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Second-Order Effects in Positron Spectrum of Zr" (,'-+ ~',-+)

C. P. BHALLA

westinghouse Atomic Power Division, Pittsburgh, Pennsylvania
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Numerical results of theoretical analysis of the positron shape factor in Zr89(2+ —+ ~~+) are presented.
The experimental beta shape factor due to Hamilton, Langer, and Smith was taken to be represented by
1+(b/W) where 0.2 &b &0.4. Several resaonable fits to this anomalous positron shape factor were obtained
within the framework of V-A theory by considering the contribution of the interference terms between the
allowed matrix elements and the second forbidden matrix elements. The finite nuclear-size effects and the
finite deBroglie wavelength effects were included.

I. INTRODUCTION

S EVERAL recent accurate measurements of beta-
shape factors in various allowed transitions are

reported' to be represented by 1+(b/W), where

0.2(b(0.4.
There are two interesting aspects of these measure-
ments. First, an excess of low-energy beta particles is
observed for negatron decays as well as positron decays.
Second, these deviations from the statistical shape
(b= 0) have been found in pure Fermi transitions, pure
Gamow-Teller transitions, and mixed Fermi-Gamow-
Teller transitions. It is well known that the leading
term in the theoretical shape factor (for allowed
transitions) is independent of the beta-particle energy,
W. Thus, any deviation (a nonzero value of b) could,
in principle, be either ascribed to some new type of
interaction or purely to the second-order effects within
the framework of the V—1.2A theory. Several attempts
at a suitable explanation of the anomalous beta-shape
factors appear in the literature. For example, Pearson'
presented theoretical analysis to explain the experi-
mental data' of In'"(1+ —+0+) and Zr"(—'+~ —'+) on
the basis of an induced I' interaction contribution.
Pearson, following the treatment of the I' interaction
by Eman and Tadic, ' could explain the beta shape
factor of In.'"(1+-+0+) by assuming a large contri-
bution of the I' interaction. However, no reasonable
fit to the positron shape factor of Zr"(ss+~ —',+) could
be obtained. Contributions of the second-forbidden
matrix elements were ignored in this analysis. Further-
more, it turns out' that this treatment of the I' inter-
action by Eman and Tadic is in error. Similarly Chahine
and Jouvet' investigated the Uhlenbeck-Konopinski

' J. H. Hamilton, L. M. Langer, and %. G. Smith, Phys. Rev.
119, 772 (1960); 112, 2010 (1958); 123, 189 (1961);D. C. Camp
and L. M. Langer, ibid. 129, 1782 (1963); O. E. Johnson, R. G.
Johnson, and L. M. Langer, ibid 112, 2004 (1958.).

s J. M. Pearson, Phys. Rev. 126, 1100 (1962).
3 B. Eman and D. Tadic, Glansik Mat-Fiz. Astron. Ser. II, 16,

89 (1961).Dr. Pearson has advised us that the extra term (con-
taining the potential) in the contribution of the induced P
interaction should not have been considered in Ref. 2. For further
details, see L. D. Blokhintsev and E. I. Dolinskii, Nucl. Phys.
34, 498 (1962); M. L. Goldberger and S. B.Treiman, Phys. Rev.
111,354 (1958).' C. Chahine and B. Jouvet, Compt. Rend. 253, 945 (1961);
also see B. Kuchowicz, Bull, Acad. Polon. Sci., Ser. Sci. Math.
Astron. Phys. 7, 509 (1959).

coupling in the form of E~py„ysXe(1+ps)r) „v in their
analyses. Ez/Iiz('0 was employed, where Fz is the
Fermi coupling constant of the axial vector interaction.
With this gradient coupling, Chahine and Jouvet claim
a satisfactory fit to the experimental data. However,
the validity of these extra interaction terms need
confirmation in reference to a/l the experimental data.

