')'

(-'kR8')' (-'kR8')' (-'kR8')'
X 1—— +

12 (2 t)2

Ji(x) =— 1— ~ ~ ~

2 (2)(4) (12)(16)
(A6) We define

By setting L8= kR8 and using (A6), (A4), and (A2),

1 (-'kR8')'
B(kR8') = 1—— —+

(1!)'

(1—al (2kR
f(8)=l ll Ji(kR8).

& 2~k i & 8

Then the backward peak is given by

do/dQb„g „„d(1—a)'R'[B(——kR8')]'.




