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violate unitary symmetry; and secondly, to corn- From (5), (7), and (8), it then follows that
pare their predictions for q decay modes other than

Similarly,
(50)
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APPENDIX

(i) The following identity can be proved by means
of the commutation relations in Eq. (1):

A)PA s"=—srA: A+ as Yr,+st Yr,'—J.'. (51)

The identities in (50) and (51) are the analogs of
Okubo's identity" for Az'A3~.

(ii) Equation (39) is an ad hoc result which applies
to the states forming a basis for the representation
U(1, 0, —1) of U(3). It can be verified with the aid of
Tables I and II, but the author has not found a proof
for it.

(iii) For reasons of charge conjugation invariance,
we require II(cup) to be of the form"

p M+Mp4A), 'A P =2A: A+2 (A i')'+2 (3A i' —A„")—2A s'A s'

—2A ssA ss —(A ss —A s')' —(A i' —A„&)'. (49) Equation (41) is then a simple consequence of Eq. (39).
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It is shown that when interactions are not invariant under parity conjugation, both the self-mass term
( bm~) and th—e term (—any„y&8$/sx„) are induced by the self-interaction of any spin--, particle with
nonvanishing mass. (For simplicity T invariance is assumed. ) When os) 1, the spin-s, particle propagates
in vacuum faster than the velocity of light. When a2= 1, the observed mass should be zero. Therefore, it
follows that a'(1 for any spin--, particle with nonvanishing mass. Since 1)a'&~3 implies the existence of
ghost states, one must require a'&~—',. Although a has no physical meaning for free particles, as an example,
it is also shown that it has a physical meaning when a charged particle is interacting with an external electro-
magnetic held. The value of a is estimated for the electron and the muon.

1. INTRODUCTION AND SUMMARY

'HE purpose of this work is to study the properties
spin--,'particles possess as a result of parity-

nonconserving interactions. To outline our discussions
given here, we shall tentatively start from the Lagrangian
density

8
I.=I.i+I.s, I.i —P(x) y„+me it (x——),

BXp

for a spin-~s field f with mechanical mass ms, where I.s is
not invariant under C or I' transformation but is in-
variant under CP (or T) transformation. For simplicity
we shall consider only CE-invariant interactions through-
out this paper.

Since the free particle is interacting with its self-6eld,
I.1 does not express the free part of the Lagrangian
density for the dressed spin--', field considered. %hen all

8—0(x) V.(1+vs) +~ 4(x) (2)

interactions are renormalizable and invariant under
both C and I' transformations, as is well known,
(I.t—5m~) is the free part of the Lagrangian density
for the dressed particle, where bm is the self-energy of
the particle. In our more general case it will be shown in
Sec. 2 that, in addition to the self-mass term, the self-
interaction induces another term (—any„ys 8$/Bx„),
where ys'= 1 and a is a real constant. This term should
be added to the free part of the Lagrangian density and
consequently be subtracted from L2, as the self-mass
term is, to perform the renormalization consistently.

To discuss the magnitude of the coeKcient a of the
parity-nonconserving counter term, consider the La-
grangian density

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

t On leave of absence from the Research Institute for Funda-
mental Physics, Kyoto University, Kyoto, Japan.

or the Dirac equation

p~&p(1+a~,)+pj's(p) =0 (3)
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for the free dressed particle. From (3) we get the energy-
momentum relation

p'(1 —as)+ p,'= 0

for the free particle, where the metric p'=p' —Ps' is
used. When u')1, this particle propagates in vacuum
faster than the velocity of light. As far as we are con-
cerned with covariant theory, this case can never hap-
pen. When a'= 1, lis should be zero, and Eq. (3) reduces
to the equation for the neutrinos with two components. '
For any spin--,'particle with nonvanishing mass, a'
should be less than unity. For the last case it will be
shown in Sec. 2 that a'&~—', when I.2 does not contain the
term (gy„ys t)$/Bx„) as a primary interaction. When
1)8 )3 ) ghost states" exist.

To perform the renormalization consistently, the
parity-nonconserving counter term (age„ys r)$/Bx„)
must be introduced. This will be discussed in Sec, 3.
The renormalization for the case in which the term
(Xfp„ps Bf/Bx„) is one of primary interactions will be
discussed in Sec. 4.

