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Numerical results of theoretical analysis of the positron shape factor in Zr3 (3% — §*) are presented.
The experimental beta shape factor due to Hamilton, Langer, and Smith was taken to be represented by
14 (b/W) where 0.2<5<0.4. Several resaonable fits to this anomalous positron shape factor were obtained
within the framework of V-4 theory by considering the contribution of the interference terms between the
allowed matrix elements and the second forbidden matrix elements. The finite nuclear-size effects and the

finite deBroglie wavelength effects were included.

I. INTRODUCTION

EVERAL recent accurate measurements of beta-
shape factors in various allowed transitions are
reported! to be represented by 1+ (b/W), where

0.2<55<0.4.

There are two interesting aspects of these measure-
ments. First, an excess of low-energy beta particles is
observed for negatron decays as well as positron decays.
Second, these deviations from the statistical shape
(6=0) have been found in pure Fermi transitions, pure
Gamow-Teller transitions, and mixed Fermi-Gamow-
Teller transitions. It is well known that the leading
term in the theoretical shape factor (for allowed
transitions) is independent of the beta-particle energy,
W. Thus, any deviation (a nonzero value of ) could,
in principle, be either ascribed to some new type of
interaction or purely to the second-order effects within
the framework of the V'—1.24 theory. Several attempts
at a suitable explanation of the anomalous beta-shape
factors appear in the literature. For example, Pearson?
presented theoretical analysis to explain the experi-
mental data! of In™4(1+— 0*) and Zr¥($*+— $+) on
the basis of an induced P interaction contribution.
Pearson, following the treatment of the P interaction
by Eman and Tadi¢;® could explain the beta shape
factor of In'#(1*— 0*) by assuming a large contri-
bution of the P interaction. However, no reasonable
fit to the positron shape factor of Zr¥(§+— $*) could
be obtained. Contributions of the second-forbidden
matrix elements were ignored in this analysis. Further-
more, it turns out?® that this treatment of the P inter-
action by Eman and Tadié is in error. Similarly Chahine
and Jouvet! investigated the Uhlenbeck-Konopinski
! J. H. Hamilton, L. M. Langer, and W. G. Smith, Phys. Rev.
119, 772 (1960); 112, 2010 (1958): 123, 189 (1961); D. C. Camp
and L. M. Langer ibid. 129, 1782 (1963); O. E. ]'ohnson R. G
Johnson, and L. M. Langer, 'ibid. 112, 2004 (1958).
2 J. M. Pearson, Phys. Rev. 126, 1100 (1962).
3B. Eman and D. Tadi¢, Glansik Mat-Fiz. Astron. Ser. II, 16,
89 (1961). Dr. Pearson has advised us that the extra term (con-
taining the potential) in the contribution of the induced P
interaction should not have been considered in Ref. 2. For further
details, see L. D. Blokhintsev and E. I. Dolinskii, Nucl. Phys.
34, 498 (1962) ; M. L. Goldberger and S. B. Treiman, Phys. Rev.
111 354 (1958).
+C. Chahine and B. Jouvet, Compt. Rend. 253, 945 (1961);

also see B. Kuchowicz, Bull. Acad. Polon. Sci., Ser. Sci. Math.
Astron. Phys. 7, 509 (1959).

coupling in the form of K 4pv.ysNé(14v5)d,v in their
analyses. K4/F4<0 was employed, where F, is the
Fermi coupling constant of the axial vector interaction.
With this gradient coupling, Chahine and Jouvet claim
a satisfactory fit to the experimental data. However,
the validity of these extra interaction terms need
confirmation in reference to all the experimental data.

Zyryanova and Pantyushin® considered the contri-
butions of the second forbidden matrix elements. These
authors concluded that the anomaly in the beta shape
factors of P2(1+— 0%) and Na®(3*— 2*) could not
be explained with the V—1.24 theory. The positron
shape factor of Zr®(3t— $7) was not investigated.
In the analyses of Zyryanova and Pantyushin, a plane-
wave representation for electrons was used. Thus, all
contributions, arising from the finite nuclear size
effects and the finite de Broglie wavelength effects,
were completely ignored. The present author® recently
reported on an analysis of the negatron-shape factor of
In4(1+— 0*) by including the contribution of the
second forbidden matrix elements, and by using accu-
rate electronic radial functions. The conclusions of this
analysis are that the anomalous beta-shape factor of
In(1+— 0%) can easily be explained for the V—1.24
theory.

