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We consider a Bravais lattice of spins interacting via isotropic exchange with arbitrary interaction
parameters. Villain has shown that the free energy, in the molecular field approximation (MFA), is a local
minimum when the spin configuration is a simple spiral. It is possible to prove, however, by a method
analogous to that of Luttinger and Tisza, that the simple spiral provides an absolute minimum to the free
energy in the MFA. This result rules out the possiblity of obtaining with the MFA any phase transition in
such a system, except at the ordering temperature.

'
UCH of our present understanding of cooperative

~ magnetic phenomena in solids is based on the
Heisenberg theory in which the spins at the various
lattice sites interact with an energy

E= —P J;;S; S;.

Furthermore, the relatively simple molecular field
treatment has provided much insight into the physical
consequences of (1) at temperatures T&0. An appealing
derivation' of the equations of the molecular 6eld theory
can be based on a variational principle as follows: The
exact canonical distribution p o:exp(—pE) being gener-
ally too complex to work with, one attempts to approxi-
mate it by a distribution describing independent spins,
i.e., by a distribution of the form

P'(Si, ",S-)=Pi(Si)Ps(Ss) P-(S-)

Since the free energy 3 is minimized over all distribu-
tions by the canonical distribution' p, the "best" p'
is de6ned to be the minimum free-energy-independent
spin distribution. Variation of A with respect to p;
leads directly to the molecular field equations

p;=Z,-' expt S; o;2-'(o;)/o. ;], (3)

with the spin averages e; given by

o,Z- (o,)/o;= 2P P; J;,o;, all i

Here Z, ' is a normalizing factor independent of S;,
and Z(x) is the I.angevin function. (For simplicity, we
have absorbed the spin lengths into the exchange pa-
rameters J,;, so the spins are unit vectors. ) We shall
call a set of spin averages which satisfies (4), a "mo-
lecular field spin con6guration" or MFSC. Each MFSC
gives, via (3), an independent spin distribution for
which A is stationary with respect to variations of
the p;. It remains to minimize 2 over all MFSC. Since
this appears to be a somewhat formidable problem,
it has been customary except at T=O and T T,) to
consider only a restricted class of solutions of (4), e.g. ,

' H. M. James and T. A. Keenan, J. Chem. Phys. 31, 12 (1959).
J. W. Gibbs, ELementury PrincipLes in Stutisticul Mechanics,

(Yale University Press, New Haven, 1902); J. von Neumann,
Gottinger Nachr. 245 and 273 (1927).

Keel or Yafet-Kittel con6gurations, or more generally,
simple spirals. '

In the remaining discussion, unless explicitly stated
otherwise, we shall consider only Bravais lattices of
spins. However, the exchange parameters J;; are not
otherwise restricted in any way; for example, we do
not restrict the range of interaction. Villian' has shown
that in this case the lowest spiral MFSC, is locally
stable. That is, any configuration close to the lowest
spiral but otherwise arbitrary, has higher free energy.
At T=0, (4) implies the usual "strong constraints" on
the length of the spins. It is known4 that in this case the
classical energy is rigorously minimized by the lowest
spiral. Also, near the ordering temperature, (4) becomes

3o;=2P Q; J;,o;.

In general, the only solutions of (5) have Fourier corn-
ponents belonging to a single star in k space, so that
near T„one can restrict consideration to this class
(which contains all simple spirals). In view of all the
above results, it seems probable that the lowest spiral
gives an absolute minimum to the free energy in the
molecular 6eld approximation. This would rule out the
possibility of obtaining with the molecular 6eld theory
any phase transition in the system except at the ordering
temperature. At 6rst glance, however, such a result
appears dificult to prove in view of the complicated
nature of the molecular field equations. It is the purpose
of this note, nevertheless, to present a simple proof
using a sort of generalized Luttinger-Tisza' method
that the molecular field free energy as given below in
(6) is rigorously minimized by some simple spiral
con6guration.

We obtain our result by adopting a somewhat dif-
ferent point of view than is usual. We first note that
minimizing the free energy over all distribution of the
form (3), where the set of spin averages or configuration
is tarot constrained by (4), must, because of the way in
which (3) was derived, lead to the lowest independent
spin configuration (also perforce lowest MFSC). In. fact,
(4) just defines the configurations for which A is sta-

s J. Villian, J. Phys. Chem. Solids 11, 303 (1959).
4 D, H. Lyons and T. A. Kaplan, Phys. Rev. 120, 1580 (1960).
5 J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946).
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tionary. ' Using (3) and not (4), the free energy A be-
comes, apart from an additive constant,

A= —Q J;,e; ei+kT Q 2 '(x)dx= U+TN (.6)

(Here N is the "negentropy. ") As just stated, setting
the variation of (6) equal to zero leads inimediately to
the complexities of (4). Hence, we must find another
way to minimize A.

We begin by splitting the entire configuration space,
bounded only by 0&0;& 1, all j, into mutually exclusive
and exhaustive subsets 0, where

{ei e„)eQ ~Q;of=tin', (7)

i.e., a con6guration belongs to 0 if and only if the equal-
ity on the right of (7) is satisfied. This condition is the
analog of the weak constraint in the Luttinger-Tisza
method. ' We now show that a simple spiral configura-
tion in 0 minimizes each term in (6), and, hence, their
sum, which is A itself. This being true for all o., the
free energy (6) is minimized by a simple spiral, which
is what we set out to prove.