This paper will consider only the spin--, particle with
nonvanishing mass, i.e., the case a'(1. Now we may
ask: Has the coefficient c any physical meaning? This
question arises from the fact that the 1 matrix defined

by
F,=v, (1+~Vs)/(1 —~')'"

satisfies the usual commutation relation

(F„,F„}= (&„,&„}=28„„,

so that Eq. (3) reduces to

(iFp+444)P(P) =0,

where m=))4(1 —u') '". Equation (5) shows that the
coefficient a has no physical meaning for free particles.
It should be noted that the term (ass) in I'„comes from
the self-interaction and, therefore, the definition of l( is
not P*Fs but P*ys, where P* is the Hermitian conjugate
of P. When the former definition P= P*Fs is misused, the
Lagrangian density (2) is not a Hermite operator. To
study whether or not the coefficient has any physical
meaning when the spin--, particle is interacting with
other fields, we shall calculate the energy of a charged
spin--,' particle in an external weak electromagnetic field.
It will be shown in Sec. 5 that the coefficient has a
physical meaning because of the definition of P men-
tioned above.

' T. D. Lee and C. N. Yang, Phys. Rev. 105, 1671 (1957); A.
Salam, Nuovo Cimento 5, 299 (1957);L. Landau, Nuclear Phys. 3,
1271 (1957).To derive the equation for a two-component neutrino
from Eq. (3), we shall use the representation

io' 0 ' ' 1 0 ' 0 —1

for y matrix and the notation p= ', where 0-; is 2&(2 Pauli

spin matrix. Then Eq. (3) reduces to

(1+a)(rrr)+ps)A =vA,
(1-~)(-~I+po)c.= c,

which are the desired equations when a'=1,

In Sec. 6, a renormalizable example is considered to
discuss the magnitude of the coefFicient a. In the usual
sense, weak interactions are unrenormalizable. There-
fore, in Sec. 7 a cutoff A is introduced and the coefh-
cients are calculated for the electron and the muon.
Their coefficients are positive definite and nearly equal
to each other, and 44(A) &10 ' when A&300 BeV.

From Eq. (5), one gets the equal-time anticommu-
tation relation

(4 (*),4 (y)}I.,=.,=Fo8( —y) (6)

for the field P in interaction representation. It will be
shown in Sec. 2 that the equal-time anticommutation
relation for the field fir in the Heisenberg representation
is given by

~(~+v )
((O'H(x), 4'rr(y)})sl „„=Fo1— 8(x—y), (7)

(1—a')

the right-hand side of which is different from that of (6)
provided that a/0.

2. RENORMALIZATION

We shall discuss the renormalization of a spin- —,'field
(a'& 1) interacting with other fields by renormalizable
interactions. ' The Lagrangian density of the system is
given by

L=Lp+L',
8

Lp —.fir(x) ——F„+m PH(x):,
BXp

L' =:Ls. +8m: fir (x)fir (x):
8 a+:4~(x)V.Vs 4~(x):,

(1—a')'" Bx„

where the symbol fir is used for the field f in the
Heisenberg representation, the notation: X: means to
take the normal product of the operators included in X,
and Ls is given by Eq. (1) in the Heisenberg representa-
tion. We shall tentatively assume that 1.2 does not in-
clude the term ) QIr(x)y„ys(B/Bx„)fir(x) as a primary
interaction. Our proposal in Eq. (8) is that the parity-
nonconserving term

a 8
:4~(*)v.v 4 (*):)

(1—a')'" Bx„

should be added to Lo and subtracted from I-', as is the
self-mass term (—8m:fir(x)f~(x):), in order to per-
form the renormalization consistently.

We shall start with the definition of the modified
propagator

&TL4~(x)0~ b) j)o= $~'(x y)— —

if4pe 41 (* s)$~'(p) (9)—
(2ir)4

' The renormalizability of vector meson theories was considered,
for example, by A. Salam, Phys. Rev. 127, 331 (1962); T. D. Lee
and C. N. Yang, Phys. Rev, 128, 885 (1962),
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The improper self-energy part' Z is related to Sp' by

SF'(P) =S~(p)+S~(p)&(p)S~(p) (1o)

where Sz (p) is given by
iI'p —m

Sp(p) = —z
p'+zn' ze—

One may express the improper self-energy part as4

~(p) = d'(*—y)e '"'-"'(T[0//(x)o~(y) J)o

where bm is defined by

gap
z/z = — +bzzz

(1 rzs)1/s

and Ozr(x) by the equation of motion

I „ y~ ly (x) = O (x) .
ax„ j

Under the assumptions of Kallen' and I.ehmann' (ex-
cept for the invariance under both C and P trans-

(1 g9)1/z formations), one obtains (Appendix 1)