A complication’ in an analysis of the experimental
beta-shape factors arises from our limited knowledge of
the relevant nuclear matrix elements, which appear in
the theoretical formulas. Though several prescriptions?
are available, the ratios of nuclear matrix elements
cannot be calculated with complete confidence in most
cases. These models, however, do provide us with the
orders of magnitude of ratios of certain nuclear matrix
elements. Furthermore, these theoretical models predict

5L. N. Zyryanovia and A. A. Pantyushin, Izv. Akad. Nauk.
SSSR Ser. Fiz 26, 150 (1962).

6 C. P. Bhalla, Phys Rev. 129, 2130 (1963).

7 Another complex1ty in beta shape factors may arise from the
existence of inner beta-ray groups, which makes the experimental
data less accurate and the theoretical analysis more cumbersome.
However, it turns out that D. A. Howe, L. M. Langer, and D.
Wortman [Nucl, Phys. 37, 476 (1962)] have thoroughly investi-
gated this question in er”(%"‘ — £+), Their conclusions are that
the contribution of the inner beta-ray group (from a level at
1. 5 MeV of Y¥®) is less than 0.008%, to the main transition.

8 M. E. Rose and R. K. Osborn, Phys. Rev. 93, 1329 (1954);
T. Ahrens and E. Feenberg, ibid. 86, 64 (1952); D. L. Pursey,
Phil. Mag. 42, 1193 (1951); M. Morita., Ref. 11.
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that some ratios of the nuclear matrix elements are
essentially of the same magnitude. For example,

o/ =g/ -

Whereas this type of information can profitably be used
in reducing the (large) number of ratios of the nuclear
matrix elements, the remaining nuclear matrix elements
must be considered as parameters. It is in this respect
that a detailed (and extensive) theoretical analysis of
the anomalous beta shape factor in Zr®(§+— $)
needed to be carried out for a wide range of the values
of these parameters (nuclear matrix elements) in order
to render the results more meaningful and valid.

The problem considered in this paper, then, is to
investigate the contributions of the second-order effects
to the positron shape factor of Zr¥(3+— §1), as
reported to be represented! by 14+8/W, where 0.2<5
<0.4. By second-order effects, we imply, all those
effects which arise due to a proper consideration of (1)
the contribution of the second-forbidden matrix
elements, (2) the finite nuclear size effects,? and (3)
the finite de Broglie wavelength effects.??

In Sec. II, the theoretical basis of our calculations
are presented and the numerical results are given in
Sec. III. A discussion of this analysis and the conclu-
sions appear in Sec. IV.

II. THEORY

The relevant theoretical formulas for the beta-shape
factor are given by Morita!! and others.? The inter-

TasiLE I. Zr¥(§*+ — §%). Numerical coefficients for
beta shape-factor formula.®

» by b by bs bs

0.4 $.188 15.20 10.07 18.25 17.44
0.6 7.760 15.18 9.443 17.20 17.30
0.8 7.182 15.10 8.631 15.81 17.07
1.0 6.535 15.07 7.734 1427 16.85
1.2 5.810 15.01 6.759 12.57 16.60
14 5.042 14.97 5756 10.80 16.35
1.6 4.241 14.94 4743 8.984 16.10
18 3.405 14.91 3.728 7.132 15.84
2.0 2.544 14.88 2.724 5.268 15.57
2.2 1.663 14.86 1.739 3.402 15.31
24 0.7694 14.94 0.7853 1.555 15.15

s Equation (5). These coefficients, defined in Eqgs. (3), have been calcu-
lated considering (1) the nuclear radius to be 0.428¢A!3F, (2) the cor-
rections due to the finite-nuclear-size effects, and (3) the finite de Broglie
wavelength effects.