It is easily shown, e.g. , by using the calculus of varia-
tions, that the following spiral minimizes the internal
energy U over 0:

FIG. 2. Schematic representation of configuration space
illustrating pertinent sets of configurations.

where X must be chosen so that (7) is satisfied. Equation
(10) has at most one nonzero solution, so that all non-
zero spins must have the same length o =nti/m, where
m is the number of nonzero spins. We have

Z—'(x)dxmin Ã= min nzk

(8) i»i)en» m(ne;=nLz sin(ko R;)+g cos(ko R,)j, =min N(m). (11)
where ko maximizes the Fourier transform J(k) of
J;;.The unit vectors x and g are orthogonal but other-
wise arbitrary. The internal energy becomes derivative

min U= —na'J(ko) .
fo) }boa

Turning now to the entropy term, variation with
respect to 0-; immediately gives

1dÃ

Ada

g(n/m)&

—-'a(N/t5)'"2 'Ln(B/t5)'I'$. (12)

2Xo.;=AZ-'(o. ;), It follows from (12) and the convexity of 2 '(x) that
the derivative is negative. This is shown in Fig. 1 in
which both terms in (12) are illustrated. Therefore,

min N=nk 2 '(x)dx,
(0 j}eQa 0

-I
FIG. 2. Illustration
in terms in Eq. (12).

Xo

Since, in general, stationary points of a function are isolated,
unless the function is constant over a continuum of stationary
points, one may wonder how the simple spiral class of configura-
tions (with properly adjusted amplitudes) can all be stationary
since they apparently form a connected set. The answer is, of
course, that for any finite lattice, the permissible propagation
vectors are discrete (are just the k's in the Brillouin zone}—the
connectedness is only apparent.

and at/ spins have the same length o.. But this condition
is satisfied also in the configuration (8) that minimizes
the internal energy U. It follows that (8) gives the abso-
lute minimum to the free energy 3 over 0 . We repeat
that this then implies that the minimum free-energy

configuration is a simple spiral, and, hence, the proof is
now complete.

From the above, we have
a

min A = —tin'J(ko)+ekT g-'(x)dx. (14)
te'i }a~a 0

We may now complete the minimization of A over all
configurations by minimizing (14) with respect to a.
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This gives
esp= ZL2crp8J(kp) j. (15)

It is easily seen that configuration (8) with ce=np is a
solution of (4). This is an explicit verification of the
remarks above (6). Figure 2 is a schematic representa-
tion of the pertinent sets of configurations and is useful
for visualizing the course of the proof.

Although we used the classical formulation, the
quantum mechanical treatment using the density matrix
is the same in all essentials. Of course, the Langevin
function is then replaced by a Brillouin function, and
the spin length appears explicitly. On the other hand,
the theorem and proof can be modified and extended
only to certain special cases' of anisotropic interaction
and/or non-Bravais lattices. For example, we expect
further results are obtainable when some form of general-
ized Luttinger- Tisza method' ' is successful in rigorously
determining the ground state. However, it is clear that
the technique is not adequate to deal with the general
case. For it has been shown' that in at least some non-
Bravais lattices, even with only Heisenberg interactions,
the angles between spins in the classical ground state

The hcp lattice is an example of a non-Bravais lattice to which
the proof may easily be extended.' M. J. Preiser, Phys. Rev. 123, 2003 (1961).

'D. H. Lyons, T. A. Kaplan, K. Dwight, and N. Menyuk,
Phys. Rev. 126, 546 (1962)

fail to satisfy the very plausible translational invariance
condition,

S, S „=f„„(R —R„).
Here v and p, label the sublattices and m and e label
the unit cells. The ground state is, therefore, probably
very complex and no method is known for discovering
it. This difFiculty is compounded at temperatures
higher than T=O.

Finally, a word about the use of the molecular field
idea. As it stands, the theorem has precise meaning
for T&0 only in the context of the molecular fieM
or independent spin approximation. One may wonder
whether the theorem reflects a similar precise state-
ment true for the exact canonical distribution. Ke
feel this to be unlikely, if only for the reason that the
concept of a spiral con6guration for T)0 loses its pre-
cision outside of the molecular field approximation.
Rather, the molecular field results suggest a single high
peak in the transform of the spin correlation function
(S(R„) S(R„+R)).Of course, this transform is essen-
tially what is measured in neutron diffraction experi-
ments on magnetic ordering.
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The electrical resistance of lithium, sodium, potassium, and rubidium has been measured as a function of
pressure to over 500 kbar at 77'K and 296'K. Lithium exhibits an initial rise in resistance, a Grst-order
phase transition at 70 kbar with a large resistance crop, and a very gradual rise in resistance at high pressure.
Sodium has a rise in resistance with pressure at both 77 and 296'K. The high-temperature isotherm exhibits
a very broad maximum at high pressure. For potassium, the 296'K isotherm shows a rise by a factor of 50
in 600 kbar. The 77'K isotherm shows a sluggish transition at 280 kbar and a very sharp transition at 360
kbar. The latter is almost certainly martensitic. Both isotherms for rubidium have qualitatively similar
behavior: a rise in resistance which accelerates with increasing pressure, a discontinuous rise at 190 kbar
(210 kbar at 77'K), and a broad maximum at high pressure. The discontinuous rise is probably due to a
electronic transition.

'HK effect of pressure to over 500 kbar has been
measured on the electrical resistance of lithium,

sodium, potassium, and rubidium at 296 and 77'K. At
appropriate pressures isobars were also measured. The
experimental techniques have been previously de-

*This work was supported in part by the U. S. Atomic Energy
Commission.

scribed. ' ' The methods for preventing sample oxidation
are mentioned in a previous paper on alkaline earth
metals. ' The metals used in this work are c.p. materials.

' A. S. Balchan and H. G. Drickamer, Rev. Sci. Instr. 32, 308
(1961).

'H. G. Drickamer and A. S. Balchan, in Modern Very High
Presslre Techrseques, edited by R. H. Wentorf, Jr. (Butterworths
Scienti6c Publications, Ltd. , London, 1962).
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