Z(p) =z —bm—
00 8

+s dx'[(zzz —x)o r'+ p,j —z'-I'pcs +s
1—8 0 i—Q

X p3

p'+x' —ze

8 (zI'p —x)o,'+p, +zI'py, p,
'

+i(zT'p+zrz) +s dx'o r' +z(zI'p+zrz)s (zI'p+ zzz), (15)
1.—a' 0 0

It is remarkable that all expressions in Eqs. (18) and
(19) are independent of b and c appeared in Eq. (16).
This independence comes from the nature of Z (p)
which is independent of b and c. When Eq. (16) is
substituted into the expression (15), the last term in
(15) reduces to

where 2' and the spectral functions 0 ~', p2, and pa' are aH.

real. Because of the CP invariance of L, the terms that
are proportional to ys cannot appear in expression (15).
As will be shown in Appendix 1, two spectral functions
~~' and p3' may have the forms

or'=or+bi(x' —z/z'), (16)
ps' ——ps+eh (x'—zrz'),

where 0~ and p3 no longer include the 8 function. The
remaining spectral function p2 does not include the b

function.
The renormalization constant s2 for the wave function

fir(p) is determined by the conditions'

Sg'~ S2, (17)
P, (p)S; (p)ly(p) =.,p(p),

where the brackets g l mean that S/, ' should be re-
placed by Sz' before operating on f(p). From Eqs. (10)
and (15) and the condition (17), one obtains

dx'[(m —x)p,+ p, +alps&,
0

—ebs(zrp+~)+kzzr p~,+zs(zT'p+m)

(zTP —x)or+ pz+zTpvspz
8X —(zT'p+ zzz) .

p+x ze

The erst and the second terms in this expression are
canceled by the corresponding terms which come from
the third and the second terms in (15), respectively.
Further, fs" dx'(e —x)or'= fs" dx'(zzz —x)or. Thus, it
has been established that Z (p) is independent of b and c.

Among the many inequalities between the spectral
functions p;, one of the more useful ones is

pr+/zps +~ 0.

dx [pr —cps],S2

(18) From the second and the third of Eqs. (18), one obtains
another expression for 2'2, namely,

dX P37

S2 dx'[p, +/zp, ].
1—3a

(21)

S/, "(p)= —zzs
(zI'p —x)pt+ pz+zi'pysps

dX

p +x' ze

(19) The renormalization constant sz should have the physi-
cal meanings of a probability. Use of the inequality (20)
in Eq. (21) leads to the upper bound

where pr=—h(x' —zzz')+or.
z F. J. Dyson, Phys. Rev. 75, 486, 1736 (1949).
4 K. Hiida and M. Sawarnura, Progr. Theoret. Phys. (Kyoto) 14,

167 (1955).
' G. Kallen, Helv. Phys. Acta 2S, 416 (1952).' H. Lehmann, Nuovo Cimento 11 & 2 (1954).

(22)
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This is equivalent to

ss dx'po ~&-',v3. (22')

write

Zs (p) = d'(x y)—e '"' "&(T[Osa (x)Osa (y)])o &»—&,

8 8
The range 1)a'&-' or the equivalent oo )

I
ss Jo" dx'p,

I

)-,'v3 implies the existence of "ghost states, " as in the
Lee model. ' which leads to

From Eqs. (17) and (18) one obtains
dx'p =0

&(~+'Yo)
((4~(x),~i~(y)))ol.o-..=ro 1— ~(x—y) (7)

1—8

for the anticommutator at equal time xo——yo. Although
the anticommutator in interaction representation (6) is
unequal to that in the Heisenberg representation (7)
(when a&0), the proportionality of the field operators
in the two representations

4~(p) =so"V(p), k~(P) =»"V (P)

holds for (il'P+m) =0.

3. THE NECESSITY OF INTRODUCING THE
PARITY-NONCONSERVING COUNTER TERM

In the preceding section, the concept of the re-
normalization of the parity-nonconserving term was
introduced. In this section we shall show what happens
when this concept is not introduced.

Since this concept is similar to that of mass re-
normalization, we may learn something about the
former from the latter. Suppose the fictitious case in
which the concept of mass renormalization has not been
introduced. Then Eq. (12) is replaced by

Z, (p)= d4(x —y)e "'&' »

X(TLOiir(x)OiII (y) j)o—i 6pro,
(1—")"

O, Ir (x) =O~ (x) 5m/~ (x), —

which leads to

Equation (24) was obtained by Sekine and discussed by
Albright et al. ' Contrary to the arguments given by the
latter authors, however, the spectral function p3 no
longer contains the 8 function 8(x'—m'). Again Eq. (24)
means

~s(p) I ('~.+-)=o= o,

which also contradicts the perturbation calculation in
Sec. 6. This contradiction shows that it is also necessary
to introduce the parity-nonconserving counter term.