®C. P. Bhalla and M. E. Rose, Phys. Rev. 128, 774 (1962);
M. E. Rose and D. K. Holmes, 7bid. 83, 190 (1953); also see,
ho'a]‘i‘ed?idge National Laboratory Report ORNL-1022 (unpub-

shed).

0 M. E. Rose and C. L. Perry, Phys. Rev. 90, 479 (1953).

1t M. Morita, Phys. Rev. 113, 1584 (1959).

2 W. Biihring (private communication); B. Eman and D.
Tadi¢, Ref. 3; M. Gell-Mann, Phys. Rev. 111, 362 (1958);
%. hNd) Huffaker, Ph.D. thesis, Duke University, 1962 (unpub-

shed).
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ference terms between the allowed matrix elements and
the second-forbidden matrix elements are included in
Eq. (1) and Eq. (2) of Ref. 11. We assume time-reversal
invariance to be valid for the weak as well as the
strong interactions. These considerations imply that
the coupling constants are real and the combination of
the nuclear matrix elements (in the theoretical shape
factor) are also real.

There are as many as seven ratios of the nuclear
matrix elements (because one of the nuclear matrix
elements can be considered as a normalizing factor).
However, as discussed earlier, some of these seven
parameters can be estimated® fairly reliably. Following
Morita,"* we used the following relationships:

[/ e [
ifer/ [1=tazrn[+/ [1 )
i[5/ [omtaiazsip [oe ] [
fos fooi

where M is the nucleon mass (in units of the electron
mass), o is the fine structure constant, and p is the
nuclear radius (in units of #/mc). For the sake of
convenience, we introduce the following notations:

fe/ o

£a=A(aZ/4p),
VA
n=/o-rr//ar2,

for the remaining free parameters, and
Loby= f%quo‘f‘%qNo , Lobe=— %QLH‘NO,
Lobz= %92L0+%QNO ’ Loby= %qNo , 3
Lobs=3%qLo+2N,,

where

b= (Ca/CvY| / o

=Wo—W, W=(p*+1)'"2,
Lo= (g2 1) 2p*F)1, 4)
No= (f-1g-1— f1g1) 2p*F)1.

F is the Fermi function and W, the end-point energy
(mc? units), is 2.755 for Zr®(§+ — ).
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F16. 1. The permissible values of # and #; for a reasonable fit
to the experimental beta-shape factor (Ref. 1) keeping £=35.0
and $s=(- 1.0. The ratios of the nuclear matrix elements are defined
in Eq. (2).

With the above notation, Morita’s formulas for the

positron shape factor, C, reduce, in the case of
Zr¥(§t — §%), to

|2
C=g2 / 1 (1 btk 61+ (=it bo

Fbokm) &1+ ((bo+2.485)/2M) T} . ()

Thus, we have four parameters, &, &, &, and 5. The
relevant electronic radial function f, and g« (for
k==1) and the Fermi function can be calculated only
numerically,® in order to include the finite nuclear
size effects and the finite de Broglie wavelength effects.
For the sake of convenience, the discussion of the
conclusions in this paper and for future reference, we
give by, bs, b3, by, and b; as defined in Egs. (3) in Table I.
These coefficients were calculated from the tables of
Bhalla and Rose.

At this stage, some remarks concerning the approxi-
mations used in Eq. (1) are in order. From Table I,
it is clear that whereas the coefficients &y, b3, and b4
increase by a factor of 10 for beta momentum range
from p=2.4 to p=0.4, the coefficients b, and b5 increase
only by an approximate factor of 1.02 and 1.15, respec-
tively, over this range. This, in turn, implies that the
energy dependence of the calculated shape factor is not
sensitive to the values of the following ratios of the

13 C, P. Bhalla and M. E. Rose, Oak Ridge National Laboratory
Report, ORNL-3207, 1962 (unpublished). These tables were
prepared by considering the nucleus as a sphere of uniform charge
distribution and of a radius 1.24!3F. The finite de Broglie wave-
length effects were included. Also see, C. P. Bhalla and M. E.
Rose, Oak Ridge National Laboratory Report, ORNL-2954,
1960 (unpublished).