Zyryanova and Pantyushin' considered the contri-
butions of the second forbidden matrix elements. These
authors concluded that the anomaly in the beta shape
factors of P"(1+—+0+) and Na"(3+ —+2+) could not
be explained with the V—1.2A theory. The positron
shape factor of Zr"(as+ —+ ss+) was not investigated.
In the analyses of Zyryanova and Pantyushin, a plane-
wave representation for electrons was used. Thus, all
contributions, arising from the finite nuclear size
eRects and the finite deHroglie wavelength eRects,
were completely ignored. The present author' recently
reported on an analysis of the negatron-shape factor of
In'"(1+ —+0+) by including the contribution of the
second forbidden matrix elements, and by using accu-
rate electronic radial functions. The conclusions of this
analysis are that the anomalous beta-shape factor of
In"4(1+—& 0+) can easily be explained for the V—1.2A

theory.
A complication~ in an analysis of the experimental

beta-shape factors arises from our limited knowledge of
the relevant nuclear matrix elements, which appear in
the theoretical formulas. Though several prescriptions'
are available, the ratios of nuclear matrix e1.ernents
cannot be calculated with complete confidence in most
cases. These models, however, do provide us with the
orders of magnitude of ratios of certain nuclear matrix
elements. Furthermore, these theoretical models predict

~ L. N. Zyryanovia and A. A. Pantyushin, Izv. Akad. Nauk.
SSSR Ser. Fiz 26, 150 (1962).' C. P. Bhalla, Phys. Rev. 129, 2130 (1963).

7 Another complexity in beta shape factors may arise from the
existence of inner beta-ray groups, which makes the experimental
data less accurate and the theoretical analysis more cumbersome.
However, it turns out that D. A. Howe, L. M. Langer, and D.
Wortman LNucl. Phys. 37, 476 (1962)g have thoroughly investi-
gated this question in Zrs'(s+ ~ as+). Their conclusions are that
the contribution of the inner beta-ray group (from a level at
1.5 MeV of Y ) is less than 0.008% to the main transition.

M. E. Rose and R. K. Osborn, Phys. Rev. 93, 1329 (1954);
T. Ahrens and E. Feenberg, ibid 86, 64 (1952); D. .L. Pursey,
Phil. Mag. 42, 1193 (1951);M. Morita, Ref. 11.
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FIG. 3. The permissible values of &3 and &1 for a reasonable Gt
to the positron shape factor (Ref. 1) for b ——2.0 and q=30.0, and
(2=4.0 and q =15.0.

I.IO

IV. DISCUSSION AND CONCLUSIONS

From the results of our analysis of the positron shape
factor in the case of Zr" (sz+~ —',+), it is clear that the
beta-shape factor of the form (1+5/W) can easily be
explained by the vector and the axial vector inter-
actions. We believe that the reasons of our excellent
fits are (1) the consideration of the contribution of the
second-forbidden matrix elements, (2) the use of
accurate electronic functions, and (3) the extensive
nature of the theoretical analysis. It is to be noted that
these conclusions are not based upon specific values"
of the relevant nuclear matrix elements. We wish to
point out that an accurate beta longitudinal polar-
ization in this case is desirable because the permissible

'« It is to be noted that the multiplying coeKcients (combina-
tions of the appropriate electronic radial functions) of the follow-
ing:

i ysr e, i e r r', and e)&r 0',

are either bs or bs (Eq. 3).These coefiicients are essentially energy
independent over the range of beta spectrum. Consequently, even
changing the values of these ratios of nuclear matrix elements by
a factor of 2 or more does not affect the conclusions of our analysis.

I.05 I

I.4 I.6 I.8 2.0
W{mc2)

2.2
t

2.4

Fn. 4. Calculated positron-shape factors for various values of
the ratios of the nuclear matrix elements. The experimental data
corresponding to run 2 and (normalized) run l of Hamilton,
Langer, and Smith are also shown. It may be noted that run 1
and run 2 were taken at diferent times, thus requiring an over-all
normalization.

ranges of the nuclear matrix-elements ratios will be
determined more accurately. '

In conclusion, the contribution of the second-order
effects, within the framework of the V—1.2A theory,
does adequately explain the ' anomalous" positron
shaPe factor in Zrss(sz+ —+ os+) as well as the "anoma-
lous" negatron shape factor' in In'"(1+ —+ 0+).
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