4. PARITY-NONCONSERVING COUNTER TERM
AS A PRIMARY INTERACTION

We have assumed that the parity-nonconserving term
PIr (x)y,yo r)/Jr (x)/Bx„ is not involved in I.s. The
extension of this limitation is to assume that L includes
the term

t9

BXp

as a primary interaction. If the field /II represents a
charged field with spin —'„ the Lagrangian density L
should also include the term

—i'(1—a') 't'. tPII(x)y„ysA&„(x)tP&(x): (26)

as a primary interaction because of the gauge invariance
of the theory. Then X should be very small. Although
we do not like to take the parity-nonconserving
electromagnetic interaction (26) as a primary interac-
tion, for completeness we shall describe very brieQy the
results obtained by taking account of the term (25) as
a primary interaction.

Both for charged and neutral fields, Eq. (12) is
replaced by

dx'I (m —x)pi+ po+ampo] =0.

Equation (23) means that

&i(p) I &'r y )=o=0 ~

(23)

~s(p) = d'(x —y)e '"'* "'(TLOo~(x)os~(y) j)o

a+)i—imam —i iy pj's,
(1 gs) 1/s

where
But this is known to contradict the perturbation calcula-
tions. The contradiction shows the necessity of mass
renormalization.

If we did not know that it was necessary to introduce
the parity-nonconserving counter term, then we would

r T. D. Lee, Phys. Rev. 95, 1329 (1954).

8
Os'�(x)=Oa(x)+ y,yo ter�(x)

(1—a')'" Bx

The author would like to thank Dr. K. Yamamoto for calling
his attention (after Sec. 2 above was completed) to the papers of
Sekine and of Albright et al. LK. Sekine, Nuovo Cimento ll,
8'1 (1959); C. H. Albright, R. Haag, and S. B. Treiman, Nuovo
Cimento 13, 1282 (1959)j.
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Consequently, the third equation in (18), and Eqs. (21) representation (29) for the y matrix into Eq. (27) yields
and (22) are changed to the two equations

1—u'

S2
—1

S2 dS p3)

1—u

1—3u' —2' dx2[pi+ ap2),

E2$,= [e4 a—a(p e—A))$1
+[aE ae4—+a (p eA—))11/2,

(30)
E1A= [e4 a—a(p e—A))y2

+[aE aey—+a (p eA)—5/1,

—,
' (1—3u') &~A.

The anticommutator (7) at equal time is changed to

where E1=E+m(1 a')"—and E2= E—m(1 —a')'"
Because of our assumption that the external electro-

magnetic field is very weak, we may express f. in terms
of fi as

(a+A) (a+f2)—
&(4~(~),4~(y))), l „„,=r, 1— b(x—y). ~ ~(' [e~ a (y eA))1~"—u

5. TWO-COMPONENT THEORY IN THE
NONRELATIVISTIC REGION X [aE a—ed+a—(p eA))pi—, (31)

As was shown by Eq. (5), and also will be shown in
Appendix 2, the coefficient u has no physical meaning for
free particles. To determine whether or not the coeffi-
cient u has any physical meaning when a spin-2 particle
interacts with other fields, we shall study the equation
of motion for a charged spin--', particle in a weak external
electromagnetic 6eld.

The equation of motion (Appendix 2) is

which is obtained from the second of Eqs. (30). From
Eqs. {30)and (31), the equation of motion for 1t/1 can be
written

E2—ep+ aa (p—eA) [aE—ue/t/+—a(y eA) )—

(1+ax2)
Hf = E1l/,

(1 a2)1/2

where the Harniltonian is expressed as

(27)

~ //1 n

X Q ~

—[ey—aa(p —eA)5-~ LE,

1
X [aE ac/+—a(p —eA)) $1——0—. (32)

(1+ay, ) (1+ay2)
H —mp+e1t1 +a (p —eA) (2Q) Similarly, the equation of motion for p2 is

(] a2)1/2 (1 a2)1/2

It should be noted that the form of Eq. (27) cannot be
changed to the usual form

H'P= EP,

because H'= (1—ay2)(1 —a')—'"H is not a Hermitian
operator and cannot be the Hamiltonian of the system.