1179

matrix elements:

ifrs) o i/ [, [axe] [=

However, to insure that our conclusions are completely
valid we carried out our analysis even for some different
values of these matrix elements. The numerical results
are presented in the next section.

III. NUMERICAL RESULTS

We have taken the calculated shape factor to be a
reasonable fit to the experimental data of Hamilton,
Langer, and Smith! if the mean sum of the squared
(percent) residuals, A4, is less than 0.0003, where

A= (BT (AXy/ X0, ©)

=1

In Eq. (6), AX; is the difference between the calculated
shape factor from the corresponding X; given by
(14-0.3/W). Ten values of beta momentum were taken
at equal intervals of p=0.2 starting from p=0.6.

It may be noted that there are four parameters, &, &,
&3, and 9, defined in Eq. (2) in the theoretical expression
of the beta shape factor, as given in Eq. (5). First,
we present the permissible region in the &;-n plane for
two sets of values of £ and &;. In Fig. 1, the permissible
region (for a reasonable fit) is shown by the shaded
area keeping £=35.0 and £;=1.0. Similarly, the shaded
area in Fig. 2 represents the ranges of £ and 7 for the
case £=2.0 and §£=20. In Fig. 3, the permissible
region for a reasonable fit [Eq. (6)] is shown in the
£1-£3 plane for £,=2.0 and 9=230.0, and £=4.0 and
7=15.0.

Finally, some of the reasonable fits are shown in
Fig. 4 along with the experimental data of Ref. 1.
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F16. 2. The permissible values of 4 and & for a reasonable fit
to the positron shape factor (Ref. 1) keeping £2=2.0 and £;=2.0.
The ratios of the nuclear matrix elements are defined in Eq. (2).



1180 C. P.

T T T T T

z¥ o2 +—924)
Permissible Region alt3 and il for
€+ 20andn= 00

RS permissible Reglon of (3 and il for
£, A0andn~ 150

€= (CAICvlzllgPI'll] 2

F16. 3. The permissible values of £ and £ for a reasonable fit
to the positron shape factor (Ref. 1) for £,=2.0 and »=30.0, and
£,=4.0 and =15.0.

IV. DISCUSSION AND CONCLUSIONS

From the results of our analysis of the positron shape
factor in the case of Zr¥ (3t — %), it is clear that the
beta-shape factor of the form (148/W) can easily be
explained by the vector and the axial vector inter-
actions. We believe that the reasons of our excellent
fits are (1) the consideration of the contribution of the
second-forbidden matrix elements, (2) the use of
accurate electronic functions, and (3) the extensive
nature of the theoretical analysis. It is to be noted that
these conclusions are not based upon specific values!
of the relevant nuclear matrix elements. We wish to
point out that an accurate beta longitudinal polar-
ization in this case is desirable because the permissible

4Tt is to be noted that the multiplying coefficients (combina-
tions of the appropriate electronic radial functions) of the follow-

if'ysr/[(r, i/a-r//r’, and /aXr///(r,

are either b, or b5 (Eq. 3). These coefficients are essentially energy
independent over the range of beta spectrum. Consequently, even
changing the values of these ratios of nuclear matrix elements by
a factor of 2 or more does not affect the conclusions of our analysis.
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F16. 4. Calculated positron-shape factors for various values of
the ratios of the nuclear matrix elements. The experimental data
corresponding to run 2 and (normalized) run 1 of Hamilton,
Langer, and Smith are also shown. It may be noted that run 1
and run 2 were taken at different times, thus requiring an over-all
normalization.

ranges of the nuclear matrix-elements ratios will be
determined more accurately.$

In conclusion, the contribution of the second-order
effects, within the framework of the V—1.24 theory,
does adequately explain the ‘anomalous” positron
shape factor in Zr¥(§+— §*) as well as the “anoma-
lous” negatron shape factor® in In™(1+— 0F).
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