To clarify the meaning of the coefficient u, let us
divide Eq. (27) into two equations of motion, each of
which concerns only one of the components $1 or il/2 of
the wave function

=('~i

For this purpose we shall use the usual representation

E1 e/t/+ aa (p eA—) —[aE': a—ep+ a (p eA—))—
00 1—[ey—ua(p —eA))

~

r=0

1
X [aE ac&+a(p—eA))—$2=0. (—33)

E2

Hy the transformation

E —+ —F. , p —+ —p, and e —+ —e,

Eq. (33) reduces to Eq. (32).Therefore, a Particle andits
anti particle have the same value of a, including its sign.

From Eq. (30) or Eqs. (32) and (33), the expressions

(E'—m2)P;=0 (i=1, 2) (34)

are obtained for a free particle at rest. Since these
where o is the 2)(2 Pauli spin matrix. Substituting the equations are independent of u, we may take u=0 in



K. Hrr DA

Eq. (30) or Eqs. (32) and (33) to obtain the equations of
motion for the free particle at rest. Then

picture, the strengths E and H of the electric and
magnetic fields are related to g and A by

(E—m)Pi ——0, (E+m)i' 0.——

Therefore, the equations

(35) E= —Vp and H= V XA.

In terms of these 6eld strengths, the equation of motion
(38) can be rewritten as

(E+m)Pi 0, —(—E—m)$2 ——0

obtained from Eqs. (34) are singular at a=0. For a
moving free particle, the expressions

(p —eA)' e
m+eP+ EFH

2m 2m

iae
(E'—p2 —mt)y =0 (i=1, 2) (36)

are obtained from Eq. (30) or from Eqs. (32) and (33).
Again these equations are independent of a; and there-
fore, u has no physical meaning for free particles (Ap-
pendix 2). In this section we shall consider only the
positive-energy and negative-energy solutions for fi and
i'm, resPectieely, that is, nonsingular solutions at a= 0.

For a changed particle in a weak external electro-
magnetic field, we get from Eq. (32) that

aE aE
(E' m2) (1 a—') E,X—uE—I' E—,I ——uEX

Ji I Eg

1 aE 1—EgV—V—EgV—I——aEX—V
Eg

1 uE (iy—.Ex—x +Ol —
l

P,=o,
Ei E, kE)

p', (eg)', (eA)', (eg) e(p —eA), etc. ,

in comparison with m'. In this approximation it may be
shown that the left-hand side of Eq. (37) is proportional
to (1—a'), which is not equal to zero. Taking the
positive-energy solution for iPi reduces Eq. (37) to

1
Eipi tn+ep+ tr(p eA——) ~ tt(p—eA)—

2m

where X= eP —ae(p —eA) and Y= ac&+—o(p eA)—
Because of our assumption that the external held is
weak, we may neglect the terms

el &(p—eA)— EF

m[1+ (1—a') '"] 2m[1+ (1—a')' ']
a' 1)+ (e&)'+o —

I
4'i= E4'i (39)

2m[1/ (1—a')'"]' m'I

Thus, it has been shown that the coefficient a of the

purity nonconse-ruing cottnter term has physical meaning,
at least for a charged particle with spin —,'.

The positive-energy solution for iPi was taken to
obtain Eqs. (38) and (39). If the negative-energy solu-
tion for i' is taken, it follows from Eq. (37) that the
equation of motion for iPi is

(p —eA)' e
tn+eQ- + oH

2m 2m

'Eae

+ ego (p —eA)+ —o E
m[1—(1—a') '"] 2m[1 —(1—a')'"]

a2

,(~)'+0 —
l a =EO, (4o)

2m[1 —(1—u")'"]' m9

instead of Eq. (39).Again this negative-energy solution
is singular at a=0. In the same approximation, the
negative-energy solution for P& is

(p—eA)' e—m+ eQ- +—itH
2m 2m

iae
+ eye(p —eA)+ 0'E

m[1+ (1—a') '"] 2m[1+ (1—u')'"]

[eye (p—eA) + e (p —eA) ey]
2m[1+ (1—a') '"]

+ (e4)'
2m[1+ (1—a') '"]'

t' 1
+Ol — 4 —=&'|l (38)

km'

It is evident that our new Hamiltonian H' is a Hermitian
operator. Since B' was obtained without assuming
a'((1, Eq. (38) holds for a'&1. In our Schrodinger

a
( y)'eyO —

l
y, =Ey, . (41)

2m[1+ (1—a') '"]' m'i

It is remarkable that the coeKcient of the parity-
nonconcerving counter term is an observable.

6. A RENORMALIZABLE EXAMPLE

In this section we shall calculate the spectral func-
tions p; in the lowest order approximation of perturba-
tion theory. As an example, we shall adopt here the
following model which was considered by Sekine. ' Two
spin--,' fields 1t H and XtI interact through a spin-0 6eld ptr
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by the Lagrangian density, Lo being given by Eq. (8) and I.' by

a
L'= —:xH(x) F„' +m' XH(x):+:q»*(x)[Q —q']q&(x):+:P&(x)[gi+g2+g]+H(x)yH*(x):

Bxp,

+ ~ XH(x)[gl g275]WH(x) VH(x) '+~ ' AH(x)OH ( ) ' +~ ' XH ( )~H(x) '+~A ' Fir (x) '

8 l9

+&4: vH'(x):+~(1 —~') '" 4~(x)v v~ 4H(x):+~'(1—~') '":xH(x)v.v~ ~~(x):, (42)
Bxp Bxp

where the coupling constants g~ and g2 are real and

(1+~'v~)
~~ ='Yf

(1 ii&2)i/2

For stability of three fields, we shall assume the triangle
relations

X(x)= 0[x—(m'+y)]
(4~)'

[(x'—m" —p')' —4m "p']'"
X

x2

m(m'+ii, m'(m+p, p(m+m'. (43) From Eqs. (48) and (A3), one gets

X dx'& (p'+ x')

X[(iFp x)A, +A—,+iFpy, A,]. (45)

On the other hand, in the lowest order of the coupling
constants

&O { )O„()),=(,+, ,)( (*)-{)),
X(,—,,)( *() ()),. (46)

The two expressions (45) and (46) leads to the equation
in the momentum space,

e(p,)[(zFp —[—p&]'~2) A,+A,+zFp~,A,]
1

d'kg {po—ko)8(ko) 5[(p—k)'+m"]8[k'+ p']
(2')'

X (gi+a2v~)[~F(p —&)—m'](gi —a2v~) (47)

for p (0. Performing the k integration in the above
expression leads to

x'+m" —ii'
Ai= (gi'+g2') X(x),

2x'

x'+m" —p'
A, = (gi2+g22) —m'(g;- —gP) X(x),

2x
x2+ m'& —~2

X(x),A 3= —
gqg2

From the Lagrangian density, the operator O~(x) de-
fined by Eq. (14) is given by

Oar(x) = [gi+g275]xH(x)err*(x)+~m4H(x)
8

+~(1—~') '"v.v~ 4H(x) (44)
t9xp

From the definition of the spectral functions A; given
by the expression (A1), it follows that

(OII(x)OiI(y))o ————d'p8(po)e'"~' »-
(2ir)'

0 i —— (gi2+ g,'-) (x'+ m.')
(x' —m')'

(x'-+ m"—p')
X +2 mm(g P g22)—X(x),

2x2

(x'+m" p')—
P2= (gi'+g2')

(x+m)' 2x

(x'+m" —p')
p3 ——gig2 X(x) .

x'(x' —m')

—m'(ai' —g2') X(x),

It is evident that Jo" dx'p3&0.
At high energies the renormalized spectral functions

in the lowest order of coupling constants behave as

(ai'+g2') 1
Oy—

32~2 x2

(gi'+g2') 1
P2=

32~2 x' (50)

gzg2
p3=

16m' x'

g2—&v3 or
'gz

gp 1—(—.
gi &3

which show the logarithmic divergence of &n, 22 ' and
Jo" dx'pa. We now assume that the present theory in
fact has the divergent nature indicated by the lowest
order calculations, and further assume that the rough
magnitudes of the exact spectral functions are given by
Eq. (50).Then the conditions (22) and (22') are satis6ed
when
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'7. ON THE ELECTRON AND THE MUON

In the usual sense, weak interactions are unre-
normalizable, and our renormalization procedure de-
scribed in Sec. 2 is not applicable to them. To estimate
the rough magnitude of the coefficients a, and u„ for the
electron and the muon in the lowest order of the weak
coupling constant, therefore, we shall introduce a cutoff
energy A.

When an intermediate vector boson is introduced, the
Lagrangian density for weak interactions is usually as-
sumed to be given by

I.:..=ig. , ~(x)v-o(1+vi)4-, ~(x)o -,~(x)

+ig4'. ,„(x)v o (1+vo)4'„„,„(x)o,.„(x)
+Hermite conjugate, (51)

would be very close to unity when a cutoff energy A is
introduced. Since the coefficient a is proportional to the
weak coupling constant g', it follows that u(1 —a') '"
=a((1.Taking these conditions into account, one gets
both for the electron and the muon

g'
dX p3= -)0

(8m-)' M~
(55)

X[0.„, (*)v-l(1+v)k. , ( )]

where h.'))M~' is assumed.
When the intermediate boson does not exist, the

Lagrangian density (51) is replaced by

(1+vs)1....=—O. , ( )v. a-, (*)
2

+Hermite conjugate, (56)

G
o, (*)=—--'(1+ )4-, (*)

v21+v5
0., (*)='gv. 4,.(*) .( )+~ .lI', (*)

X [4,„,H(x)V. o (1+Vo)4, , e(x)]

where P„P„,o., P„„and f„„represent the electron, the
muon, the boson, and the neutrinos associated with the

from which
electron and the muon, respectively. To calculate the
coefFicients u, and a„ to the order g', it is enough to use

+e 8
+— v vo P, (x),

(1—a o)'" Bx.

1+vo
O„,„(x)= igV. y„„(—x)o (x)+.Sm„P„(x)

2

(1
is obtained.

For the electron one gets

8(po)ir pVoA o

Ce t9

+~ .O. , (*)+ v.v. S., (*) (57)—a ')'" Bx

Cp
+ v-vo 4.(*),

(1—u,')'" Bx.
G' 1

2 (2')'
d'k~ q8(po ko)8(ko —qo)8—(—qo)

$g2

(2ir)'
d'k8(po —ko) 8(ko)8[(p —k)']8[k'+M~']

k~kp
Xv.r(P —k)v,—8.,+ (53)

2 M~'

instead of Eq. (47), where M~ is the boson mass.
Performing the k integration in Eq. (53) and using the
definition (A3) leads to

for the electron and the muon, respectively. To calculate
the spectral functions p& and p&, it is necessary to add the
terms concerned with electromagnetic interactions to
the above expressions.

From Eqs. (45) and (52), one obtains

8 (Po) irPV oA o

XS[(p—k)']8[(k—q)'+ ia„']S[q']

Xv. v(p —k)v, -,'(1+v,)S„I-,'(1+v,)
X[iv(k —q) —i'.]voo(1+vo)ivqv. } . (5g)

Since this expression diverges, we shall introduce the
cutoff factor 8(A+qo) into the integrand. Long but
straightforward calculations show that

v-iv(p k)v~o (1+vo)—
XS.I l(1+v )Liv(k q) ~. ]v—sl ( 1+v) ivqv. &}( 'q)

=4[k'-pk+pq kq]ivq(—1+vi)o(q—'). (59)

Substituting Eq. (59) into Eq. (58) and introducing the
cutoff factor, one gets

8(P,)irPVoa,
62

d kd q8(po ko)8(ko qo)8( qo)8—(~+qo)—
(2~)o

where m is the mass of the electron or the muon. The
electron and the muon have no strong interaction.
Therefore, the renormalization constant sq for them

x s[(p—k)']&[(k—q)'+~„']s[q']
X [2pq —p' —m„']ivqvo (60)

g (x'—M~')'(x'+2M~')
po

——— 8(x' 3E~ ) —
~& 0, (54)

64m' 3IIgP (x' m')x'—
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to the order O'. This leads to

62 A2[2x+3A)
S(x—m„)

24(22r)4 x'

manner that all terms appearing in the expanded ex-

pression are CI' invariant. The result is

(61)
d'(x —y)~ '"' "'P'[o (x)o (y)1)

where m„and m, are neglected except for the factor
8(x—m„). The expression (61) gives

G' f A' 4)
a, = A'I » +- I)0

8(22r)4 k m ' 3)

The magnitude of the coupling constant is

V2g2 4X10 '
6=

Mgg'

(62)

where M~ is the nucleon mass. With this value of the
coupling constant, the coeKcient a, of the electron is

(x+m)A i—A2
de

(x' —m')

A3—rp~, dx2
(x' —m2)

+ i (iI'p+ m)
(x+m)'Ai —2mA2

dx2
(x2 m2)2

+i(ii'p+m) dx2

p (p'+x' —ie) (x'—m')2

X{(ii'p —x)[(x+m)'A i—2mA g

+ (x—m)2A2 —(x'—m2)iI'Py2A2} (iI'P+m) . (A2)

10—' A ~2

v2(42r)2 M~I

when the intermediate boson exists, and

2X10 'o A )4 A2 4
a, =

I
ln +-

(22r)' M.vl m„2 3

(63)

(64)

Introducing the new notations

za-i'= [(x+m)'Ai —2mA2j,
X2—m2 2

Sp2 =
(x+m)'

(A3)

when the boson does not exist. On the assumption that
A&300 BeV, both expressions (63) and (64) give

0&a, &10 '.

ACKNOWLEDGMENTS

The author would like to thank Dr. M. Hamermesh
for his warm hospitality at the Argonne National
Laboratory and Dr. F. E. Throw for careful reading of
the manuscript.

APPENDIX 1: DERIVATION OF EQ. (15)

Spa =
(x'—m')

and substituting Eq. (A2) into (12) leads to the ex-

pression (15).Although the spectral functions A; do not
include the 8 function 8(x'—m'), the renormalized func-

tions r&' and p3' may include the 8 function because of
their definition (A3). This possibility was discussed in

Sec. 2.

APPENDIX 2. QUANTIZATION OF THE FREE FIELD

The Lagrangian density for a free spin-~~ 6eld is

Under the same assumptions (except for the invari-
ance under C or P transformation) as Kallen' and
Lehmann' have made, one may obtain

8
L2 —.tp(x) I'„———+m p(x):,

BXp
(A4)

d'( —y) '"' "'P'[0 ( )O (y)j)o

dx
p2+ x2

X [(irP —x)A,+A,+irPq, A,), (A1)

where the definition of p is not $*1'o but p*y2, and p~ is

the Hermitian conjugate of P. Because of this definition

of It, the quantization of the free field is a little different
from that in the usual case and the Schrodinger equation
for the free particle has the unusual form (27).

When expanded into positive-frequency and negative-
frequency parts, the expression for f(x) is

X Q (exp(ipx —iE„x2)a„(p)U" (p)
y=1,2

+exP( —iPx+iE„x2)b„*(P)V&(P) }, (A5)

where the A, are all real functions because of the CP 1t, (x) =
invariance of I,, and the cutoff A for massive inter- (22r)'"
mediate states is introduced to avoid possible di-

vergences.
To perform the renormalization, the expression (A1)

will be expanded in powers of (iFP+m) in such a
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where E~= (y'+m')'", P„means the summation over
all possible spin states, and the spinors U and V satisfy

(irp —I oE,+m) U~(p) =0,
(irp —I' EO„—m) V&(y) =0.

As in the usual case, a„and b„will be quantized as

(A6)

(a.(p),a.*(p')) = (&.(p) P.*(p')}=4 ~(p —p'), (A7)

and the other anticommutators are zero. Further we
shall take the conditions for the orthonormality of the
spinors U, V and their adjoint spinors U, V in the form

U" (P) U" (P)= —V"(P) V"(P) =~,' (A8)

From Eqs. (A6) and (A8) one may obtain a number of
relations for quadratic form in the spinors, the most
important of which are

(I+ax~) „(I+aV~) En
U"'(p) „U"(y)=V""(p) V"(y)=

(1—a')"""(1—a')'~' m

(1+ass) 8
H=i dx:P*(x) P(x):,

(1—a')'" Bxo
(A10)

which has the same form as Eq. (27). By use of Eqs.
(A5), (A7), and (A9), the Hamiltonian can be expressed
in terms of a„and b„ in the form

dpE. (a.*(p)a.(p)+&»*(p)&.(p))

From Eqs. (A5)—(A9) one obtains

&4-(~),A(x) )

d'P '"* "'I:0(p )—0(—Po)]
(2m-)'

those of the usual case in which Lo is invariant under
both C and I' transformations. For example, the
Hamiltonian of the system is given by

X (il P—m).,~(p'ym')

(irp —I'OE„—m).p (4-(*),0 (X)).. ..= (=I' )- &(x-y) (6)U.~(p) U&~(y) =-
p=1,2 for the equal-time anticommutation relation, and

(TL4' (&)|t'e(r)))o=— ~F p(& —y)—(i rp I'OE„+m—).p2 V-"(p)Vs" (y) =-
p=l, 2 (il'p —m).p

d4pe""'* "' (11)
p'+m' —ieUsing the usual canonical formalism, we may express (2~)'

the dynamical variables of the free Geld in terms of
operators a„and b„.The results are exactly the same as for the propagator of the held,

(1+av5) (I+ax5)
U" (p) V"( y)= V" (y) U"( p)=0

] a2)1/2 a211/2
for the anticommutation relation

(A9)


